1
|
Yu D, Liu M, Ding Q, Wu Y, Wang T, Song L, Li X, Qian K, Cheng Z, Gu M, Li Z. Molecular imaging-guided diagnosis and treatment integration for brain diseases. Biomaterials 2025; 316:123021. [PMID: 39705925 DOI: 10.1016/j.biomaterials.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In practical clinical scenarios, improved diagnostic methods have been developed for the precise visualization of molecular targets using molecular imaging in brain diseases. Recently, the introduction of innovative molecular imaging modalities across both macroscopic and mesoscopic dimensions, with remarkable specificity and spatial resolution, has expanded the scope of applications beyond diagnostic testing, with the potential to guide therapeutic interventions, offering real-time feedback in the context of brain therapy. The molecular imaging-guided integration of diagnosis and treatment holds the potential to revolutionize disease management by enabling the real-time monitoring of treatment responses and therapy adjustments. Given the vibrant and ever-evolving nature of this field, this review provides an integrated picture on molecular image-guided diagnosis and treatment integration for brain diseases involving the basic concepts, significant breakthroughs, and recent trends. In addition, based on the current achievements, some critical challenges are also discussed.
Collapse
Affiliation(s)
- Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Menghao Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Youxian Wu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianqing Wang
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Litong Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoyu Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Meijia Gu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Liu C, Feng C, Liu Y, Wu Y, Yao H, He S, Zeng X. Construction of a novel NIR-emissive rhodamine derivative for monitoring mitochondrial viscosity in ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125486. [PMID: 39612536 DOI: 10.1016/j.saa.2024.125486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Ferroptosis, an iron-dependent programmed cell death mechanism, is mediated by distinct molecular pathways of lipid peroxidation caused by intracellular iron supplementation and glutathione synthesis inhibition that cause oxidative damage to the cell membrane. Monitoring viscosity changes of mitochondria is essential for a deeper understanding of ferroptosis, as mitochondria will be shrunk with increased membrane density and leading to drastic mitochondrial viscous changes during ferroptosis process. Thus, it is essential to explore novel and efficient fluorescent probes for monitoring viscosity in organisms. In this work, we designed and synthesized a mitochondria-targeting probe TJ-FRP for cellular viscosity measurement via fluorescence imaging method. To obtain this probe, we firstly developed a novel modifiable fluorescent π-extended xanthene dye TJ-FR by replacing the benzoic acid group with a strong electron-withdrawing perfluorobenzoic acid group at the 9-position of xanthene framework. The dye not only presents emission wavelength at 758 nm and a large stokes shift of 142 nm in water, but also the dye is low biotoxic, membrane permeable. By reaction with 4-aminobutyltriphenylphosphonium bromide, TJ-FR was converted to the mitochondria-targeting probe TJ-FRP. TJ-FRP was successfully applied for the imaging of viscosity in living cells. Especially, the probe can be applied for visualizing mitochondrial viscosity changes during various inducers-stimulated ferroptosis process in model cells. These findings suggest that this novel NIR fluorescent probe can serve as a powerful tool to monitor the viscosity in biological samples and may provide new insights for various diseases during ferroptosis.
Collapse
Affiliation(s)
- Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chuang Feng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuanyuan Wu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huirong Yao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
3
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
4
|
Prabakaran G, Xiong H. Unravelling the recent advancement in fluorescent probes for detection against reactive sulfur species (RSS) in foodstuffs and cell imaging. Food Chem 2025; 464:141809. [PMID: 39515154 DOI: 10.1016/j.foodchem.2024.141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Sulfur-containing representative HSO3-/SO32-, H2S, and biothiols (Cys, Hcy, and GSH) present in food items and biological organisms have raised substantial global concerns about food safety due to their reactivity and potential health implications. Adhering to international health standards is essential for these compounds; in particular, plenty of challenges exist in ensuring product quality in the beverage industry. Many fluorescent probes are being employed in various spectroscopic techniques and have developed rapidly to selectively detect sulfur-related species in food products and bio-sensing for cell imaging. This comprehensive review provides a detailed overview of a wide range of fluorescent probes designed using different fluorophores for detecting reactive sulfur species (RSS) using spectroscopic techniques. Additionally, the review explores the detection of RSS components (HSO3-/SO32-, H2S, and biothiols) in food products and cell imaging using different cell lines, highlighting the crucial role of fluorescent probes in swiftly detecting these analytes in both natural and biological contexts. Furthermore, the review discusses future trends and perspectives, emphasizing the on-going progress in detecting these analytes in food products and cell imaging using various fluorescent probes.
Collapse
Affiliation(s)
- Gunasekaran Prabakaran
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
Zhang E, Wang S, Zhang G, Li A, Kong W, Zhao Y, Xiang M, Kong R, Ju P, Qu F. High-fidelity imaging of drug-induced acute gastritis by using a fluorescent and photoacoustic dual-modal probe with good stability in stomach acid. Talanta 2025; 281:126860. [PMID: 39260258 DOI: 10.1016/j.talanta.2024.126860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
In consideration of deep tissue imaging and signal fidelity, fluorescent-photoacoustic (PA) dual-modal probes are much more desirable. However, dual-modal imaging of gastritis using molecular probes remains a challenge due to the harsh gastric acid environment in the stomach. Based on the positive correlation between gastritis and cell viscosity, stomach acid-stable and viscosity-activated probes could potentially diagnose gastritis. As a proof of concept, herein, a fluorescent and photoacoustic dual-modal probe (named WSP-1) is revealed for the imaging of drug-induced acute gastritis in vivo. WSP-1 exhibits viscosity-dependent fluorescence emission and photoacoustic signals. A rotatable C-C single bond is incorporated into the D-π-A structure of WSP-1, which could facilitate the formation of the twisted intramolecular charge transfer (TICT) state in a low-viscosity environment (weak fluorescence/PA signal) and the intramolecular charge transfer (ICT) state in a high-viscosity environment (strong fluorescence/PA signal). WSP-1 has demonstrated the capability to target mitochondria and can be utilized to monitor the viscosity enhancement of cells during inflammation. Most importantly, WSP-1 exhibits good optical and structural stability in gastric acid. By leveraging these desirable features of WSP-1, we have achieved fluorescent and 3D photoacoustic in situ imaging of drug-induced acute gastritis following oral administration of WSP-1.
Collapse
Affiliation(s)
- Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Shuping Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Guixue Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Anzhang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Meihao Xiang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Rongmei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China; Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
6
|
Wang S, Jiang M, Bao T, Wu Z, Zhang X, Wang S, Wen W. Efficient Electrochemical Coupling of Aptamer to Nanoelectrode for In Situ Detection of ATP in Single Cells. Anal Chem 2024; 96:20152-20160. [PMID: 39661718 DOI: 10.1021/acs.analchem.4c03572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Nanoelectrodes, renowned for their small size, rapid mass transport, fast response, and high spatiotemporal resolution, have been recognized as a powerful tool in biosensing, especially for single-cell analysis. However, the nanoelectrode itself has no selectivity and cannot respond to nonelectroactive substances, limiting its wide application to some extent. Herein, we propose a simple and efficient electrochemical conjugation strategy to develop an electrochemical aptamer-coupled (E-AC) sensor for detecting adenosine triphosphate (ATP) in single living cells. Through simple electrochemical conjugation, ferrocene-labeled aptamers could be stably and efficiently coupled onto the surface of carbon fiber electrodes within 5 min. The small size (ca. 400 nm) and biocompatibility of the functionalized nanoelectrodes enabled the E-AC sensors to noninvasively and continuously monitor ATP content in single HeLa cells over 20 min, as well as the cellular ATP fluctuations under glucose starvation. Furthermore, the E-AC sensors exhibit superior specificity, sensitivity, and universality in the application of analysis of ATP in single living Hela cells and MCF-7 cells. They were also versatile for sensing other nonelectroactive targets through modification of the corresponding electroactive marker-labeled aptamers, showing great potential in cell-related physiological processes and drug screening.
Collapse
Affiliation(s)
- Shiyu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Min Jiang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Ting Bao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhen Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
7
|
Kalarikkal C, Anjali, Bhattacharjee S, Mapa K, P CAS. Lipid droplet specific BODIPY based rotors with viscosity sensitivity to distinguish normal and cancer cells: impact of molecular conformation. J Mater Chem B 2024. [PMID: 39698835 DOI: 10.1039/d4tb02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Lipid droplets (LDs) are dynamic, multifunctional organelles critical for regulating energy balance, cell signaling, membrane formation, and trafficking. Recent studies have highlighted LDs as emerging cancer biomarkers, with cancer cells typically exhibiting a higher number and viscosity of LDs compared to normal cells. This discovery paves the way for developing molecular probes that can monitor intracellular viscosity changes within LDs, offering a powerful tool for early cancer diagnosis, recurrence monitoring, and therapeutic interventions. In this study, we designed and synthesized two series of donor-acceptor (D-A) conjugated BODIPY-cyanostilbene based fluorophores (5a-c and 6a-c) by fine-tuning the cyanostilbene unit with three distinct substituents (OMe, H, Cl) and modulating the molecular conformation via rigidifying the indacene core. While the terminal substituents had a minimal effect on the optical properties, changes in molecular conformation significantly impacted the photophysical behavior of the fluorophores. Compounds 5a-c function as molecular rotors, with the free rotation of the meso-biphenyl rings leading to non-radiative deactivation of the excited state, resulting in weak emission. Additionally, this structural feature makes them highly responsive to changes in viscosity. As the glycerol concentration increased from 0% to 99%, the fluorescence intensity of compounds 5a, 5b, and 5c increased dramatically by 17-fold, 78-fold, and 43-fold, respectively. In contrast, compounds 6a-c, with restricted phenyl ring rotation due to tetra-methyls on the indacene unit, showed only a modest 2-3-fold increment in fluorescence intensity under similar conditions. These fluorophores possess several key advantages, including high selectivity for LDs, good photostability, sensitivity to viscosity, and responsiveness to polarity and pH. Moreover, they effectively differentiate between normal and cancer cells, making them valuable tools for cancer diagnosis and potential therapeutic applications.
Collapse
Affiliation(s)
- Charutha Kalarikkal
- Main group Organometallics Optoelectronic Materials and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| | - Anjali
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sarbani Bhattacharjee
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Koyeli Mapa
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Chinna Ayya Swamy P
- Main group Organometallics Optoelectronic Materials and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| |
Collapse
|
8
|
Yan S, Xie T, Liu J, Dai F, Zhang S, Zhou B. Targeted Conversion from Mitochondria to the Nucleus of Hydroxystyrylpyridinium by Introducing Only an Additional o-Hydroxyl Group. Anal Chem 2024; 96:19996-20003. [PMID: 39627180 DOI: 10.1021/acs.analchem.4c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aromatic cationic groups serve as crucial building blocks for the design of fluorescent probes targeting both the nucleus and mitochondria. Therefore, it is a significant challenge to develop aromatic cation-based probes that accurately image the nucleus without interference from mitochondria. However, this also presents an opportunity for rational design by modifying probes originally targeting mitochondria to redirect their targeting toward the nucleus. This study showcases the rapid development of a novel nucleus-targeting probe (DHSP) through a targeted conversion strategy based on structure modification of hydroxystyrylpyridinium (HSP), a well-established two-photon fluorescent probe that targets mitochondria. Importantly, DHSP, which is derived exclusively from introducing only an additional o-hydroxyl group into HSP, exhibits robust DNA-binding capability comparable to a commercially available nuclear dye 4',6-diamidino-2-phenylindole (DAPI). As a result, it rapidly enters the nucleus within 5 min and finds successful application in two-photon cellular and intravital imaging of the nucleus.
Collapse
Affiliation(s)
- Shuai Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Tao Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
- College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, Gansu, China
| |
Collapse
|
9
|
Huang H, Pan S, Yuan B, Wang N, Shao L, Chen ZE, Zhang H, Huang WZ. Recent Research Progress of Benzothiazole Derivative Based Fluorescent Probes for Reactive Oxygen (H 2O 2 HClO) and Sulfide (H 2S) Recognition. J Fluoresc 2024:10.1007/s10895-024-04016-w. [PMID: 39668328 DOI: 10.1007/s10895-024-04016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Fluorescent sensing technology has advantages such as high sensitivity, good selectivity, and easy operation. It is widely used in the environment and biomedical field and receives increasing attention from people. It is easy to modify the structure of the benzothiazole fluorophores, and adding the push-pull electronic system can regulate the optical properties of benzodiapylene molecules. As probes, its derivatives are widely used in biomedicine, catalysis, and materials. Therefore, this paper mainly describes the development in the detection of reactivated oxygen (H2O2 HClO) and sulfides (H2S) in the last six years (2019-2024) based on benzothiazole fluorescent probe, which will be classified according to the identification mechanism of probes to be summarized, and to explain their properties and applications in biological and food, providing some help for designing more sensitive and efficient fluorescent probe molecules.
Collapse
Affiliation(s)
- Hong Huang
- Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shaobang Pan
- Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Bin Yuan
- Zunyi Normal College, Zunyi, 563006, China
| | - Nvzhi Wang
- Zunyi Normal College, Zunyi, 563006, China
| | | | | | - Hai Zhang
- Chongqing University of Science and Technology, Chongqing, 401331, China.
- Zunyi Normal College, Zunyi, 563006, China.
| | - Wen-Zhang Huang
- Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
10
|
García S, Carmona-Santiago G, Jiménez-Sánchez A. Redefining Molecular Probes for Monitoring Subcellular Environment: A Perspective. Anal Chem 2024; 96:19183-19189. [PMID: 39576991 PMCID: PMC11635757 DOI: 10.1021/acs.analchem.4c05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The development of small-molecule fluorescent probes has revolutionized the monitoring of in vivo physicochemical parameters, offering unprecedented insights into biological processes. In this perspective, we critically examine recent advances and trends in the design and application of fluorescent probes for real-time in vivo monitoring of subcellular environments. Traditional concepts such as membrane potential, microviscosity, and micropolarity have been superseded by more biologically relevant parameters like membrane voltage, tension, and hydration, enhancing the accuracy of physiological assessments. This redefinition not only presents an evolved concept with broader applications in monitoring subcellular dynamics but also addresses the unmet needs of subcellular biology more effectively. We also highlight the limitations of commonly used probes in providing specific information about the redox environment, noting their nonspecificity to oxidants and the influence of various chemical interactions. These probes typically rely on free radical mechanisms and require metal catalysts to react with hydrogen peroxide. They include naphthalimide, fluorescein, BODIPY, rhodamine, cyanine cores to cover the UV-vis-near-infrared window. The motif of this perspective is to provide critical insights into trending fluorescent-based systems employed in real-time or in vivo physicochemical-responsive monitoring, thus aiming to inform and inspire further research in creating robust and efficient fluorescent probes for comprehensive in vivo monitoring applications.
Collapse
Affiliation(s)
- Santiago García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Gustavo Carmona-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
11
|
Mishra L, Mishra M. Recent progress towards the development of fluorescent probes for the detection of disease-related enzymes. J Mater Chem B 2024. [PMID: 39639834 DOI: 10.1039/d4tb01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Normal physiological functions as well as regulatory mechanisms for various pathological conditions depend on the activity of enzymes. Thus, determining the in vivo activity of enzymes is crucial for monitoring the physiological metabolism and diagnosis of diseases. Traditional enzyme detection methods are inefficient for in vivo detection, which have different limitations, such as high cost, laborious, and inevitable invasive procedures, low spatio-temporal resolution, weak anti-interference ability, and restricted scope of application. Because of its non-destructive nature, ultra-environmental sensitivity, and high spatiotemporal resolution, fluorescence imaging technology has emerged as a potent tool for the real-time visualization of live cells, thereby imaging the motility of proteins and intracellular signalling networks in tissues and cells and evaluating the binding and attraction of molecules. In the last few years, significant advancements have been achieved in detecting and imaging enzymes in biological systems. In this regard, the high sensitivity and unparalleled spatiotemporal resolution of fluorescent probes in association with confocal microscopy have garnered significant interest. In this review, we focus on providing a concise summary of the latest developments in the design of fluorogenic probes used for monitoring disease-associated enzymes and their application in biological imaging. We anticipate that this study will attract considerable attention among researchers in the relevant field, encouraging them to pursue advances in the development and application of fluorescent probes for the real-time monitoring of enzyme activity in live cells and in vivo models while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
12
|
Liu F, Li Z, Jing J, Zhang X. A Golgi-targeted fluorescent probe for monitoring polarity dynamic during programmed cell death. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124810. [PMID: 39002471 DOI: 10.1016/j.saa.2024.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Programmed cell death (PCD) is a controlled form of cell death and it plays an essential role in maintaining homeostasis. Golgi apparatus works as the hotspot during the early event of PCD and Golgi polarity, a vital microenvironment factor, can be regarded as an indicator of physiological status. Combined Golgi-targeted group phenylsulfonamide as electron acceptor group and triphenylamine as electron donor group, a novel Golgi-targeted fluorescent probe GTO had been developed. GTO showed good sensitivity and selectivity to polarity and its remarkable photostability makes it potentially useful for long-term cellular monitoring. In practice, GTO demonstrated good cell permeability and Golgi targeting capabilities. According to our results, GTO was applied to reveal the polarity increase during the early event of PCD and the encouraging results illustrated that GTO was an imaging tool for monitoring polarity in Golgi apparatus and the exploration in early diagnosis and drug discovery.
Collapse
Affiliation(s)
- Feiran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
13
|
Yuan H, Sun S, Hu H, Wang Y. Light-emitting probes for in situ sensing of plant information. TRENDS IN PLANT SCIENCE 2024; 29:1368-1382. [PMID: 39068067 DOI: 10.1016/j.tplants.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes - in terms of small-molecule, nanomaterials-based, and genetically protein-based probes - can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information - for example, reactive oxygen species (ROS), calcium ions, phytohormones - with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.
Collapse
Affiliation(s)
- Hao Yuan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shengchun Sun
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Hu
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yixian Wang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China.
| |
Collapse
|
14
|
Ma J, Jiao Z, Zhao M, Kong X, Xie H, Zhang Z. A fluorescence probe for monitoring toxic hypochlorous acid in biosystems and environmental waters with a broad pH adaptation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117370. [PMID: 39591730 DOI: 10.1016/j.ecoenv.2024.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Hypochlorous acid (HOCl) is commonly utilized in various daily applications. As a toxic reactive oxygen species (ROS) that generated from the industrial and pharmaceutical aspects, it plays a critical role in the mass cycle of environmental system and various biological processes. Understanding the complicated roles of HOCl in environment and biosystems requires the development of precise and efficient detection methods. Thus, in this work, a novel fluorescent probe, MQ-ClO, has been designed to detect hypochlorous acid by utilizing hypochlorous acid-triggered oxidative intramolecular cyclization. This probe exhibits rapid and sensitive response, with a detection limit as low as 35 nM. More importantly, the probe is capable of functioning under highly acidic or basic conditions, exhibiting a wide pH range adaptability from pH 2-11. Furthermore, MQ-ClO has been effectively used to detect HOCl in real water samples. Besides, the low toxicity of MQ-ClO enables its practical application in monitoring endogenous/exogenous HOCl levels in living cells as well as zebrafish.
Collapse
Affiliation(s)
- Junyan Ma
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| | - Zilin Jiao
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Mingtao Zhao
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Xiangtao Kong
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenxing Zhang
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan 455000, China; Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Zhang P, Meng W, Wei L, Li Y, Xiao H, He Y, Yang F, Han X, Shu W. Rational design of a NIR fluorescent probe and its application in food detection of viscosity and biosystem imaging. Food Chem 2024; 460:140527. [PMID: 39121776 DOI: 10.1016/j.foodchem.2024.140527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Viscosity is one of the most important parameters of liquid foods and shows significant change during food spoilage. It is also an important component of the cell microenvironment and is closely associated with the development of liver injury. In this work, a viscosity-sensitive fluorescent probe named WZ-V based on the twisted intramolecular charge transfer (TICT) mechanism was successfully designed. WZ-V had a large Stokes shift, long wavelength emission, and the fluorescence intensity shows 290-fold enhancement in high viscosity. Probe WZ-V successfully detected viscosity changes caused by food thickeners, as well as in milk, orange juice, and lemonade spoilage processes. This provides a new tool for regulating the viscosity of liquid foods and monitoring viscosity changes during food spoilage. In addition, WZ-V has been successfully applied to image viscosity changes in liver injury, which provides an important reference for the study of liver diseases.
Collapse
Affiliation(s)
- Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Wenshu Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yumeng Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yongrui He
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
16
|
Shen R, Chen YX, Chen Y, Sayed ZN, Yi M, Sun C, Zhang B, Fang J. An activatable red emitting fluorescent probe for monitoring vicinal dithiol protein fluctuations in a stroke model. Chem Commun (Camb) 2024; 60:13774-13777. [PMID: 39499213 DOI: 10.1039/d4cc04971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Vicinal dithiol proteins (VDPs) facilitate cellular redox homeostasis, modulate protein synthesis and participate in post-translational modifications through the dynamic equilibrium of dithiol and disulfide bonds. Herein, an activatable red emitting fluorescent probe, VDP-red, is developed for detecting VDPs. With the aid of this probe, we have discovered for the first time a reduction in the levels of reduced VDPs in a stroke mouse model. This work provides a fresh viewpoint for understanding stroke mechanisms.
Collapse
Affiliation(s)
- Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Ya-Xiong Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yating Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zahid Nasim Sayed
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Meirong Yi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
17
|
Zhou R, Liu G, Fu S, Zheng H, Li D, Dai J, Wei J, Li B, Wang C, Lu G. Labeling selectivity of lipid droplets fluorescent probes: Twisted intramolecular charge transfer (TICT) vs intramolecular charge transfer (ICT). Biosens Bioelectron 2024; 264:116624. [PMID: 39121616 DOI: 10.1016/j.bios.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Fluorescence imaging technology is a versatile and essential tool in the field of biomedical research. To obtain excellent imaging results, the precise labeling of fluorescent probes is an important prerequisite. Nevertheless, the labeling selectivity of most fluorescent probes is not satisfactory, new design concepts are desperately needed. In this context, two isomeric lipid droplets (LDs) fluorescent probes Lipi-Cz-1 and Lipi-Cz-2 have been sophisticatedly developed with TICT and ICT-emitting characteristic, respectively. The more environmentally sensitive TICT-emitting Lipi-Cz-1 exhibits a significantly enhanced labeling selectivity in LDs imaging compared to the ICT-emitting Lipi-Cz-2, sufficiently illustrating the effectiveness of TICT-emitting characteristic in improving labeling selectivity. Additionally, Lipi-Cz-1 displays high photostability and biocompatibility. These advantages enable Lipi-Cz-1 to be finely applied in multimode fluorescence imaging, e.g. time-lapse 3D confocal imaging to monitor changes of the number and size of LDs during starvation, two-photon 3D imaging to compare the variations of LDs in various liver tissues, and STED super-resolution imaging to visualize the nanoscale LDs with the resolution of 65 nm. Overall, these imaging findings validate the effectiveness of the new strategy for improving the labeling selectivity.
Collapse
Affiliation(s)
- Ri Zhou
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, China; State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shengjie Fu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Huanlong Zheng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Jinbei Wei
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Bai Li
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
18
|
Yang L, Gan S, Zhang J, Jiang Y, Chen Q, Sun H. A dual-functional photosensitizer for mitochondria-targeting photodynamic therapy and synchronous polarity monitoring. J Mater Chem B 2024; 12:11259-11264. [PMID: 39377126 DOI: 10.1039/d4tb01872a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Mitochondria-targeting photodynamic therapy (PDT) has been validated as an effective strategy for inducing cell death through the disruption of mitochondrial function. The mitochondrial microenvironment, such as viscosity, polarity, pH and proteins, undergoes dynamic changes during PDT treatment, and investigating these parameters is crucial for comprehending the intrinsic mechanisms at the cellular level. In this context, disclosure of mitochondrial microenvironment alterations holds significant importance. Nevertheless, a probe capable of visualizing mitochondrial polarity fluctuations during PDT treatment has not been reported. Importantly, a dual-functional photosensitizer (PS) with polarity detection capability is highly advantageous as it can mitigate potential metabolic and localization disparities between the PS and the polarity probe, thus improving the accuracy of detection. In this contribution, a series of potential PSs were prepared by integrating the 2,1,3-benzoxadiazole (BD) scaffold with various heteroatom-incorporated electron-withdrawing groups. Among them, BDI exhibited potent phototoxicity against cancer cells and remarkable sensitivity to polarity changes, establishing it as a dual-functional PS for both photodynamic therapy and polarity detection. Leveraging its polarity detection capability, BDI successfully discriminated mitochondrial polarity discrepancy between cancer cells and normal cells, and indicated mitochondrial polarity fluctuations during drug-induced mitophagy. Crucially, BDI was employed to unveil mitochondrial polarity variations during PDT treatment, underscoring its dual function. Altogether, the meticulous design of the dual-functional PS BDI offers valuable insights into intracellular microenvironment variations during the PDT process, thereby enhancing our understanding and guiding the optimization of PDT treatment.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China.
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China.
| | - Yin Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China.
| |
Collapse
|
19
|
Ghorpade M, Mansuri A, Kumar A, Kanvah S. Diphenylbutadiene Fluorescent Analogues in Sub-Cellular Imaging and Monitoring Mitophagy. Chem Asian J 2024; 19:e202400600. [PMID: 39051983 DOI: 10.1002/asia.202400600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
A series of donor-acceptor (D-π-A) substituted diphenylbutadienes exhibiting solvatochromic emission and a large Stokes shift (100-200 nm) were designed and synthesized for distinctive organelle labelling, enabling real-time monitoring of organelle behaviour such as lysosomal dynamics, mitophagy monitoring, and stress responses. The morpholine-substituted D-A-D diphenylbutadiene (M2) was employed to investigate selective imaging of lysosomes, the uptake of damaged mitochondria through mitophagy, and monitoring lysosomal viscosity or pH changes. Other diphenylbutadiene derivatives (M1, M3, M4) selectively accumulated in lipid droplets. All the synthesized derivatives demonstrated significant uptake in 5-day post-fertilization zebrafish larvae, with M2 showing maximum uptake in the enterocyte-containing heart and intestinal regions, which include the lysosomes.
Collapse
Affiliation(s)
- Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
20
|
Liu D, An H, Li X, Wang B, Zhao S, Lan M, Yang Z, Song X. Lysosome-Targeted Bifunctional Fluorescent Probe and Type I/II Photosensitizer for Viscosity Imaging and Cancer Photodynamic Therapy. LUMINESCENCE 2024; 39:e70028. [PMID: 39508310 DOI: 10.1002/bio.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Abnormal lysosomal viscosity is closely associated with cancer progression, underscoring the need for bifunctional fluorescent probes and photosensitizers (PSs) that can both monitor viscosity and facilitate imaging-guided therapy for simultaneous cancer diagnosis and treatment. Despite advances in lysosome-targeted PSs development, few have demonstrated the ability to generate both Type I and Type II reactive oxygen species (ROS). In this study, we present BTTPA, a lysosome-targeted fluorescent probe and photosensitizer, designed to integrate cancer diagnosis via viscosity imaging and cancer treatment through photodynamic therapy (PDT). Our findings reveal that BTTPA selectively targets lysosomes, enabling dynamic monitoring of cellular viscosity and distinguishing cancer cells from normal cells. Upon light activation, BTTPA efficiently generates both Type I and Type II ROS. Apoptosis assays further confirm BTTPA's effectiveness in inducing cancer cell apoptosis, highlighting its potential as a powerful tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Du Liu
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Hongyan An
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Xianglong Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Shaojing Zhao
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Zhanhong Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Jiang Z, Wang J, Tian M, Zhou L, Kong X, Yan M. Real time precisely tracing the fluctuations of mitochondrial SO 2 in cells during ferroptosis and tissues using a mitochondrial-immobilized ratiometric fluorescent probe. Talanta 2024; 279:126654. [PMID: 39106645 DOI: 10.1016/j.talanta.2024.126654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Mitochondrial sulfur dioxide (SO2) plays important roles in physiological and pathological activities. Unfortunately, it is lack of a reliable tool to precisely visualize the mitochondrial SO2 and elaborate its complicated functions in various cytoactivities. Here we report a mitochondrial-immobilized fluorescent probe PM-Cl consisting of coumarin and benzyl chloride modified benzothiazole, which enables selective visualization of mitochondrial SO2via chemical immobilization. The spectral results demonstrated that probe PM-Cl could respond to SO2 with high selectivity and sensitivity. Co-localization and the fluorescence of cytolysis extraction verified the excellent mitochondrial targeting and anchoring abilities. Due to the chemical immobilization, probe PM-Cl could firmly retain into mitochondria after stimulation of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and H2O2. Significantly, a series of fluorescence images are indicative of capability for detecting the fluctuations of SO2 in mitochondria during ferroptosis. Furthermore, PM-Cl also could visualize SO2 in myocardium and muscle tissues after the stimulation of CCCP. Taken together, probe PM-Cl is a very potential molecular tool for precisely detecting mitochondrial SO2 to explore its complex functions in physiological and pathological activities.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jingchao Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| |
Collapse
|
22
|
Fu J, He S, Liu J, Pang J, Wang KN, Chen Y. A novel high signal-to-noise ratio fluorescent probe for real-time mitochondrial viscosity detection and imaging in vitro and in vivo. J Mater Chem B 2024; 12:10635-10643. [PMID: 39310927 DOI: 10.1039/d4tb01486c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mitochondrial viscosity serves as a critical indicator for assessing mitochondrial functionality and offers valuable insights into cellular homeostasis. Continuous, real-time monitoring of mitochondrial viscosity is indispensable for understanding and diagnosing diseases associated with these dynamic changes. In this study, we introduce a novel mitochondrial viscosity-responsive probe named "JL-JC" which is designed by using a molecular strategy, with a classic "D-π-A" molecular structure. Leveraging the distinctive twisted intramolecular charge transfer (TICT) properties of the probe, JL-JC exhibits exceptional sensitivity and a high signal-to-noise ratio, enabling precise detection of viscosity variations within its microenvironment while remaining unaffected by other factors. Upon rapid cellular uptake, JL-JC can efficiently evaluate the mitochondrial viscosity changes under diverse physiological and pathological conditions. Notably, this probe also enables viscosity imaging in zebrafish, offering insights into mitochondrial states in vivo. Our findings present JL-JC as a promising tool and potential diagnostic platform for mitochondria-related diseases.
Collapse
Affiliation(s)
- Jinyu Fu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Simeng He
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Jiandong Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China.
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Chen Y, Zong P, Chen Q, Wang X, Luo J, Liu K, Zhang R. Construction of a pH- and viscosity-switchable near-infrared fluorescent probe and its imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124527. [PMID: 38815313 DOI: 10.1016/j.saa.2024.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Viscosity is a parameter used to measure the fluidity of liquids and a key indicator in evaluating the states of body fluid in biological tissues and lesions. Most traditional detection methods have many drawbacks such as a short emission wavelength and interference by background fluorescence. Inspired by the multiple double bond structure of retinal, a novel pH and viscosity dual-response fluorescent probe (Rh-TR) was constructed in this study. Rh-TR exhibited two emission signals centered at 510 and 660 nm. As the pH of the phosphate-buffered saline increased, the fluorescence at 510 nm increased by about 124-fold, while the change in fluorescence at 660 nm was not obvious. When detecting the change in viscosity using the probe, the fluorescence at 510 nm decreased by about 85 %, while the fluorescence at 660 nm increased by over 20-fold. The probe also showed high selectivity and little toxicity. As demonstrated by the biological imaging experiment, the probe successfully imaged changes in the pH and viscosity of cells and in a live animal model of zebrafish. Considering the unique structure of Rh-TR with retinal and its pH- and viscosity-switchable spectral property, the probe may find further application in detecting viscosity-related diseases and industrial detection.
Collapse
Affiliation(s)
- Yunling Chen
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Electrical Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Peipei Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qifei Chen
- Suixi Testing Center, Huaibei, Anhui 235000, China
| | - Xiaohong Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Electrical Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Rongfeng Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Electrical Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
24
|
Li F, Dong PZ, Sun SK, Zhai SM, Zhao BX, Lin ZM. A near-infrared fluorescent probe for simultaneous detection of pH and viscosity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124486. [PMID: 38788506 DOI: 10.1016/j.saa.2024.124486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
In this work, we developed a ratiometric fluorescent probe (NT) based on ICT framework in near-infrared (NIR) which could detect pH and viscosity simultaneously. Long emission wavelength in NIR could protect the probe from interference of background fluorescence and improve the accuracy of the test. Due to the presence of thiazole-salt, the probe possessed good water solubility and could respond immediately to pH in water system. The pH values measured by NT in the actual samples were not much different from that measured by the pH meter, therefore, NT could give excellent accuracy. NT realized the reversible detection of pH by protonation and deprotonation. NT was used successfully to detect the pH of actual water samples, human serum and meat, as well as the viscosity variation caused by thickeners. Additionally, NT could monitor the changes of pH and viscosity in living cells. Therefore, the novel probe exhibited potential application in the fields of the environment, human health and food safety evaluation.
Collapse
Affiliation(s)
- Feng Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Pei-Zhen Dong
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shou-Kang Sun
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shu-Mei Zhai
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
25
|
He J, Wen G, Peng Q, Hou X. The design, synthesis and application of metal-organic framework-based fluorescence sensors. Chem Commun (Camb) 2024; 60:11237-11252. [PMID: 39258376 DOI: 10.1039/d4cc03453h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Fluorescence-based chemical sensors have garnered significant attention due to their rapid response, high sensitivity, cost-effectiveness and ease of operation. Recently, metal-organic frameworks (MOFs) have been extensively utilized as platforms for constructing fluorescence sensors, owing to their ultra-high porosity, flexible tunability, and excellent luminescent properties. This feature article summarizes the progress made mainly by our research group in recent years in the construction strategies, principles, and types of MOF sensors, as well as their applications in quantitative sensing, qualitative identification analysis, and multimodal/multifunctional analysis. In addition, the challenges and an outlook on the future progression of MOF-based sensors are discussed, highlighting how these studies can contribute to addressing these issues. Hopefully, this feature article can provide some valuable guidance for the construction and application of MOFs in fluorescence sensing, thereby broadening their practical applications.
Collapse
Affiliation(s)
- Juan He
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Guijiao Wen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qianqian Peng
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
26
|
Ma J, Zhao M, Kong X, Xie H, Li H, Jiao Z, Zhang Z. An innovative dual-organelle targeting NIR fluorescence probe for detecting hydroxyl radicals in biosystem and inflammation models. Bioorg Chem 2024; 151:107678. [PMID: 39068715 DOI: 10.1016/j.bioorg.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The hydroxyl radical (OH) is highly reactive and plays a significant role in a number of physiological and pathological processes within biosystems. Aberrant changes in the level of hydroxyl radical are associated with many disorders including tumor, inflammatory and cardiovascular diseases. Thus, detecting reactive oxygen species (ROS) in biological systems and imaging them is highly significant. In this work, a novel fluorescent probe (HR-DL) has been developed, targeting two organelles simultaneously. The probe is based on a coumarin-quinoline structure and exhibits high selectivity and sensitivity towards hydroxyl radicals (OH). When reacting with OH, the hydrogen abstraction process released its long-range π-conjugation and ICT processes, leading to a substantial red-shift in wavelength. This probe has the benefits of good water solubility (in its oxidative state), short response time (within 10 s), and unique dual lysosome/mitochondria targeting capabilities. It has been applied for sensing OH in biosystem and inflammation mice models.
Collapse
Affiliation(s)
- Junyan Ma
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson 29634, SC, United States.
| | - Mingtao Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - He Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zilin Jiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zhenxing Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Gao T, Xiang C, Ding X, Xie M. Dual-locked fluorescent probes for precise diagnosis and targeted treatment of tumors. Heliyon 2024; 10:e38174. [PMID: 39381214 PMCID: PMC11458960 DOI: 10.1016/j.heliyon.2024.e38174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer continues to pose a significant threat to global health, with its high mortality rates largely attributable to delayed diagnosis and non-specific treatments. Early and accurate diagnosis is crucial, yet it remains challenging due to the subtle and often undetectable early molecular changes. Traditional single-target fluorescent probes often fail to accurately identify cancer cells, relying solely on single biomarkers and consequently leading to high rates of false positives and inadequate specificity. In contrast, dual-locked fluorescent probes represent a breakthrough, designed to enhance diagnostic precision. By requiring the simultaneous presence of two specific tumor-associated biomarkers or microenvironmental conditions, these probes significantly reduce non-specific activations typical of conventional single-analyte probes. This review discusses the structural designs, response mechanisms, and biological applications of dual-locked probes, highlighting their potential in tumor imaging and treatment. Importantly, the review addresses the challenges, and perspectives in this field, offering a comprehensive look at the current state and future potential of dual-locked fluorescent probes in oncology.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Can Xiang
- Department of Scientific Management, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xintao Ding
- Department of Biomedical Informatics, Columbia University Graduate School of Arts and Sciences, New York, NY, United States
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
28
|
Cantón-Díaz AM, Muñoz-Flores BM, Macías-Gamboa LF, Moggio I, Arias E, Turlakov G, Dias HVR, Colombo G, Brenna S, Jiménez-Pérez VM. Temperature-dependent photoluminescence down to 77 K of organotin molecular rotors: eco-friendly synthesis, photophysical characterization, X-ray structures, and DFT studies. Dalton Trans 2024; 53:15010-15031. [PMID: 39155846 DOI: 10.1039/d4dt01518e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Fluorescent organotin compounds are useful in sensing, optoelectronic devices, and in vitro bioimaging. Although in vitro fluorescence bioimaging shows low resolution at room temperature, a better resolution is possible at cryotemperatures. Therefore, the search for new cryoluminescent materials with potential application in high-resolution fluorescence bioimaging remains a great challenge. Herein, we report the cryoluminescence properties of two fluorescent bis-organotin compounds, namely, BisNTHySnBu2 (5) and BisNTHySnPh2 (6), synthesized via microwave irradiation. All compounds were fully characterized using 1H, 13C, and 119Sn NMR spectroscopy, Raman spectroscopy, IR spectroscopy, and HR-MS. The 119Sn δ and 3J(1H,119Sn) of 5 and 6 indicate that two Sn-ligands are chemically and electronically equivalent, as confirmed by cyclic voltammetry. The crystal structure of 6 showed pentacoordinate tin atoms with skeleton ligands. The study of self-assembled monolayers of both Sn-complexes via STM microscopy revealed a similar supramolecular packing in lamella-like patterns, adopting a face-on arrangement, where molecules stay flat lying on HOPG in accordance with the height profile of closely packed monolayers on graphite of about 0.33 nm thickness. However, only the Sn complex 6, which bears phenyls, covers large surface areas. The photophysical properties of bis-organotin compounds were also investigated in solution (room and low temperatures) and in the solid state. Good luminescence properties in solutions with fluorescence quantum yields (Φ) of approximately 35% and 50% were found. Despite this, Φ is quenched in the solid state because of aggregation, as supported by solvent/non solvent fluorescence studies, which is in agreement with STM and AFM investigation.
Collapse
Affiliation(s)
- Arelly M Cantón-Díaz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n. C. P. 66451, Nuevo León, Mexico.
| | - Blanca M Muñoz-Flores
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n. C. P. 66451, Nuevo León, Mexico.
| | - Luis F Macías-Gamboa
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n. C. P. 66451, Nuevo León, Mexico.
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25294 Saltillo, Coahuila, Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25294 Saltillo, Coahuila, Mexico
| | - Gleb Turlakov
- Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25294 Saltillo, Coahuila, Mexico
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065, USA
| | - Gioele Colombo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria and CIRCC, Via Valleggio, 9, 22100, Como, Italy
| | - Stefano Brenna
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria and CIRCC, Via Valleggio, 9, 22100, Como, Italy
| | - Víctor M Jiménez-Pérez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n. C. P. 66451, Nuevo León, Mexico.
| |
Collapse
|
29
|
Polita AR, Bagdonaitė RT, Shivabalan AP, Valinčius G. Influence of Simvastatin and Pravastatin on the Biophysical Properties of Model Lipid Bilayers and Plasma Membranes of Live Cells. ACS Biomater Sci Eng 2024; 10:5714-5722. [PMID: 39180473 PMCID: PMC11388144 DOI: 10.1021/acsbiomaterials.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Statins are among the most widely used drugs for the inhibition of cholesterol biosynthesis, prevention of cardiovascular diseases, and treatment of hypercholesterolemia. Additionally, statins also exhibit cholesterol-independent benefits in various diseases, including neuroprotective properties in Alzheimer's disease, anti-inflammatory effects in coronary artery disease, and antiproliferative activities in cancer, which likely result from the statins' interaction and alteration of lipid bilayers. However, the membrane-modulatory effects of statins and the mechanisms by which statins alter lipid bilayers remain poorly understood. In this work, we explore the membrane-modulating effects of statins on model lipid bilayers and live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM) combined with viscosity-sensitive environmental probes, we demonstrate that hydrophobic, but not hydrophilic, statins are capable of changing the microviscosity and lipid order in model and live cell membranes. Furthermore, we show that hydrophobic simvastatin is capable of forming nanoscale cholesterol-rich domains and homogenizing the cholesterol concentrations in lipid bilayers. Our results provide a mechanistic framework for understanding the bimodal effects of simvastatin on the lipid order and the lateral organization of cholesterol in lipid bilayers. Finally, we demonstrate that simvastatin temporarily decreases the microviscosity of live cell plasma membranes, making them more permeable and increasing the level of intracellular chemotherapeutic drug accumulation.
Collapse
Affiliation(s)
- Artu Ras Polita
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Ru Ta Bagdonaitė
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Arun Prabha Shivabalan
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Gintaras Valinčius
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
30
|
Wang T, Lei Q, Tao K, Liu S, Yao X, Zhu Q. Fluorescent octahydrophenazines as novel inhibitors against herpes simplex viruses. Eur J Med Chem 2024; 275:116580. [PMID: 38896994 DOI: 10.1016/j.ejmech.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
A new series of racemic fluorescent octahydrophenazines (rac-PZ1-11) have been designed and synthesized via the efficient nucleophilic aromatic substitution (SNAr) of tetrafluorobenzenedinitriles (1a-c) and racemic cyclohexane-1,2-diamines (rac-2a and b). The bioactivities of these racemic rac-PZs (20 μM) against herpes simplex virus type-1 (HSV-1) were evaluated by the relative cell viability of Vero cells infected with HSV-1. It was found that rac-PZ3 shows much higher anti-HSV-1 activity than others, with EC50 = 9.2 ± 1.4 μM. Further investigation into the anti-HSV activities of rac-PZ3 and its enantiomers RR- and SS-PZ3 indicates that rac-PZ3 can also efficiently inhibit HSV-2 and even ACV-resistant HSV-2 (EC50 = 11.0 ± 2.3 and 14.9 ± 2.8 μM, respectively), SS-PZ3 has better activities against HSV-1, HSV-2 and ACV-resistant HSV-2 (EC50 = 4.1 ± 1.1, 5.8 ± 1.0 and 7.9 ± 1.2 μM, respectively), but RR-PZ3 has almost no antiviral activities. The primary mechanism study indicates that rac-PZ3 efficiently reverses the HSV-1/2-induced cytopathic effect and suppresses the expression of viral mRNA and proteins. In addition, rac-, RR- and SS-PZ3 possess excellent fluorescence properties with almost the same emission wavelength and high fluorescence quantum yields (ΦF = 90.3-92.3 % in cyclohexane solutions and 54.4-57.3 % in solids) and can target endoplasmic reticulum and cell membrane. The efficient anti-HSV bioactivities and excellent fluorescence of PZ3 prove its potential applications in antiviral therapy and biological imaging.
Collapse
Affiliation(s)
- Tianlin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue, North Guangzhou, 510515, China
| | - Qiyun Lei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue, North Guangzhou, 510515, China
| | - Kuicheng Tao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue, North Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue, North Guangzhou, 510515, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue, North Guangzhou, 510515, China.
| | - Qiuhua Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue, North Guangzhou, 510515, China.
| |
Collapse
|
31
|
Li G, Zheng H, Zhang L, Huang L, Lin W. Mitochondria-Specific Fluorescent Probe for Revealing the Interaction between Mitochondria and Lysosomes during Apoptosis. Anal Chem 2024; 96:14291-14297. [PMID: 39172597 DOI: 10.1021/acs.analchem.4c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The mitochondria, as one of the essential organelles in cells, are closely associated with numerous biological processes. Therefore, the realization of clear and real-time imaging for tracking mitochondria is of profound significance. Here, we present a mitochondria-targeting fluorescent probe, N(CH2)3-PD-NEt, for the real-time fluorescence imaging of mitochondria in living cells. Using the probe, the fluorescence changes of mitochondria stimulated by different drugs were successfully observed by fluorescence imaging. In addition, the dynamic processes of mitochondria and lysosomes during apoptosis were also explored. Importantly, we observed several novel dynamic interaction patterns between mitochondria and lysosomes. Among them, the most prominent pattern involved the noncontact movements of two lysosomes, that is, one lysosome gradually approached the other lysosome over time, eventually coming into contact and merging with it while gradually combining with mitochondria to form new mitochondria. Notably, the protrusions of the mitochondria became increasingly evident during this process. Meanwhile, we successfully observed the dynamic changes of mitochondria with SIM super-resolution imaging. The study provides promising help for the in-depth study of the dynamic processes of mitochondrial physiology and pathology and the study of the interactions between organelles.
Collapse
Affiliation(s)
- Guofang Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hua Zheng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Langdi Zhang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
32
|
Li K, Wang Y, Li Y, Shi W, Yan J. Development of BODIPY-based fluorescent probes for imaging Aβ aggregates and lipid droplet viscosity. Talanta 2024; 277:126362. [PMID: 38843773 DOI: 10.1016/j.talanta.2024.126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease (AD), gradually recognized as an untreatable neurodegenerative disorder, has been considered to be closely associated with Aβ plaques, which consist of β-amyloid protein (Aβ) and is one of the crucial pathological features of AD. There are no obvious symptoms in the initial phase of AD, and thus the therapeutic interventions are important for early diagnosis of AD. Moreover, recent researches have indicated that lipid droplets might serve as a potential ancillary biomarker, and its viscosity changes are closely associated to the pathological process of AD. Herein, two newly fluorescent probes 5QSZ and BQSZ have been developed and synthesized for identifying Aβ aggregates and detecting the viscosity of lipid droplet. After selectively binding to Aβ aggregates, 5QSZ and BQSZ exhibited linear and obvious fluorescence enhancements (32.58 and 36.70 folds), moderate affinity (Kd = 268.0 and 148.6 nM) and low detection limits (30.11 and 65.37 nM) in aqueous solutions. Further fluorescence staining of 5QSZ on brain tissue sections of APP/PS1 transgenic mouse exhibited the higher selectivity of 5QSZ towards Aβ aggregates locating at the core of the plaques. Furthermore, 5QSZ and BQSZ displayed strong linear fluorescence emission enhancements towards viscosity changes and would be utilized to monitor variation in cellular viscosity induced by LPS or monensin. These two probes were non-cytotoxic and showed good localization in lipid droplets. Therefore, 5QSZ and BQSZ could serve as potential bi-functional fluorescent probes to image Aβ aggregates and monitor the viscosity of lipid droplets, which have significant implications for the early diagnosis and progression of AD.
Collapse
Affiliation(s)
- Kaibo Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuxuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yanping Li
- School of Medicine, Foshan University, Foshan, 528225, PR China.
| | - Wenjing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
33
|
Fang S, Swamy KMK, Zan WY, Yoon J, Liu S. An excimer process induced a turn-on fluorescent probe for detection of ultra-low concentration of mercury ions. J Mater Chem B 2024; 12:8376-8382. [PMID: 39109420 DOI: 10.1039/d4tb00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The accumulation of mercury pollution in plants can induce severe injury to human beings. It is a great challenge to monitor ultra-low concentrations of mercury in complicated matrixes. In this study, we successfully developed a strategy via Hg2+-triggered naphthalene-based fluorescent probe 1, which formed excimer that subsequently emitted fluorescence for the successful detection of ultra-low concentrations of Hg2+. The coordination of N and S atoms with Hg2+ facilitated the formation of excimer from the naphthalene-conjugated planes that were in sufficiently close proximity. Suppression of CN bond rotation also induced the chelation-enhanced fluorescence (CHEF) effect, and the cumulative result of these effects was obvious fluorescent enhancement. Compared with probe 2, the other key factor for detection of Hg2+ is that the electrons of the hydroxyl group can easily transfer to a naphthalene moiety, resulting in an augmented π-electron density that enhanced the π-π stacking of the naphthalene-conjugated excimer. After detailed spectral studies and mechanism discussions, it was realized that probe 1 was able to detect ultra-low concentrations of Hg2+ in PBS buffer solution. The detection limit was calculated to be 1.98 nM. On account of the excellent performances, the probe was successfully applied in monitoring Hg2+ in water and pea sprouts with the potential for application as an advanced warning of contamination.
Collapse
Affiliation(s)
- Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Wen-Yan Zan
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
34
|
Qian M, Ye Y, Ren TB, Xiong B, Yuan L, Zhang XB. Cancer-Targeting and Viscosity-Activatable Near-Infrared Fluorescent Probe for Precise Cancer Cell Imaging. Anal Chem 2024; 96:13447-13454. [PMID: 39119849 DOI: 10.1021/acs.analchem.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Small-molecule fluorescent probes have emerged as potential tools for cancer cell imaging-based diagnostic and therapeutic applications, but their limited selectivity and poor imaging contrast hinder their broad applications. To address these problems, we present the design and construction of a novel near-infrared (NIR) biotin-conjugated and viscosity-activatable fluorescent probe, named as QL-VB, for selective recognition and imaging of cancer cells. The designed probe exhibited a NIR emission at 680 nm, with a substantial Stokes shift of 100 nm and remarkably sensitive responses toward viscosity changes in solution. Importantly, QL-VB provided an evidently enhanced signal-to-noise ratio (SNR: 6.2) for the discrimination of cancer cells/normal cells, as compared with the control probe without biotin conjugation (SNR: 1.8). Moreover, we validated the capability of QL-VB for dynamic monitoring of stimulated viscosity changes within cancer cells and employed QL-VB for distinguishing breast cancer tissues from normal tissues in live mice with improved accuracy (SNR: 2.5) in comparison with the control probe (SNR: 1.8). All these findings indicated that the cancer-targeting and viscosity-activatable NIR fluorescent probe not only enables the mechanistic investigations of mitochondrial viscosity alterations within cancer cells but also holds the potential as a robust tool for cancer cell imaging-based applications.
Collapse
Affiliation(s)
- Ming Qian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
35
|
Gao Y, Zhang X, Wang X, Sun R, Li Y, Li J, Quan W, Yao Y, Hou Y, Li D, Sun Z. The clinical value of rapidly detecting urinary exosomal lncRNA RMRP in bladder cancer with an RT-RAA-CRISPR/Cas12a method. Clin Chim Acta 2024; 562:119855. [PMID: 38981565 DOI: 10.1016/j.cca.2024.119855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND AIMS Bladder cancer (BCa) is a highly aggressive malignancy of the urinary system. Timely detection is imperative for enhancing BCa patient prognosis. MATERIALS AND METHODS This study introduces a novel approach for detecting long non-coding RNA (lncRNA) Mitochondrial RNA Processing Endoribonuclease (RMRP) in urine exosomes from BCa patients using the reverse transcription recombinase-aided amplification (RT-RAA) and clustered regularly interspaced short palindromic repeats and associated Cas12a proteins (CRISPR/Cas12a) technique. Various statistical methods were used to evaluate its diagnostic value for BCa. RESULTS The specificity of urine exosomal RMRP detection for BCa diagnosis was enhanced by using RT-RAA combined with CRISPR/Cas12a. The testing process duration was reduced to 30 min, which supports rapid detection. Moreover, this approach allows the identification of target signals in real-time using blue light, facilitating immediate detection. In clinical sample analysis, this methodology exhibited a high level of diagnostic efficacy. This was evidenced by larger area under the curve values with receiver operating characteristic curve analysis compared with using traditional RT-qPCR methods, indicating superior diagnostic accuracy and sensitivity. Furthermore, the combined analysis of RMRP expression in urine exosomes detected by RT-RAA-CRISPR/Cas12a and NMP-22 expression may further enhance diagnostic accuracy. CONCLUSIONS The RT-RAA-CRISPR/Cas12a technology is a swift, sensitive, and uncomplicated method for nucleic acid detection. Because of its convenient and non-invasive sampling approach, user-friendly operation, and reproducibility, this technology is very promising for automated detection and holds favorable application possibilities within clinical environments.
Collapse
Affiliation(s)
- Yuting Gao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Xueru Zhang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Xuanlin Wang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Ruixin Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yaran Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Jing Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yiwen Yao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yanqiang Hou
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, PR China.
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| | - Zujun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| |
Collapse
|
36
|
Li B, Bian C, Yang L, Zhu Y, Li Z, Yu M. Unveiling Cellular Microenvironments with a Near-Infrared Fluorescent Sensor: A Dual-Edge Tool for Cancer Detection and Drug Screening. Anal Chem 2024. [PMID: 39148361 DOI: 10.1021/acs.analchem.4c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mitochondria and lysosomes are pivotal intracellular organelles, and the injury or dysfunction of these organelles can trigger a range of pathological processes. Early diagnosis and treatment of cancer are of paramount importance due to cancer's status as a leading health threat. This study introduces a novel fluorescent probe, BDHV, for detecting mitochondrial and lysosomal viscosity and pH abnormalities in tumors, facilitating early cancer detection and screening of anticancer drugs. Under acidic conditions, the red fluorescence of the probe gradually increases with increasing viscosity. Conversely, in alkaline environments, an increase in viscosity leads to a decrease in green fluorescence and an increase in red fluorescence. The inclusion of a benzothiazole group endows BDHV with strong dual-targeting capability for mitochondria and lysosomes and without being affected by the mitochondrial membrane potential. Most notably, BDHV has potential applications for early cancer diagnosis and in effectively assessing the efficacy of various anticancer drugs.
Collapse
Affiliation(s)
- Bin Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chenchen Bian
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yanxi Zhu
- Linyi Key Laboratory of Nano Medicine, Linyi People's Hospital, Linyi 276000, China
| | - Zhanxian Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
37
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
38
|
Zhou Y, Zheng J, Wu H, Yang Y, Han H. A novel toolbox to record CLE peptide signaling. FRONTIERS IN PLANT SCIENCE 2024; 15:1468763. [PMID: 39206038 PMCID: PMC11349659 DOI: 10.3389/fpls.2024.1468763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Yong Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Youxin Yang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
39
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
40
|
Jiang Z, Dai X, Zhou L, Yang Z, Yu F, Kong X. Development of a polarity-sensitive ratiometric fluorescent probe based on the intramolecular reaction of spiro-oxazolidine and its applications for in situ visualizing the fluctuations of polarity during ER stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124337. [PMID: 38676988 DOI: 10.1016/j.saa.2024.124337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Polarity is a vital element in endoplasmic reticulum (ER) microenvironment, and its variation is closely related to many physiological and pathological activities of ER, so it is necessary to trace fluctuations of polarity in ER. However, most of fluorescent probes for detecting polarity dependent on the changes of single emission, which could be affected by many factors and cause false signals. Ratiometric fluorescent probe with "built-in calibration" can effectively avoid detection errors. Here, we have designed a ratiometric fluorescent probe HM for monitoring the ER polarity based on the intramolecular reaction of spiro-oxazolidine. It forms ring open/closed isomers driven by polarity to afford ratiometric sensing. Probe HM have manifested its ratiometric responses to polarity in spectroscopic results, which could offer much more precise information for the changes of polarity in living cells with the internal built-in correction. It also showed large emission shift ( 133 nm), high selectivity and photo-stability. In biological imaging, HM could selectively accumulate in ER with high photo-stability. Importantly, HM has ability for in situ tracing the changes of ER polarity with ratiometric behavior during the ER stress process with the stimulation of tunicamycin, dithiothreitol and hypoxia, suggesting that HM is an effective molecule tool for monitoring the variations of ER polarity.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Xiaoyu Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Zheng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Faqi Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
41
|
Li Y, Wang Y, Li Y, Shi W, Yan J. Construction and evaluation of near-infrared fluorescent probes for imaging lipid droplet and lysosomal viscosity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124356. [PMID: 38678840 DOI: 10.1016/j.saa.2024.124356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microenvironmental viscosity is a crucial parameter for biological systems, and its abnormal fluctuations are closely associated with various functional disorders and diseases. However, it is still important and urgent to develop improved near-infrared fluorescent probes for micro-viscosity with dual-organelle targeting properties, low background noise, and high sensitivity. Herein, two BODIPY-based small-molecule fluorescent probes were designed and synthesized, which were explored for their viscosity- and polarity-responsive properties, and were further applied to imaging sub-cellular viscosity in living cells. Interestingly, BSZ-Ph and BSZ-R displayed near-infrared fluorescence (more than 650 nm) and were sensitive to environmental viscosity and polarity due to the introduction of a benzothiazole at the 2-position and electron-rich aniline groups at the 5-position of the BODIPY core, respectively. The fluorescence intensity increased exponentially with the viscosity changes. Furthermore, the probe BSZ-Ph could successfully target lipid droplets and image cellular viscosity changes by treating lipopolysaccharides (LPS) and nystatin. Comparatively, the probe BSZ-R could successfully target the dual organelles of lipid droplets and lysosomes and image cellular viscosity changes by treating LPS and monensin. Therefore, in this work, we reported two new BODIPY-based near-infrared fluorescent probes, BSZ-Ph and BSZ-R, for cellular viscosity imaging, which could target lipid droplets and the dual organelles of lysosomes and lipid droplets, respectively. The study could provide a reference for the future development of fluorescent probes for viscosity in lipid droplets and lysosomes.
Collapse
Affiliation(s)
- Yuming Li
- MOE International Joint Research Laboratory On Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yuxuan Wang
- MOE International Joint Research Laboratory On Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yanping Li
- School of Medicine, Foshan University, Foshan 528225, PR China.
| | - Wenjing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory On Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
42
|
Lin YM, Shi JY, Yang GG. Endoplasmic reticulum targeted fluorescent probe for real-time monitoring the viscosity changes induced by calcium homeostasis disruption. Talanta 2024; 275:126173. [PMID: 38692051 DOI: 10.1016/j.talanta.2024.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
The endoplasmic reticulum (ER) acts as the major storage site for calcium ions, which are messenger ions for intracellular signaling. Disruption of calcium ion homeostasis can significantly affect the viscosity, polarity and pH of the ER. However, it is still unclear the relationship between the viscosity changes in ER and the imbalance of calcium ion homeostasis. Herein, we developed a novel fluorescent probe, named TPA, for monitoring viscosity changes that specifically targets the endoplasmic reticulum rather than mitochondria or lysosomes. TPA probe displayed good stability, as well as high responsiveness and selectivity to viscosity. The fluorescence intensity of TPA was significantly enhanced with the increased concentration or incubation time of the stimulating agents(i.e., tunicamycin), showing high responsiveness to the viscosity changes in ER. Furthermore, the TPA probe successfully demonstrated that an increase in intracellular calcium ion concentration leads to an increase in ER viscosity, whereas a decrease in calcium ion concentration leads to a decrease viscosity in ER. Both in vitro and in vivo experiments demonstrated that TPA probe successfully detected the viscosity changes in ER, especially the effects of calcium ion homeostasis disruption on ER. Overall, the TPA probe represents an efficient method for studying the relationship between calcium ion homeostasis and ER viscosity.
Collapse
Affiliation(s)
- Ya Meng Lin
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Jia Yi Shi
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Gang-Gang Yang
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China.
| |
Collapse
|
43
|
Zhao Z, Jin W, Wu M, Lin Q, Duan Y. A dual-labeling fluorescent probe to track lysosomal polarity and endoplasmic reticulum dynamics during ferroptosis. Chem Commun (Camb) 2024; 60:7773-7776. [PMID: 38976312 DOI: 10.1039/d4cc02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A polarity-sensitive probe was developed to simultaneously label lysosomes and endoplasmic reticulum (ER) via its dansylamide and rhodamine fluorescence, respectively, enabling ratiometric polarity detection and stable dual-labeling. The fragmented ER network and increased lysosomal polarity during ferroptosis were revealed, which facilitates the understanding of ferroptotic mechanisms.
Collapse
Affiliation(s)
- Zhao Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Qingyu Lin
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, China.
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
44
|
Xu S, Yan KC, Xu ZH, Wang Y, James TD. Fluorescent probes for targeting the Golgi apparatus: design strategies and applications. Chem Soc Rev 2024; 53:7590-7631. [PMID: 38904177 DOI: 10.1039/d3cs00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Golgi apparatus is an essential organelle constructed by the stacking of flattened vesicles, that is widely distributed in eukaryotic cells and is dynamically regulated during cell cycles. It is a central station which is responsible for collecting, processing, sorting, transporting, and secreting some important proteins/enzymes from the endoplasmic reticulum to intra- and extra-cellular destinations. Golgi-specific fluorescent probes provide powerful non-invasive tools for the real-time and in situ visualization of the temporal and spatial fluctuations of bioactive species. Over recent years, more and more Golgi-targeting probes have been developed, which are essential for the evaluation of diseases including cancer. However, when compared with systems that target other important organelles (e.g. lysosomes and mitochondria), Golgi-targeting strategies are still in their infancy, therefore it is important to develop more Golgi-targeting probes. This review systematically summarizes the currently reported Golgi-specific fluorescent probes, and highlights the design strategies, mechanisms, and biological uses of these probes, we have structured the review based on the different targeting groups. In addition, we highlight the future challenges and opportunities in the development of Golgi-specific imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Silin Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, P. R. China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
45
|
Chen Z, Yue L, Guo Y, Huang H, Lin W. A fluorescence probe for imaging lipid droplet and visualization of diabetes-related polarity variations. Anal Chim Acta 2024; 1312:342748. [PMID: 38834262 DOI: 10.1016/j.aca.2024.342748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.
Collapse
Affiliation(s)
- Zehua Chen
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nan-ning, Guangxi, 530004, PR China
| | - Lizhou Yue
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nan-ning, Guangxi, 530004, PR China
| | - Yingxin Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nan-ning, Guangxi, 530004, PR China
| | - Huawei Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nan-ning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nan-ning, Guangxi, 530004, PR China.
| |
Collapse
|
46
|
Li T, Dai C, Lu Q, Tian M. A polarity-responsive lysosomes-nucleus translocation probe for the dual-emissive visualization of cell apoptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124272. [PMID: 38603960 DOI: 10.1016/j.saa.2024.124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Visualization of cell apoptosis is a critical task playing central roles in the fundamental studies in biology, pathology, and biomedicine. Dual-emissive fluorescent probes are desired molecular tools for study on apoptosis, which however were rarely reported. Herein, utilizing the polarity differences between lysosomes and nucleus, a translocation type of fluorescent probe (NA-S) was developed for the dual-color visualization of cell apoptosis. NA-S was designed to be polarity sensitive, bearing alkalescence group, and with DNA affinity. In living cells, NA-S targeted the lysosomes to give blue fluorescence, which translocated into the nucleus during cell apoptosis to give green emission. Thereby, the cell apoptosis could be visualized with NA-S in dual-emissive manner. With the unique probe, the cell apoptosis induced by oxidative stress, UV irradiation, rotenone, colchicine, and paclitaxel have been successfully visualized.
Collapse
Affiliation(s)
- Tianyu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chun Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
47
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
48
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
49
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|