1
|
Wang T, Liu Y, Liu B, Yan X, Qiu D, Wei S, Chen D, Jiang D, Zhou J, Ju H, Zhang X. Sensitive detection of FPG based on 8-oxoG modified chimeric peptide-DNA enzyme for oxidative damage evaluation. Talanta 2025; 283:127118. [PMID: 39476800 DOI: 10.1016/j.talanta.2024.127118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/11/2024]
Abstract
Formamidopyrimidine DNA glycosylase (FPG) is a crucial DNA repair enzyme that specifically recognizes and excises the damaged base 7,8-dihydro-8-oxoguanine (8-oxoG). The current detection technology for FPG is limited due to the need of integrating the relatively independent identification components and signal amplifiers. Herein, we designed an integrated probe (loaded on magnetic beads), which contained 8-oxoG for FPG recognition and a novel chimeric peptide-DNA mimetic enzyme (CPDzyme) for chemiluminescence (CL) signal amplification. Once the FPG recognized the probe, the CPDzyme was excised from the surface of the magnetic beads. Therefore, the change in CL signal caused by CPDzyme on the surface of the magnetic spheres before and after recognition and cleaning could be quantitatively analyzed for FPG. Thanks to the powerful catalytic ability of CPDzyme and the simplicity of the CL system, this method could detect the activity of FPG in a linear range of 0.2-20 U/mL, with the detection limit as low as 0.06 U/mL. Further, we applied the strategy to the detection of FPG activity in human serum and bacterial samples (before and after UV irradiation), demonstrating its potential for the monitoring of oxidative damage. With excellent sensitivity and standardized operation, this strategy demonstrates superior characteristics to commercial assay kits and is expected to provide a new powerful tool for relevant research.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Kocabey S, Cattin S, Gray I, Rüegg C. Ultrasensitive detection of cancer-associated nucleic acids and mutations by primer exchange reaction-based signal amplification and flow cytometry. Biosens Bioelectron 2025; 267:116839. [PMID: 39369516 DOI: 10.1016/j.bios.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The detection of cancer-associated nucleic acids and mutations through liquid biopsy has emerged as a highly promising non-invasive approach for early cancer detection and monitoring. In this study, we report the development of primer exchange reaction (PER) based signal amplification strategy that enables the rapid, sensitive and specific detection of nucleic acids bearing cancer specific single nucleotide mutations using flow cytometry. Using micrometer size beads as support for immobilizing oligonucleotides and programmable PER assembly for target oligonucleotide recognition and fluorescence signal amplification, we demonstrated the versatile detection of target nucleic acids including KRAS oligonucleotide, fragmented mRNAs, and miR-21. Moreover, our detection system can discriminate single base mutations frequently occurred in cancer-associated genes including KRAS, PIK3CA and P53 from cell extracts and circulating tumor DNAs (ctDNAs). The detection is highly sensitive, with a limit of detection down to 27 fM without pre-amplification. In view of a clinical application, we demonstrate the detection of single mutations after extraction and pre-amplification of ctDNAs from the plasma of breast cancer patients. Importantly, our detection strategy enabled the detection of single KRAS mutation even in the presence of 1000-fold excess of wild type (WT) DNA using multi-color flow cytometry detection approach. Overall, our strategy holds immense potential for clinical applications, offering significant improvements for early cancer detection and monitoring.
Collapse
Affiliation(s)
- Samet Kocabey
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Sarah Cattin
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland; Cell Analytics Facility, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland
| | - Isabelle Gray
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
3
|
Guo Z, Zhang M, Zhang H, Ren X, Xiao Y, Sun W, Wang Y, Liu S, Huang J. Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching. Mikrochim Acta 2024; 192:33. [PMID: 39725729 DOI: 10.1007/s00604-024-06883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB2+), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg2+-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy. The presence of OTA triggers CHA and signaling responses along with the formation of G-quadruplex-hemin DNAzyme, which promotes the oxidation of TMB with H2O2, leading to the etching of AuNRs and a reduction in their aspect ratio. AuNRs experienced a blue shift in the longitudinal localized surface plasmon resonance peak, resulting in a color change. The technique has been shown to detect OTA with a low detection limit of 0.309 pg/mL, demonstrating high sensitivity and specificity. The detection technique offers versatility by enabling the detection of other pollutants through a simple replacement of the aptamer, expanding the range of detection platforms available for pollutant determinations.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mingshuo Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Haiping Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xinru Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yijing Xiao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Weiqing Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China.
| |
Collapse
|
4
|
Chen Y, Yang SY, Ou X, Wang H, Kong FC, Chow PCY, Wang Y, Jiang Y, Zhao W, Sun J, Kwok RTK, Zheng DW, Yu W, Wang F, Lam JWY, Tang BZ. Engineering a Near-Infrared Spiro-Based Aggregation-Induced Emission Luminogen for DNAzyme-Sensitized Photothermal Therapy with High Efficiency and Accuracy. J Am Chem Soc 2024; 146:35462-35477. [PMID: 39665333 DOI: 10.1021/jacs.4c14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aggregation-induced emission luminogen (AIEgens)-based photothermal therapy (PTT) has grown into a sparkling frontier for tumor ablation. However, challenges remain due to the uncoordinated photoluminescence (PL) and photothermal properties of classical AIEgens, along with hyperthermia-induced antiapoptotic responses in tumor cells, hindering satisfactory therapeutic outcomes. Herein, a near-infrared (NIR) spiro-AIEgen TTQ-SA was designed for boosted PTT by auxiliary DNAzyme-regulated tumor cell sensitization. TTQ-SA with a unique molecular structure and packing mode was initially fabricated, endowing it with a strong AIE effect, favorable PL quantum yield, and good photothermal performance. DNAzyme, as a gene silencing tool, could alleviate antiapoptosis response during PTT. By integrating TTQ-SA and DNAzyme into folate-modified poly(lactic-co-glycolic acid) (PLGA) polymer, the as-fabricated nanosystem could promote cell apoptosis and sensitize tumor cells to PTT, thereby maximizing the therapeutic outcomes. With the combination of spiro-AIEgen-based PTT and DNAzyme-based gene silencing, the as-designed nanosystem showed promising NIR and photothermal imaging abilities for tumor targeting and demonstrated significant cell apoptotic, antitumor, and antimetastasis effects against orthotopic breast cancer. Furthermore, a synergistic antitumor effect was realized in spontaneous MMTV-PyMT transgenic mice. These findings offer new insights into AIEgen-based photothermal theranostics and DNAzyme-regulated tumor cell sensitization, paving the way for synergistic gene silencing-PTT nanoplatforms in clinical research.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Sheng-Yi Yang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Xinwen Ou
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Hui Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430071, China
| | - Fan-Cheng Kong
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| | - Yifei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430071, China
| | - Yuqian Jiang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Zhao
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City 510280, Guangdong, China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Di-Wei Zheng
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenqian Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430071, China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430071, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, China
| |
Collapse
|
5
|
Yang Y, Chen R, Guo Y, Zhang J, Ren S, Zhou H, Gao Z. A two-color fluorescence sensing strategy based on functionalized tetrahedral DNAzyme nanotweezers for ochratoxin A detection. Talanta 2024; 285:127348. [PMID: 39675070 DOI: 10.1016/j.talanta.2024.127348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
A two-color fluorescent sensing strategy based on a functionalized tetrahedral DNAzyme nanotweezer (FTDN) was developed to detect ochratoxin A (OTA) utilizing the multifunctional properties of DNA nanotechnology. The FTDN enables rapid OTA detection directly through a Cy5 fluorescent group, modified to respond to the target signal. Additionally, FTDN exhibits DNAzyme cutting activity in the presence of Mg2⁺ ions, enabling it to traverse DNA nanoflower-functionalized magnetic beads. This process results in the continuous cleavage of DNA nanoflowers labeled with numerous FAM fluorescent groups, thereby amplifying the detection signal and enhancing OTA sensitivity. The linear ranges for the Cy5 and FAM signals in response to OTA were 5-1000 ng/mL and 0.05-100 ng/mL, respectively, with corresponding limits of detection (LOD) of 1.59 ng/mL and 0.03 ng/mL. This study demonstrates that dual-color fluorescence via Cy5 and FAM can effectively verify OTA detection in food, significantly reducing false-positive and false-negative rates. The proposed platform offers sensitive and accurate detection of mycotoxins in food and can be adapted for monitoring other trace contaminants by simply altering the aptamer.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Yifen Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Jiaxin Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| |
Collapse
|
6
|
Zhao Y, Chen Q, Liu Y, Jiang B, Yuan R, Xiang Y. A sensitive tobramycin electrochemical aptasensor based on multiple signal amplification cascades. Bioelectrochemistry 2024; 160:108797. [PMID: 39154628 DOI: 10.1016/j.bioelechem.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
The residue of tobramycin, a broad spectrum antibiotic commonly used in animal husbandry, has evitable impact on human health, which may cause kidney damage, respiratory paralysis, neuromuscular blockade and cross-allergy in humans. Sensitive monitoring of tobramycin in animal-derived food products is therefore of great importance. Herein, a new aptamer electrochemical biosensor for sensing tobramycin with high sensitivity is demonstrated via exonuclease III (Exo III) and metal ion-dependent DNAzyme recycling and hybridization chain reaction (HCR) signal amplification cascades. Tobramycin analyte binds aptamer-containing hairpin probe to switch its conformation to expose the toehold sequence, which triggers Exo III-based catalytic digestion of the secondary hairpin to release many DNAzyme strands. The substrate hairpins immobilized on the Au electrode (AuE) are then cyclically cleaved by the DNAzymes to form ssDNAs, which further initiate HCR formation of lots of long methylene blue (MB)-tagged dsDNA polymers on the AuE. Subsequently electro-oxidation of these MB labels thus exhibit highly enhanced currents for sensing tobramycin within the 5-1000 nM concentration range with an impressive detection limit of 3.51 nM. Furthermore, this strategy has high selectivity for detecting tobramycin in milk and shows promising potential for detect other antibiotics for food safety monitoring.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qirong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yujie Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Huang H, Chen Y, Li L, Zheng L. A DNAzyme-Based Nanohybrid for Ultrasound and Enzyme Dual-Controlled mRNA Regulation and Combined Tumor Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409035. [PMID: 39470099 DOI: 10.1002/adma.202409035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Despite the significant potential of RNA-cleaving DNAzymes for gene regulation, their application is limited by low therapeutic efficacy and lack of cell-specific control. Here, a DNAzyme-based nanohybrid designed for ultrasound (US)-controlled, enzyme-activatable mRNA regulation is presented, enabling tumor cell-selective combination therapy. The nanohybrid is constructed by coordination-directed self-assembly of an enzymatically-triggerable therapeutic DNAzyme (En-Dz) and natural sonosensitizer hemoglobin (Hb). Controlled US exposure induces reactive oxygen species generation from Hb units, which not only facilitates efficient endosomal escape of En-Dz, but also promotes the translocation of specific enzyme from the nucleus to the cytoplasm, thereby enhancing gene regulation efficacy. Notably, the enzyme-triggered, spatiotemporally-controlled activation of En-Dz's catalytic activity results in enhanced cancer-cell selectivity in the therapeutic treatment. Furthermore, the combination of enzyme-activated mRNA regulation and sonodynamic therapy significantly enhances anti-tumor efficacy both in vitro and in vivo. This work highlights the potential of integrating a sonodynamic strategy to overcome the current limitations of DNAzyme-based gene regulators, providing a spatiotemporally-controlled approach for precise tumor treatment.
Collapse
Affiliation(s)
- Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Yaoxuan Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
8
|
Bhagat P, Upadhyay LSB. A review towards sustainable analyte detection: Biomimetic inspiration in biosensor technology. J Biotechnol 2024; 398:51-65. [PMID: 39615792 DOI: 10.1016/j.jbiotec.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels. More recently, biomimetic biosensor technology has found potential in constructing bio-inspired materials such as aptamers, MIPs, nanozymes, DNAzymes, Synzymes, etc. to be integrated with biosensor fabrication. The establishment of a sensing setup is not limited to the bioreceptor fabrication; the construction of transducing element using biomimetic material have been reported too. Moreover, to serve a biosensing of target analyte from a fatal diseased sample different biomimetic architectures can be designed that mimic in-vivo microenvironmental surroundings to get an exact microenvironment equivalent to natural conditions leading towards designing of a precise treatment strategy. This research area is ever-evolving as there is a scope for upgradation and refinement due to advancing technologies including nanotechnology, biomimetic nanomaterials, microfluidics, optical sensors, etc. This review is an attempt to comprehend and juxtapose the very primary innovations in the field of biomimetic biosensor technology to realize its comprehensive and wide-range scope and possibilities.
Collapse
Affiliation(s)
- Pratistha Bhagat
- National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India.
| | - Lata Sheo Bachan Upadhyay
- National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
9
|
Ao H, Xiao W, Hu W, Wu J, Ju H. DNA Conformation-Regulated Hemin Switch for Lab-on-Chip Chemiluminescent Detection of an Antibody Secreted from Hybridoma Cells. Anal Chem 2024; 96:18502-18509. [PMID: 39503400 DOI: 10.1021/acs.analchem.4c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
This work designed a DNA conformation-regulated hemin switch for rapid chemiluminescent (CL) detection of a monoclonal antibodies. This switch was performed with an affinity probe and an inhibition probe, which were conveniently prepared by hybridizing hemin-labeled DNA1 with KHL peptide-labeled DNA2 and binding biotin-labeled DNA3 to streptavidin, respectively. In the absence of the target antibody, streptavidin-DNA3 could hybridize with hemin-DNA1/KHL-DNA2 to release KHL-DNA2, which led to the loss of hemin activity due to the affinity hindrance of streptavidin-DNA3. After the KHL peptide was recognized by the target antibody, the strand replacement hybridization could be inhibited by the bound antibody, which retained the high catalytic activity of hemin overhung on the antibody-bound affinity probe for a CL reaction, leading to a "signal-on" process for CL antibody detection. Using a KHL-specific antibody, anti-proprotein convertase subtilisin/kexin type 9 antibody (PCSK9-Ab), as a target model and common L012-1,2,4-triazole-H2O2 CL system, the designed switch showed a detection range of 10 ng mL-1 to 1 μg mL-1 with a detection limit of 4.16 ng mL-1 (56.2 pM) and a short analytical time of 6.5 min. The proposed quick method could simply be used for lab-on-chip CL detection of PCSK9-Ab in situ-secreted from PCSK9-6E3 hybridoma cells, which showed an accuracy of 90.2% compared with the statistical results from general fluorescence imaging, providing a potential technique for screening specific hybridoma cells.
Collapse
Affiliation(s)
- Hang Ao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wencheng Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenrui Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2024:e202418725. [PMID: 39551709 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
11
|
Zhao L, Zhao M, Zhou X, Yuan R, Zhong X, Zhuo Y. A close-looped DNAzyme walker with an available catalytic domain for electrochemiluminescent detection of acetamiprid. Food Chem 2024; 458:140202. [PMID: 38954955 DOI: 10.1016/j.foodchem.2024.140202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/02/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Traditional DNA walkers face enormous challenges due to limited biostability and reaction kinetics. Herein, we designed a self-driven close-looped DNAzyme walker (cl-DW) with high structural biostability and catalytic activity that enabled rapid electrochemiluminescence (ECL) detection of pesticide residue acetamiprid. Specifically, cl-DW exhibited increasing ability to resist nuclease degradation with a 570-fold longer half-degradation time than that of the single-stranded DNAzyme walker (ss-DW) due to the protected DNA terminal. Furthermore, cl-DW achieved high catalytic activity with a 4.3-fold faster reaction kinetic than that of ss-DW due to the circularized nanostructure of an available catalytic domain. Consequently, we utilized cl-DW as a signal amplifier and tin-based sulfide (SnS2) nanoflowers as ECL emitters to construct an ECL aptasensor, which realized the sensitive detection of acetamiprid with a limit of detection of 0.85 nM. This work provides a reliable approach to exploring DNA walkers with high catalytic activity and better biostability for molecular monitoring.
Collapse
Affiliation(s)
- Lidan Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Meiling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xuemei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Zhong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Li S, Zhang S, Jiang W, Wang Y, Liu M, Lyu M, Wang S. Enhanced Detection of Vibrio harveyi Using a Dual-Composite DNAzyme-Based Biosensor. BIOSENSORS 2024; 14:548. [PMID: 39590007 PMCID: PMC11591735 DOI: 10.3390/bios14110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Vibrio harveyi is a serious bacterial pathogen which can infect a wide range of marine organisms, such as marine fish, invertebrates, and shrimp, in aquaculture, causing severe losses. In addition, V. harveyi can be transmitted through food and water, infecting humans and posing a serious threat to public safety. Therefore, rapid and accurate detection of this pathogen is key for the prevention and control of related diseases. In this study, nine rounds of in vitro screening were conducted with Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology using unmodified DNA libraries, targeting the crude extracellular matrix (CEM) of V. harveyi. Two DNAzymes, named DVh1 and DVh3, with high activity and specificity were obtained. Furthermore, a fluorescent biosensor with dual DNAzymes was constructed which exhibited improved detection efficiency. The sensor showed a good fluorescence response to multiple aquatic products (i.e., fish, shrimp, and shellfish) infected with V. harveyi, with a detection limit below 11 CFU/mL. The fluorescence signal was observed within 30 min of reaction after target addition. This simple, inexpensive, highly effective, and easy to operate DNAzymes biosensor can be used for field detection of V. harveyi.
Collapse
Affiliation(s)
- Siying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weihong Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuying Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (S.L.); (S.Z.); (W.J.); (Y.W.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
13
|
Wu Q, Xu W, Shang J, Li J, Liu X, Wang F, Li J. Autocatalytic DNA circuitries. Chem Soc Rev 2024; 53:10878-10899. [PMID: 39400237 DOI: 10.1039/d4cs00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.
Collapse
Affiliation(s)
- Qiong Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jiajing Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
14
|
Deng J, Zhao S, Xie K, Liu C, Sheng C, Li J, Dai B, Wan S, Li L, Sun J. Spherical DNA Nanomotors Enable Ultrasensitive Detection of Active Enzymes in Extracellular Vesicles for Cancer Diagnosis. Angew Chem Int Ed Engl 2024:e202417165. [PMID: 39513555 DOI: 10.1002/anie.202417165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Enzymes encapsulated in extracellular vesicles (EVs) hold promise as biomarkers for early cancer diagnosis. However, precise measurement of their catalytic activities within EVs remains a notable challenge. Here, we report an enzymatically triggered spherical DNA nanomotor (EDM) that enables one-pot, cascaded, and highly sensitive analysis of the activity of EV-associated or free apurinic/apyrimidinic endonuclease 1 (APE1, a key enzyme in base excision repair) across various biological samples. The EDM capitalizes on APE1-triggered activation of DNAzyme (Dz) and its autonomous cleavage of substrates to achieve nonlinear signal amplification. Using EDM, we demonstrate a strong correlation between APE1 activity in EVs and that of their parental cancer cells. Additionally, EV APE1 mirrors the fluctuation of cellular APE1 activity in response to chemotherapy-induced DNA damage. In a pilot clinical study (n=63), the EDM-based assay reveals that more than 80 % of active APE1 in serum samples is EV-encapsulated. Notably, EV APE1 can differentiate early prostate cancer (PCa) patients from healthy donors (HDs) with an overall accuracy of 92 %, outperforming free APE1 in sera. We anticipate that EDM will become a versatile tool for quantifying EV-associated enzymes.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xie
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhong Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shuo Wan
- Foundation for Applied Molecular Evolution Alachua, Florida, 32615, United States
| | - Lele Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Li Y, Zhang T, Bai G, Chen M, Lei X, Ye L, Yu H, Fan Z, Yu T. A target-triggered colorimetric sensor for ultrasensitive detection of miRNAs based on self-powered three-dimensional DNA walker. Int J Biol Macromol 2024; 279:135370. [PMID: 39265909 DOI: 10.1016/j.ijbiomac.2024.135370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
MicroRNAs (miRNAs) play an important role in the process of heart failure (HF) and are emerging biomarkers that can be used for the auxiliary diagnosis of HF. However, it is very challenging to accurately analyze the expression levels of trace miRNAs in complex clinical samples. Here, we developed an enzyme-free colorimetric sensor for the ultrasensitive detection of miRNA-423-5p (HF-associated miRNA) based on three-dimensional DNA walkers constructed from functional nucleic acids and gold nanoparticles (AuNPs). DNAzyme with cleavage activity was specifically activated by miRNA-423-5p to sustainably cleave the substrate, thereby releasing the trigger sequence to initiate the subsequent mismatched catalytic hairpin assembly (MCHA) cycle. Then, as the MCHA cycle proceeded to continuously expose the G-quadruplex (GQ) sequence, the sequence bound with hemin to form a large amount of GQ/hemin DNAzyme on the surface of the AuNPs, which rapidly catalyzed the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine to yield an amplified colorimetric signal readout. The colorimetric sensor exhibited an ultralow detection limit (32 fM), showed excellent specificity and performed well in serum samples. The sensor was applied to detect miRNA-423-5p in clinical plasma samples from healthy individuals and HF patients, and the results revealed its good clinical application in HF diagnosis. Thus, the developed colorimetric sensor provides a convenient detection tool for early screening and diagnosis of HF, as well as for pathophysiological studies.
Collapse
Affiliation(s)
- Yingxue Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Tingrui Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gang Bai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Mengchun Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaodong Lei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Li Ye
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Zhichao Fan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
16
|
Cheng Q, Zhao Q. Fluorescence assay for aflatoxin B1 based on aptamer-binding triggered DNAzyme activity. Anal Bioanal Chem 2024; 416:6367-6375. [PMID: 39264462 DOI: 10.1007/s00216-024-05523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
As a kind of mycotoxin, aflatoxin B1 (AFB1), which is often found in agricultural products, poses a threat to human health. Developing a simple sensitive method for AFB1 detection is in great demand. Here, we reported an aptamer-based fluorescence assay for AFB1 detection by using DNAzyme to generate and amplify a signal. We redesigned a pair of DNA sequences, which originated from the anti-AFB1 aptamer and RNA-cleaving DNAzyme 10-23. In the absence of AFB1, the aptamer hybridized with the region of the substrate-binding arm of the DNAzyme, inhibiting the activity of the DNAzyme. In the presence of AFB1, the binding of AFB1 to the aptamer led to the displacement of the DNAzyme from the aptamer. The substrate-binding arm was unblocked, and the activity of the DNAzyme was restored for the hydrolysis of the fluorophore and quencher-labeled substrate, causing a significant fluorescence increase. This assay could detect AFB1 in the dynamic range from 0.98 to 2000 nmol/L with high selectivity, and the detection limit was 0.98 nmol/L. Moreover, the assay was able to detect AFB1 in a complex sample matrix. This work provides a useful tool for the analysis of AFB1.
Collapse
Affiliation(s)
- Qiuyi Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Yi D, Li L, Li M. Subcellular Compartment-Specific Amplified Imaging of Metal Ions via Ribosomal RNA-Regulated DNAzyme Sensors. Angew Chem Int Ed Engl 2024:e202412387. [PMID: 39480115 DOI: 10.1002/anie.202412387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 11/02/2024]
Abstract
Although DNAzyme sensors have been widely developed for imaging metal ions, their application in specific subcellular compartments remains challenging due to low spatial controllability. Here we present a locally activatable, DNAzyme-based sensing technology that enables subcellular compartment-specific imaging of metal ions through ribosomal RNA (rRNA) regulated signal amplification. The system leverages a subcellularly encoded rRNA to locally activate DNAzyme-based sensors, and further drives signal amplification via multiple turnover cleavage of molecular beacons, to significantly enhance sensitivity and spatial precision for metal-ion imaging in specific organelles (e.g. mitochondria) or membraneless compartments (e.g. cytosol). Furthermore, we demonstrate that the system allows in situ monitoring of subcellular dynamics of mitochondrial Zn2+ during ischemia and the drug intervention. This study expands the DNAzyme toolbox for investigating the role of subcellular metal-ion dynamics in disease processes.
Collapse
Affiliation(s)
- Deyu Yi
- School of Chemistry and Biological Engineering Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| |
Collapse
|
18
|
Guo L, Zhang S, Du X, Zhou M, Gu H. Fusing Allosteric Ribozymes with CRISPR-Cas12a for Efficient Diagnostics of Small Molecule Targets. SMALL METHODS 2024:e2401236. [PMID: 39420829 DOI: 10.1002/smtd.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The CRISPR-Cas systems are adopted as powerful molecular tools for not only genetic manipulation but also point-of-care diagnostics. However, methods to enable diagnostics of non-nucleic-acid targets with these systems are still limited. Herein, by fusing ligand-dependent allosteric ribozymes with CRISPR-Cas12a, a derived CRISPR-Cas system is created for efficient quantitative analysis of non-nucleic-acid targets in 1-2 h. On two different small molecules, the system's generality, reliability and accuracy is demonstrated, and show that the well operability of this system can enable high-throughput detection of a small molecule in blood samples. The system can be further converted to rely on allosteric deoxyribozyme instead of allosteric ribozyme to recognize non-nucleic-acid targets and transduce the signal to CRISPR-Cas12a for amplification, likely making it easier for storage and more consistent in data generation as DNA possess a stability advantage over RNA. This (deoxy)ribozyme-assisted CRISPR-Cas12a system anticipates that it can facilitate bioanalysis in various scientific and clinical settings and further drive the development of clinical translation.
Collapse
Affiliation(s)
- Lichuan Guo
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyu Du
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Shaanxi, 710032, China
| | - Mo Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongzhou Gu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
- Xiangfu Laboratory, Jiashan, 314102, China
| |
Collapse
|
19
|
Nurmi C, Gu J, Mathai A, Brennan J, Li Y. Making target sites in large structured RNAs accessible to RNA-cleaving DNAzymes through hybridization with synthetic DNA oligonucleotides. Nucleic Acids Res 2024; 52:11177-11187. [PMID: 39248110 PMCID: PMC11472044 DOI: 10.1093/nar/gkae778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The 10-23 DNAzyme is one of the most active DNA-based enzymes, and in theory, can be designed to target any purine-pyrimidine junction within an RNA sequence for cleavage. However, purine-pyrimidine junctions within a large, structured RNA (lsRNA) molecule of biological origin are not always accessible to 10-23, negating its general utility as an RNA-cutting molecular scissor. Herein, we report a generalizable strategy that allows 10-23 to access any purine-pyrimidine junction within an lsRNA. Using three large SARS-CoV-2 mRNA sequences of 566, 584 and 831 nucleotides in length as model systems, we show that the use of antisense DNA oligonucleotides (ASOs) that target the upstream and downstream regions flanking the cleavage site can restore the activity (kobs) of previously poorly active 10-23 DNAzyme systems by up to 2000-fold. We corroborated these findings mechanistically using in-line probing to demonstrate that ASOs reduced 10-23 DNAzyme target site structure within the lsRNA substrates. This approach represents a simple, efficient, cost-effective, and generalizable way to improve the accessibility of 10-23 to a chosen target site within an lsRNA molecule, especially where direct access to the genomic RNA target is necessary.
Collapse
MESH Headings
- DNA, Catalytic/chemistry
- DNA, Catalytic/metabolism
- SARS-CoV-2/genetics
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Nucleic Acid Hybridization
- Oligonucleotides, Antisense/chemistry
- Nucleic Acid Conformation
- RNA Cleavage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- COVID-19/virology
- RNA/chemistry
- RNA/metabolism
- DNA, Single-Stranded
Collapse
Affiliation(s)
- Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| | - Amal Mathai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - John D Brennan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| |
Collapse
|
20
|
Zhan J, Li X, Feng Z, Liu Z, Feng Z, Zhu JJ, Zhang J. MicroRNA-Triggered Programmable DNA-Encoded Pre-PROTACs for Cell-Selective and Controlled Protein Degradation. Angew Chem Int Ed Engl 2024:e202415323. [PMID: 39381917 DOI: 10.1002/anie.202415323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have accelerated drug development; however, some challenges still exist owing to their lack of tumor selectivity and on-demand protein degradation. Here, we developed a miRNA-initiated assembled pre-PROTAC (miRiaTAC) platform that enables the on-demand activation and termination of target degradation in a cell type-specific manner. Using miRNA-21 as a model, we engineered DNA hairpins labeled with JQ-1 and pomalidomide and facilitated the modular assembly of DNA-encoded pre-PROTACs through a hybridization chain reaction. This configuration promoted the selective polyubiquitination and degradation of BRD4 upon miR-21 initiation, highlighting significant tumor selectivity and minimal systemic toxicity. Furthermore, the platform incorporates photolabile groups, enabling the precise optical control of pre-PROTACs during DNA assembly/disassembly, mitigating the risk of excessive protein degradation. Additionally, by introducing a secondary ligand targeting CDK6, these pre-PROTACs were used as a modular scaffold for the programmable assembly of active miRiaTACs containing two different warheads in exact stoichiometry, enabling orthogonal multitarget degradation. The integration of near-infrared light-mediated photodynamic therapy through an upconversion nanosystem further enhanced the efficacy of the platform with potent in vivo anticancer activity. We anticipate that miRiaTAC represents a significant intersection between dynamic DNA nanotechnology and PROTAC, potentially expanding the versatility of PROTAC toolkit for cancer therapy.
Collapse
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhe Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Liu W, Wang Y, Jiang P, Huang K, Zhang H, Chen J, Chen P. DNAzyme and controllable cholesterol stacking DNA machine integrates dual-target recognition CTCs enable homogeneous liquid biopsy of breast cancer. Biosens Bioelectron 2024; 261:116493. [PMID: 38901393 DOI: 10.1016/j.bios.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Although circulating tumor cells (CTCs) have demonstrated considerable importance in liquid biopsy, their detection is limited by low concentrations and complex sample components. Herein, we developed a homogeneous, simple, and high-sensitivity strategy targeting breast cancer cells. This method was based on a non-immunological stepwise centrifugation preprocessing approach to isolate CTCs from whole blood. Precise quantification is achieved through the specific binding of aptamers to the overexpressed mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) proteins of breast cancer cells. Subsequently, DNAzyme cleavage and parallel catalytic hairpin assembly (CHA) reactions on the cholesterol-stacking DNA machine were initiated, which opened the hairpin structures T-Hg2+-T and C-Ag+-C, enabling multiple amplifications. This leads to the fluorescence signal reduction from Hg2+-specific carbon dots (CDs) and CdTe quantum dots (QDs) by released ions. This strategy demonstrated a detection performance with a limit of detection (LOD) of 3 cells/mL and a linear range of 5-100 cells/mL. 42 clinical samples have been validated, confirming their consistency with clinical imaging, pathology findings and the folate receptor (FR)-PCR kit results, exhibiting desirable specificity of 100% and sensitivity of 80.6%. These results highlight the promising applicability of our method for diagnosing and monitoring breast cancer.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - He Zhang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
22
|
Song J, Zhang C, Fu S, Xu X. Visualized lateral flow assay for logic determination of co-existing viral RNA fragments. Biosens Bioelectron 2024; 261:116519. [PMID: 38917515 DOI: 10.1016/j.bios.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Different types of pathogenic viruses that have common transmission path can be co-infected, inducing distinct disease procession in comparison to that infection of one. Also, in the post COVID-19 time, more types of respiratory infectious virus are becoming prevalent and are concurrent. Those bring an urgent need for detection of co-existing viruses. Here, we propose a visualized lateral flow assay for logic determination of co-existing viral RNA fragments. In the presence of specific viral RNA inputs, DNAzyme is de-blocked according to defined logic, and catalyzes the hydrolysis of hairpin-structural substrate. One of cleaved substrates contains DNAzyme domain to realize dual signal amplification, which obtains copious of the other cleaved substrates. The cleaved substrates act as linking strands for bridging DNA-modified gold nanoparticles onto lateral flow strip to induce coloration on test line. "AND", "OR" and "INHIBIT" controlled lateral flow assays are respectively demonstrated for co-existing viral RNA detection, and the visual results can be obtained by the same kind of prepared strip, without need of re-fabricating strips according to logic systems. The work provides a flexible, convenient, visual and logic-processing strategy for simultaneous analysis of co-existing viruses.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Chuhao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Siting Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
23
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
24
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
25
|
Ferreira da Silva L, Valle Garay A, Queiroz PF, Garcia de Resende S, Gomide M, Moreira de Oliveira IC, Souza Bernasol A, Arce A, Canet Santos L, Torres F, Silva-Pereira I, de Freitas SM, Marques Coelho C. A novel viral RNA detection method based on the combined use of trans-acting ribozymes and HCR-FRET analyses. PLoS One 2024; 19:e0310171. [PMID: 39325749 PMCID: PMC11426510 DOI: 10.1371/journal.pone.0310171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The diagnoses of retroviruses are essential for controlling the rapid spread of pandemics. However, the real-time Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR), which has been the gold standard for identifying viruses such as SARS-CoV-2 in the early stages of infection, is associated with high costs and logistical challenges. To innovate in viral RNA detection a novel molecular approach for detecting SARS-CoV-2 viral RNA, as a proof of concept, was developed. This method combines specific viral gene analysis, trans-acting ribozymes, and Fluorescence Resonance Energy Transfer (FRET)-based hybridization of fluorescent DNA hairpins. In this molecular mechanism, SARS-CoV-2 RNA is specifically recognized and cleaved by ribozymes, releasing an initiator fragment that triggers a hybridization chain reaction (HCR) with DNA hairpins containing fluorophores, leading to a FRET process. A consensus SARS-CoV-2 RNA target sequence was identified, and specific ribozymes were designed and transcribed in vitro to cleave the viral RNA into fragments. DNA hairpins labeled with Cy3/Cy5 fluorophores were then designed and synthesized for HCR-FRET assays targeting the RNA fragment sequences resulting from ribozyme cleavage. The results demonstrated that two of the three designed ribozymes effectively cleaved the target RNA within 10 minutes. Additionally, DNA hairpins labeled with Cy3/Cy5 pairs efficiently detected target RNA specifically and triggered detectable HCR-FRET reactions. This method is versatile and can be adapted for use with other viruses. Furthermore, the design and construction of a DIY photo-fluorometer prototype enabled us to explore the development of a simple and cost-effective point-of-care detection method based on digital image analysis.
Collapse
Affiliation(s)
- Leonardo Ferreira da Silva
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Aisel Valle Garay
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Pedro Felipe Queiroz
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sophia Garcia de Resende
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Mayna Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Izadora Cristina Moreira de Oliveira
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Amanda Souza Bernasol
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Anibal Arce
- Institute for biological and medical engineering, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Liem Canet Santos
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Fernando Torres
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| |
Collapse
|
26
|
Wang J, Chang Y, Liu M. Proximity-Dependent Activation of Split DNAzyme Kinase. Chembiochem 2024; 25:e202400368. [PMID: 38954271 DOI: 10.1002/cbic.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Binary (also known as split) nucleic acid enzymes have emerged as novel tools in biosensors. We report a new split strategy to split the DNAzyme kinase into two independent and non-functional fragments, denoted Dk1sub and Dk1enz. In the presence of the specific target, their free ends are brought sufficiently close to interact with each other without the formation of Watson-Crick base pairings between Dk1sub and Dk1enz, thus allowing the DNA phosphorylation reaction. We term this approach proximity-dependent activation of split DNAzyme kinase (ProxSDK). The utility of ProxSDK is demonstrated by engineering a biosensing system that is capable of measuring specific DNA-protein interactions. We envision that the approach described herein will find useful applications in biosensing, imaging, and clinical diagnosis.
Collapse
Affiliation(s)
- Jiayi Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, Dalian University of Technology, Dalian, 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
27
|
Wu MS, Zhou ZR, Wang XY, Du XC, Li DW, Qian RC. Design of a Membrane-Anchored DNAzyme-Based Molecular Machine for Enhanced Cancer Therapy by Customized Cascade Regulation. ACS Pharmacol Transl Sci 2024; 7:2869-2877. [PMID: 39296274 PMCID: PMC11406680 DOI: 10.1021/acsptsci.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024]
Abstract
Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8+ T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell-cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Man-Sha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xi-Chen Du
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
28
|
Dong Z, Su R, Fu Y, Wang Y, Chang L. Recent Progress in DNA Biosensors for Detecting Biomarkers in Living Cells. ACS Biomater Sci Eng 2024; 10:5595-5608. [PMID: 39143919 DOI: 10.1021/acsbiomaterials.4c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Analysis of biomarkers in living cells is crucial for deciphering the dynamics of cells as well as for precise diagnosis of diseases. DNA biosensors employ DNA sequences as probes to offer insights into living cells, and drive progress in disease diagnosis and drug development. In this review, we present recent advances in DNA biosensors for detecting biomarkers in living cells. The basic structural components of DNA biosensors and the signal output method are presented. The strategies of DNA biosensors crossing the cell membrane are also described, including coincubation, nanocarriers, and nanoelectroporation techniques. Based on biomarker categorization, we detail recent applications of DNA biosensors for detecting small molecules, RNAs, proteins, and integrated targets in living cells. Furthermore, the future development directions of DNA biosensors are summarized to encourage further research in this growing field.
Collapse
Affiliation(s)
- Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yao Fu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yupei Wang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
29
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Hang Z, Zhou L, Bian X, Liu G, Cui F, Du H, Wen Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res Rev 2024; 100:102444. [PMID: 39084322 DOI: 10.1016/j.arr.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The efficacy of neurotherapeutic drugs hinges on their ability to traverse the blood-brain barrier and access the brain, which is crucial for treating or alleviating neurodegenerative diseases (NDs). Given the absence of definitive cures for NDs, early diagnosis and intervention become paramount in impeding disease progression. However, conventional therapeutic drugs and existing diagnostic approaches must meet clinical demands. Consequently, there is a pressing need to advance drug delivery systems and early diagnostic methods tailored for NDs. Certain aptamers endowed with specific functionalities find widespread utility in the targeted therapy and diagnosis of NDs. DNA nanoflowers (DNFs), distinctive flower-shaped DNA nanomaterials, are intricately self-assembled through rolling ring amplification (RCA) of circular DNA templates. Notably, imbuing DNFs with diverse functionalities becomes seamlessly achievable by integrating aptamer sequences with specific functions into RCA templates, resulting in a novel nanomaterial, aptamer-bound DNFs (ADNFs) that amalgamates the advantageous features of both components. This article delves into the characteristics and applications of aptamers and DNFs, exploring the potential or application of ADNFs in drug-targeted delivery, direct treatment, early diagnosis, etc. The objective is to offer prospective ideas for the clinical treatment or diagnosis of NDs, thereby contributing to the ongoing efforts in this critical field.
Collapse
Affiliation(s)
- Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghe Cui
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangdingdong Road, Zhifu District, Yantai, Shandong 264000, China.
| | - Hongwu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
31
|
Shi J, Zhang Q, Wu Y, Chang Y, Liu M. In vitro selection of N 1-methyladenosine-sensitive RNA-cleaving deoxyribozymes with 10 5-fold selectivity over unmethylated RNA. Chem Sci 2024; 15:13452-13458. [PMID: 39183917 PMCID: PMC11339963 DOI: 10.1039/d4sc02943g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
RNA-cleaving DNAzymes (RCDs) are catalytically active DNA molecules that cleave a wide range of RNA targets with extremely high sequence-selectivity, but none is able to faithfully discriminate methylated from unmethylated RNA (typically <30-fold). We report the first efforts to isolate RCDs from a random-sequence DNA pool by in vitro selection that cleave RNA/DNA chimera containing N 1-methyladenosine (m1A), one of the most prevalent RNA modifications that plays important regulatory roles in gene expression and human cancers. A cis-acting deoxyribozyme, RCD1-S2m1A, exhibits an observed rate constant (k obs) of 5.3 × 10-2 min-1, resulting in up to 105-fold faster cleavage of the m1A-modified versus unmethylated RNA. Furthermore, a trans-acting fluorogenic deoxyribozyme was constructed by labeling a fluorophore and a quencher at the 5' and 3' ends of the chimeric substrate, respectively. It permits the synchronization of RNA-cleaving with real-time fluorescence signaling, thus allowing the selective monitoring of ALKBH3-mediated demethylation and inhibitor screening in living cells.
Collapse
Affiliation(s)
- Jiarong Shi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Qiang Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology Dalian 116024 China
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| |
Collapse
|
32
|
Lin N, Ouyang Y, Qin Y, Karmi O, Sohn YS, Liu S, Nechushtai R, Zhang Y, Willner I, Zhou Z. Spatially Localized Entropy-Driven Evolution of Nucleic Acid-Based Constitutional Dynamic Networks for Intracellular Imaging and Spatiotemporal Programmable Gene Therapy. J Am Chem Soc 2024; 146:20685-20699. [PMID: 39012486 PMCID: PMC11295181 DOI: 10.1021/jacs.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
The primer-guided entropy-driven high-throughput evolution of the DNA-based constitutional dynamic network, CDN, is introduced. The entropy gain associated with the process provides a catalytic principle for the amplified emergence of the CDN. The concept is applied to develop a programmable, spatially localized DNA circuit for effective in vitro and in vivo theranostic, gene-regulated treatment of cancer cells. The localized circuit consists of a DNA tetrahedron core modified at its corners with four tethers that include encoded base sequences exhibiting the capacity to emerge and assemble into a [2 × 2] CDN. Two of the tethers are caged by a pair of siRNA subunits, blocking the circuit into a mute, dynamically inactive configuration. In the presence of miRNA-21 as primer, the siRNA subunits are displaced, resulting in amplified release of the siRNAs silencing the HIF-1α mRNA and fast dynamic reconfiguration of the tethers into a CDN. The resulting CDN is, however, engineered to be dynamically reconfigured by miRNA-155 into an equilibrated mixture enriched with a DNAzyme component, catalyzing the cleavage of EGR-1 mRNA. The DNA tetrahedron nanostructure stimulates enhanced permeation into cancer cells. The miRNA-triggered entropy-driven reconfiguration of the spatially localized circuit leads to the programmable, cooperative bis-gene-silencing of HIF-1α and EGR-1 mRNAs, resulting in the effective and selective apoptosis of breast cancer cells and effective inhibition of tumors in tumor bearing mice.
Collapse
Affiliation(s)
- Nina Lin
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Yu Ouyang
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Songqin Liu
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yuanjian Zhang
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhixin Zhou
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| |
Collapse
|
33
|
Zhang Y, Yi D, Su M, Li Z, Li M. A Membrane-Confined Signal Amplification Strategy for Sensitive Monitoring of Extracellular Enzymatic Activity Upon Drug Stimulus. Anal Chem 2024. [PMID: 39074853 DOI: 10.1021/acs.analchem.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Extracellular enzymes are not only strongly correlated with disease development but also play critical roles in modulating immune responses. Therefore, real-time monitoring of extracellular enzymatic activity can afford straightforward insights into their spatiotemporal dynamics upon drug stimulus, and provide promising tools to unravel their key roles in modulating the cell signaling. Although DNA-based sensing probes have been frequently developed for the detection of a variety of biomolecules, there still lacks a modular design strategy for amplified imaging of extracellular enzymatic activity associated with live cells. Herein, we developed an enzymatically triggerable signal amplification strategy for real-time dynamic imaging of extracellular enzyme activity through a cell membrane-confined hybrid chain reaction (HCR). We demonstrated that, by modifying the initiator DNA with enzyme-specific incision sites and cholesterol tail, extracellular enzyme-trigged HCR could be fulfilled on the surface of the cellular membrane, facilitating amplified detection of extracellular enzymatic activity. Dynamic monitoring of enzyme secretion of cancer cells upon stimulus or macrophage cells upon inflammation challenge has also been achieved. We envision that the design strategy could provide valuable information for dissecting the role of extracellular enzymes in modulating cell responses to drug treatment.
Collapse
Affiliation(s)
- Yiyi Zhang
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Deyu Yi
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Meichan Su
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
34
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
35
|
Li H, Qiao S, Zhang H, Qiao Y, Liu J, Li Y. Highly sensitive and selective demethylase FTO detection using a DNAzyme-mediated CRISPR/Cas12a signal cascade amplification electrochemiluminescence biosensor with C-CN/PCN V heterojunction as emitter. Biosens Bioelectron 2024; 256:116276. [PMID: 38599073 DOI: 10.1016/j.bios.2024.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Shuai Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Heng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Jin Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, PR China.
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
36
|
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1185. [PMID: 39057862 PMCID: PMC11280116 DOI: 10.3390/nano14141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The use of DNA structures in creating multimodal logic gates bears high potential for building molecular devices and computation systems. However, due to the complex designs or complicated working principles, the implementation of DNA logic gates within molecular devices and circuits is still quite limited. Here, we designed simple four-way DNA logic gates that can serve as multimodal platforms for simple to complex operations. Using the proximity quenching of the fluorophore-quencher pair in combination with the toehold-mediated strand displacement (TMSD) strategy, we have successfully demonstrated that the fluorescence output, which is a result of gate opening, solely relies on the oligonucleotide(s) input. We further demonstrated that this strategy can be used to create multimodal (tunable displacement initiation sites on the four-way platform) logic gates including YES, AND, OR, and the combinations thereof. The four-way DNA logic gates developed here bear high promise for building biological computers and next-generation smart molecular circuits with biosensing capabilities.
Collapse
Affiliation(s)
| | | | | | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
37
|
Cao G, Yang N, Yang J, Li J, Wang L, Nie F, Huo D, Hou C. Label-Free and DNAzyme-Mediated Biosensor with a High Signal-to-Noise Ratio for a Lumpy Skin Disease Virus Assay. Anal Chem 2024; 96:10927-10934. [PMID: 38934225 DOI: 10.1021/acs.analchem.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lumpy skin disease virus (LSDV) is a severe and highly contagious form of cowpox. As LSDV continues to mutate and there is no vaccine and treatment in nonendemic countries, early detection of LSDV becomes an important basis for epidemic prevention and control, especially for detection of conserved sequences. A new label-free and sensitive fluorescence method was developed based on a light-up RNA aptamer for detecting LSDV. The method integrated recombinase polymerase amplification (RPA), CRISPR/Cas12a, 10-23 DNAzyme, and Baby Spinach RNA aptamer for triple cascade signal amplification. Based on highly sensitive and specific RPA and CRISPR/Cas12a, DNAzyme achieved a third signal amplification. Additionally, the Baby Spinach RNA aptamer had stronger fluorescence signals and higher quantum yields. The label-free method had ultrahigh sensitivity with the actual detection limit as 1.29 copies·μL-1. The method was 100-fold more sensitive compared to RPA with Cas12a. Moreover, it had no cross-reactivity with viruses belonging to the Capripoxvirus, such as sheep pox virus and goat pox virus with genetic homology as 97%. Furthermore, the method displayed 100% accuracy in 50 actual samples. Therefore, the method based on RPA, Cas12a, and 10-23 DNAzyme had advantages in LSDV detection and provided a new solution for LSD prevention and control.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jun Yang
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jiali Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
38
|
Zhang G, Wu Y, Xue W, Wang D, Chang Y, Liu M. Amplification-free detection of Escherichia coli using an acidic deoxyribozyme-based paper device. Chem Commun (Camb) 2024; 60:6741-6744. [PMID: 38809259 DOI: 10.1039/d4cc01150c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We reported a colorimetric paper-based device by integrating the modified acid RNA-cleaving DNAzymes (MaRCD-EC1) for highly sensitive (detection limit = 102 CFU mL-1), and rapid (within 30 min) detection of E. coli without amplification. This device exhibited a clinical sensitivity of 100% and a specificity of 100% in identifying E. coli-associated urinary tract infections (UTIs) using the clinical urine samples.
Collapse
Affiliation(s)
- Guangxiao Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Dong Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| |
Collapse
|
39
|
Gao Y, Gong C, Chen M, Huan S, Zhang XB, Ke G. Endogenous Enzyme-Driven Amplified DNA Nanocage Probe for Selective and Sensitive Imaging of Mature MicroRNAs in Living Cancer Cells. Anal Chem 2024; 96:9453-9459. [PMID: 38818873 DOI: 10.1021/acs.analchem.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Selective and sensitive imaging of intracellular mature microRNAs (miRNAs) is of great importance for biological process study and medical diagnostics. However, this goal remains challenging because of the interference of precursor miRNAs (pre-miRNAs) and the low abundance of mature miRNAs. Herein, we develop an endogenous enzyme-driven amplified DNA nanocage probe (Acage) for the selective and sensitive imaging of mature miRNAs in living cells. The Acage consists of a microRNA-responsive probe, an endogenous enzyme-driven fuel strand, and a DNA nanocage framework with an inner cavity. Benefiting from the size selectivity of DNA nanocage, smaller mature miRNAs rather than larger pre-miRNAs are allowed to enter the cavity of DNA nanocage for molecular recognition; thus, Acage can significantly reduce the signal interference of pre-miRNAs. Moreover, with the driving force of an endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) for efficient signal amplification, Acage enables sensitive intracellular miRNA imaging without an additional external intervention. With these features, Acage was successfully applied for intracellular imaging of mature miRNAs during drug treatment. We believe that this strategy provides a promising pathway for better understanding the functions of mature microRNAs in biological processes and medical diagnostics.
Collapse
Affiliation(s)
- Yingying Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chaonan Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
40
|
Song K, Hwang SJ, Jeon Y, Yoon Y. The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring. Int J Mol Sci 2024; 25:6336. [PMID: 38928042 PMCID: PMC11204277 DOI: 10.3390/ijms25126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cell monitoring is essential for understanding the physiological conditions and cell abnormalities induced by various stimuli, such as stress factors, microbial invasion, and diseases. Currently, various techniques for detecting cell abnormalities and metabolites originating from specific cells are employed to obtain information on cells in terms of human health. Although the states of cells have traditionally been accessed using instrument-based analysis, this has been replaced by various sensor systems equipped with new materials and technologies. Various sensor systems have been developed for monitoring cells by recognizing biological markers such as proteins on cell surfaces, components on plasma membranes, secreted metabolites, and DNA sequences. Sensor systems are classified into subclasses, such as chemical sensors and biosensors, based on the components used to recognize the targets. In this review, we aim to outline the fundamental principles of sensor systems used for monitoring cells, encompassing both biosensors and chemical sensors. Specifically, we focus on biosensing systems in terms of the types of sensing and signal-transducing elements and introduce recent advancements and applications of biosensors. Finally, we address the present challenges in biosensor systems and the prospects that should be considered to enhance biosensor performance. Although this review covers the application of biosensors for monitoring cells, we believe that it can provide valuable insights for researchers and general readers interested in the advancements of biosensing and its further applications in biomedical fields.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (S.-J.H.)
| |
Collapse
|
41
|
Tan K, Chen L, Cao D, Xiao W, Lv Q, Zou L. Two-layer cascaded catalytic hairpin assemblies based on locked nucleic acids for one-step and highly sensitive ctDNA detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3515-3521. [PMID: 38774994 DOI: 10.1039/d4ay00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Enzyme-free signal amplification of catalytic hairpin assembly (CHA) has enabled sensitive detection of circulating tumor DNA (ctDNA) in early clinical diagnosis. Conventional CHA strategies are restrained by the limited amplification efficiency of the single-stage system, and signal leakage from "breathing" influence and nuclease degradation. Here, we introduced two-layer cascaded locked nucleic acid (LNA)-assisted CHA circuits with the intelligent incorporation of LNA in the hairpins and reporter for the highly sensitive one-step detection of scarce ctDNA. The target-triggered upstream CHA reaction continuously generates hybrid products to catalyze the downstream CHA reaction for transducing the primary sensing event, and the released target and the produced hybrid product trigger the next catalytic reaction round at the same time and finally cascade to amplify the target ctDNA fluorescence output signal. Meanwhile, the stronger binding affinity of the LNA-DNA duplex endows the two-layer LNA-assisted CHA system with thermodynamic stability and nuclease resistance, and thus our designed system exhibits an excellent detection performance for target ctDNA in the range from 2 pM to 5 nM with a low detection limit of 0.6 pM. Significantly, the two-layer LNA-assisted CHA circuits have been successfully implemented for the feasible analysis of clinical samples. This two-layer cascaded LNA-assisted CHA strategy provides a promising high sensitivity tool for one-step detection of scarce ctDNA from complex clinical samples and would facilitate the reconfiguration of DNA circuit-based DNA nanotechnology for the precise analysis of other biomarkers in clinical research fields.
Collapse
Affiliation(s)
- Kaiyue Tan
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Longsheng Chen
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-Care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou, 510500, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-Care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou, 510500, China
| | - Qian Lv
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Lili Zou
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| |
Collapse
|
42
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
43
|
Flynn CD, Chang D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics (Basel) 2024; 14:1100. [PMID: 38893627 PMCID: PMC11172335 DOI: 10.3390/diagnostics14111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The integration of artificial intelligence (AI) into point-of-care (POC) biosensing has the potential to revolutionize diagnostic methodologies by offering rapid, accurate, and accessible health assessment directly at the patient level. This review paper explores the transformative impact of AI technologies on POC biosensing, emphasizing recent computational advancements, ongoing challenges, and future prospects in the field. We provide an overview of core biosensing technologies and their use at the POC, highlighting ongoing issues and challenges that may be solved with AI. We follow with an overview of AI methodologies that can be applied to biosensing, including machine learning algorithms, neural networks, and data processing frameworks that facilitate real-time analytical decision-making. We explore the applications of AI at each stage of the biosensor development process, highlighting the diverse opportunities beyond simple data analysis procedures. We include a thorough analysis of outstanding challenges in the field of AI-assisted biosensing, focusing on the technical and ethical challenges regarding the widespread adoption of these technologies, such as data security, algorithmic bias, and regulatory compliance. Through this review, we aim to emphasize the role of AI in advancing POC biosensing and inform researchers, clinicians, and policymakers about the potential of these technologies in reshaping global healthcare landscapes.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dingran Chang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
44
|
Gao Q, Wang X, Hu S, He PP, Gou S, Liu S, Du X, Guo W. Dual stimuli-responsive upconversion nanoparticle-poly- N-isopropylacrylamide/DNA core-shell microgels. SOFT MATTER 2024; 20:4052-4056. [PMID: 38738402 DOI: 10.1039/d4sm00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.
Collapse
Affiliation(s)
- Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Siyu Gou
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Shuo Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056000, P. R. China.
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| |
Collapse
|
45
|
Chen D, Pan Y, Yu H, Chen X. Simple and sensitive detection of Pseudomonas aeruginosa in neonatal infection based on a both-end blocked peroxidase-mimicking DNAzyme. Biotechniques 2024; 76:323-332. [PMID: 39185786 DOI: 10.1080/07366205.2024.2348295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/24/2024] [Indexed: 08/27/2024] Open
Abstract
Developing a simple and highly sensitive approach for Pseudomonas aeruginosa (P. aeruginosa) detection is crucial, as it is closely associated with various disorders, such as newborn infections. Nevertheless, few of techniques have the capability to accurately identify P. aeruginosa with a high level of sensitivity and significantly improved stability. The employment of the both-end blocked peroxidase-mimicking DNAzyme significantly diminished the interferences from background signals, so conferring the approach with a high degree of selectivity and reproducibility. The proposed method is demonstrated with exceptional discernment capacity in differentiating interfering microorganisms. The simplicity, elevated sensitivity and high discerning capability make the method a highly promising alternative instrument for pathogenic bacteria detection.
Collapse
Affiliation(s)
- Dongyun Chen
- Department of Nosocomial Infection Management, Maternal & Child Branch, Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Yicong Pan
- Department of Neonatology, Maternal & Child Branch Hospital of Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Huan Yu
- Department of Nosocomial Infection Management, Maternal & Child Branch, Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Xiaoxiang Chen
- Department of Clinical Laboratory, Maternal & Child Hospital, Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| |
Collapse
|
46
|
Wu Y, Jin R, Chang Y, Liu M. A high-fidelity DNAzyme-assisted CRISPR/Cas13a system with single-nucleotide resolved specificity. Chem Sci 2024; 15:6934-6942. [PMID: 38725495 PMCID: PMC11077575 DOI: 10.1039/d4sc01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
A CRISPR/Cas system represents an innovative tool for developing a new-generation biosensing and diagnostic strategy. However, the off-target issue (i.e., mistaken cleavage of nucleic acid targets and reporters) remains a great challenge for its practical applications. We hypothesize that this issue can be overcome by taking advantage of the site-specific cleavage ability of RNA-cleaving DNAzymes. To test this idea, we propose a DNAzyme Operation Enhances the Specificity of CRISPR/Cas13a strategy (termed DOES-CRISPR) to overcome the problem of relatively poor specificity that is typical of the traditional CRISPR/Cas13a system. The key to the design is that the partial hybridization of the CRISPR RNA (crRNA) with the cleavage fragment of off-target RNA was not able to activate the collateral cleavage activity of Cas13a. We showed that DOES-CRISPR can significantly improve the specificity of traditional CRISPR/Cas13a-based molecular detection by up to ∼43-fold. The broad utility of the strategy is illustrated through engineering three different systems for the detection of microRNAs (miR-17 and let-7e), CYP2C19*17 gene, SARS-Cov-2 variants (Gamma, Delta, and Omicron) and Omicron subtypes (BQ.1 and XBB.1) with single-nucleotide resolved specificity. Finally, clinical evaluation of this assay using 10 patient blood samples demonstrated a clinical sensitivity of 100% and specificity of 100% for genotyping CYP2C19*17, and analyzing 20 throat swab samples provided a diagnostic sensitivity of 95% and specificity of 100% for Omicron detection, and a clinical sensitivity of 92% and specificity of 100% for XBB.1 detection.
Collapse
Affiliation(s)
- Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Ruigang Jin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| |
Collapse
|
47
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
48
|
Wu L, Yuan R, Wen T, Qin Y, Wang Y, Luo X, Liu JW. Recent advances in functional nucleic acid decorated nanomaterials for cancer imaging and therapy. Biomed Pharmacother 2024; 174:116546. [PMID: 38603885 DOI: 10.1016/j.biopha.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nanomaterials possess unusual physicochemical properties including unique optical, magnetic, electronic properties, and large surface-to-volume ratio. However, nanomaterials face some challenges when they were applied in the field of biomedicine. For example, some nanomaterials suffer from the limitations such as poor selectivity and biocompatibility, low stability, and solubility. To address the above-mentioned obstacles, functional nucleic acid has been widely served as a powerful and versatile ligand for modifying nanomaterials because of their unique characteristics, such as ease of modification, excellent biocompatibility, high stability, predictable intermolecular interaction and recognition ability. The functionally integrating functional nucleic acid with nanomaterials has produced various kinds of nanocomposites and recent advances in applications of functional nucleic acid decorated nanomaterials for cancer imaging and therapy were summarized in this review. Further, we offer an insight into the future challenges and perspectives of functional nucleic acid decorated nanomaterials.
Collapse
Affiliation(s)
- Liu Wu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Ruitao Yuan
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tong Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yingfeng Qin
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yumin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| | - Jin-Wen Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
49
|
Zhao H, Yi D, Li L, Zhao Y, Li M. Modular Weaving DNAzyme in Skeleton of DNA Nanocages for Photoactivatable Catalytic Activity Regulation. Angew Chem Int Ed Engl 2024; 63:e202404064. [PMID: 38517264 DOI: 10.1002/anie.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 03/23/2024]
Abstract
DNAzymes exhibit tremendous application potentials in the field of biosensing and gene regulation due to its unique catalytic function. However, spatiotemporally controlled regulation of DNAzyme activity remains a daunting challenge, which may cause nonspecific signal leakage or gene silencing of the catalytic systems. Here, we report a photochemical approach via modular weaving active DNAzyme into the skeleton of tetrahedral DNA nanocages (TDN) for light-triggered on-demand liberation of DNAzyme and thus conditional control of gene regulation activity. We demonstrate that the direct encoding of DNAzyme in TDN could improve the biostability of DNAzyme and ensure the delivery efficiency, comparing with the conventional surface anchoring strategy. Furthermore, the molecular weaving of the DNA nanostructures allows remote control of DNAzyme-mediated gene regulation with high spatiotemporal precision of light. In addition, we demonstrate that the approach is applicable for controlled regulation of the gene editing functions of other functional nucleic acids.
Collapse
Affiliation(s)
- Hengzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | - Deyu Yi
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| |
Collapse
|
50
|
Pang H, Zhao Q. Antibody-Bridged DNAzyme Walker for Sensitive Detection of Small Molecules. Anal Chem 2024; 96:6366-6372. [PMID: 38598690 DOI: 10.1021/acs.analchem.4c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Sensitive detection of small molecules with biological and environmental interests is important for many applications, such as food safety, disease diagnosis, and environmental monitoring. Herein, we propose a highly selective antibody-bridged DNAzyme walker to sensitively detect small molecules. The antibody-bridged DNAzyme walker consists of a track, small-molecule-labeled DNAzyme walking strand, and antibody against small molecules. The track is built by co-modifying fluorophore-labeled substrates and small-molecule-labeled DNA linkers onto a gold nanoparticle (AuNP). In the absence of the target molecule, the antibody binds small molecule labels at the DNAzyme walking strand and the DNA linker, driving the DNAzyme walking strand on the surface of the AuNP. The attached DNAzyme walking strand moves along the track and cleaves substrates to generate high fluorescence signals to achieve signal amplification. As target molecules exist, they competitively bind with antibody to displace the small-molecule-labeled linker and DNAzyme walking strand, rendering the DNAzyme walker inactive in substrate cleavage and causing weak fluorescence. By using this antibody-bridged DNAzyme walker, we achieved sensitive detection of two biologically important small molecules, digoxin and folic acid. This work provides a new paradigm by combining the signal amplification strategy of a DNA walker and immunorecognition for sensitive and selective detection of small molecules.
Collapse
Affiliation(s)
- Han Pang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|