1
|
Song X, Li X, Wang Y, Wu YJ. Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice. Arch Toxicol 2025; 99:1237-1252. [PMID: 39714733 DOI: 10.1007/s00204-024-03934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF. In this study, we explored if the intestinal microbial community is involved in regulating the toxicity of CPF. Adult mice were continuously exposed to CPF (4 mg/kg body weight /day) for 10 weeks with or without a 2-week pretreatment of antibiotics to change the ecological structure of intestinal microorganisms in advance. Pathological changes in the liver and kidneys were examined and the biochemical parameters in serum for liver and kidney functions were detected, and changes in the intestinal microbial community of the mice were measured. The results showed that subchronic exposure to low-dose CPF caused an ecological imbalance in the intestinal flora and caused pathological damage to the liver and kidneys. Serum biochemical indicators for liver function such as alanine aminotransferase and total bile acids contents and renal biochemical indicators such as urea nitrogen and creatinine were disrupted. Changes in intestinal microbial community structure by using antibiotics in advance can effectively alleviate the pathological and functional damage to the liver and kidneys caused by CPF exposure. Further analysis showed that intestinal microorganisms such as Saccharibacteria (TM7), Odoribacter, Enterococcus and AF12 genera may be involved in managing the toxicity of CPF. Together, our results indicated that long-term low-dose CPF exposure could induce hepatotoxicity and nephrotoxicity, and liver and kidney damage may be mitigated by altering the ecology of intestinal microorganisms.
Collapse
Affiliation(s)
- Xiaohua Song
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
2
|
Jacob MM, Ponnuchamy M, Kapoor A, Sivaraman P. Achieving up to 95% removal efficiency of chlorpyrifos pesticide using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column. ENVIRONMENTAL RESEARCH 2025; 269:120902. [PMID: 39848511 DOI: 10.1016/j.envres.2025.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Pesticide contamination in wastewater poses a significant environmental challenge, driven by extensive agricultural use. This study evaluates the removal of chlorpyrifos (CPS) using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column, achieving a remarkable 95-98% removal efficiency. Compared to conventional adsorbents like activated carbon, which typically show CPS adsorption capacities ranging from 50 to 70 mg g⁻1 under similar conditions, the biochar alginate beads demonstrate better performance with a sorption capacity of 91.93 mg g⁻1. Fixed-bed column (FBC) experiments demonstrated optimal CPS removal at 10 ppm concentration, 5 cm bed height and a flow rate of 25 mL min⁻1. The Yoon-Nelson Model exhibited the best fit, with high correlation coefficients (R2 = 0.80 to 0.98), low Akaike's Information Criterion (AIC) and Sum of Square Error (SSE) values, confirming its predictive accuracy. The model predicted a CPS removal efficiency of 95-98% and a sorption capacity of 91.93 mg g⁻1. The immobilization process using sodium alginate not only provided structural integrity to the biochar alginate beads but also improved their surface area and functional groups, significantly enhancing the adsorption dynamics. An inverse relationship between breakthrough time (τcal) and flow rate was observed, indicating improved adsorption dynamics at higher flow rates. SEM analysis revealed a porous biochar structure with significant surface area (131.09 m2/g) and pore volume (0.165 cm³/g), contributing to its high adsorption efficiency. XRD analysis indicated the partial crystalline nature of the biochar alginate beads, influenced by the presence of alginate. Additionally, breakthrough curves suggested a rapid initial uptake followed by a plateau, highlighting the material's fast adsorption kinetics. Biochar alginate beads for pesticide adsorption demonstrated good results in the scale-up investigation. This research demonstrates the potential of biochar-based adsorbents for efficient and scalable pesticide remediation in contaminated water systems, underscoring the unique contributions of alginate-immobilized biochar in enhancing performance.
Collapse
Affiliation(s)
- Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India
| | - Prabhakar Sivaraman
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
3
|
Marchesi S, Econdi S, Paul G, Carniato F, Marchese L, Guidotti M, Bisio C. Nb(V)-containing saponite: A versatile clay for the catalytic degradation of the hazardous organophosphorus pesticide paraoxon under very mild conditions. Heliyon 2024; 10:e39898. [PMID: 39553565 PMCID: PMC11564950 DOI: 10.1016/j.heliyon.2024.e39898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
A synthetic saponite clay containing structural Nb(V) metal centres (NbSAP) was investigated in the abatement of paraoxon-ethyl, an anti-cholinergic organophosphorus pesticide, under mild conditions (neutral pH, room temperature and ambient pressure) in heterogenous phase, without additional basic additives. The material was selected according to its high surface acidity and ease of preparation through a one-step hydrothermal synthesis. The presence of Nb(V) ions played a crucial role in efficiently catalysing the degradation of aggressive chemical substrates. A niobium(V) oxide with very low surface acidity was also tested as a reference material. The study employed a multi-technique approach to monitor the pesticide degradation pathway and by-products formed during abatement experiments in polar non-protic and aqueous solvents. Notably, in water, the concentration of paraoxon-ethyl significantly decreased by 82 % within the first hour of contact with the clay. Additionally, NbSAP demonstrated a good performance after three repeated catalytic cycles and subsequent reactivation.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Stefano Econdi
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Matteo Guidotti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
| |
Collapse
|
4
|
Lombardero LR, Truchet DM, Medici SK, Mendieta JR, Pérez DJ, Menone ML. Assessment of the Potential Phytotoxicity of Chlorpyrifos in the Wetland Macrophyte Bidens laevis (L.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:45. [PMID: 39362965 DOI: 10.1007/s00128-024-03957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Chlorpyrifos (CPF) has been used worldwide, but its possible negative effects on macrophytes have been scarcely studied. The main goal of the present work was to assess the potential phytotoxic effects of CPF on different stages (seed and seedling) of the wetland macrophyte Bidens laevis. During the germination of seeds, stimulation of radicle growth at low concentrations of CPF (10 µg/L) and inhibition of its elongation at 80 µg/L CPF were observed. In seedlings, concentrations ≤ 160 µg/L CPF did not exhibit adverse effects on growth after 7 days of exposure, despite the decrease of photosynthetic pigments and carotenoids observed at 40 µg/L CPF compared to the control. Environmentally relevant concentrations of CPF altered neither oxidative stress biomarkers nor pigment contents in seedlings exposed for 48 h, suggesting CPF would be non-toxic to B. laevis in natural scenarios.
Collapse
Affiliation(s)
- Lucas R Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Daniela M Truchet
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Sandra K Medici
- Fares Taie Instituto de Análisis Magallanes, 3019, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Julieta R Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Débora J Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina.
| |
Collapse
|
5
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
6
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
7
|
Jacob MM, Ponnuchamy M, Kapoor A, Sivaraman P. Adsorptive membrane separation for eco-friendly decontamination of chlorpyrifos via biochar-impregnated cellulose acetate mixed matrix membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56314-56331. [PMID: 39271613 DOI: 10.1007/s11356-024-34912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In this work, the phase inversion approach is used to synthesize a blended mixed matrix membrane from cellulose acetate polymer and sugarcane bagasse biochar. The experiments were carried out to estimate the extent of chlorpyrifos (CPS) pesticide removal. The results showed that the removal rate was more than 99% in making the filtered water suitable enough for domestic use. The physical and functional characteristics of the membranes, such as permeability, and contact angle were identified. The changes in the membrane characteristics were observed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction both before and after the experimental trials. Experiments were conducted to assess not only the rejection characteristics of CPS, as a function feed concentration, but also the effect co-ions on the rejection used to analyze the composition both before and after filtration. The effects of initial CPS concentration, biochar loading, and co-ions on the membrane were investigated. The membranes showed contact angles between 70° and 97° and a permeability between 0.25 × 1010 m Pa-1 s-1 and 0.31 × 1010 m Pa-1 s-1. The effective removal of CPS from the contaminated aqueous stream was attributed to a combination of adsorptive uptake and membrane-based separation. CPS was found to get adsorbed onto the membrane matrix through an intraparticle diffusion mechanism along with an irreversible monolayer adsorption. The membrane-solute adsorptive interaction was represented by Langmuir isotherm and intraparticle diffusion models with a maximum adsorption capacity of 192.3 mg g-1. The findings indicated the efficacy of biochar-cellulose acetate mixed matrix membrane for sustainable and eco-friendly treatment of chlorpyrifos contaminated water.
Collapse
Affiliation(s)
- Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, 208 002, Kanpur, UP, India
| | - Prabhakar Sivaraman
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India
| |
Collapse
|
8
|
Yadav R, Pandey V, Yadav SK, Khare P. Comparative evaluation of biodegradation of chlorpyrifos by various bacterial strains: Kinetics and pathway elucidation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105989. [PMID: 39084792 DOI: 10.1016/j.pestbp.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
The present study focused on the isolation and identification of CP and TCP bacteria degrading bacteria from the rhizospheric zone of aromatic grasses i.e. palmarosa (Cymbopogon martinii (Roxb. Wats), lemongrass (Cymbopogon flexuosus) and vetiver (Chrysopogon zizaniodes (L.) Nash.). So that these isolates alone or in combination with the vegetation of aromatic grasses will be used to clean up CP-contaminated soils. The study also explored enzymatic activities, CO2 release, dechlorination potential, and degradation pathways of bacterial strains. A total of 53 CP-tolerant bacteria were isolated on their physical characteristics and their ability to degrade CP. The ten highly CP-tolerant isolates were Pseudomonas aeruginosa Pa608, three strains of Pseudomonas hibiscicola R4-721 from different rhizosphere, Enterococcus lectis PP2a, Pseudomonas monteilii NBFPALD_RAS131, Enterobacter cloacae L3, Stenotrophomonas maltophilia PEG-390, Escherichia coli ABRL132, and Escherichia coli O104:H4 strain FWSEC0009. The CO2 emission and phosphatase activities of the isolates varied from 3.1 to 8.6 μmol mL-1 and 12.3 to 31 μmol PNP h-1, respectively in the CP medium. The degradation kinetics of CP by these isolates followed a one-phase decay model with a dissipation rate ranging from 0.048 to 0.41 d-1 and a half-life of 1.7-14.3 days. The growth data fitted in the SGompertz equation showed a growth rate (K) of 0.21 ± 0.28 to 0.91 ± 0.33 d-1. The P. monteilii strain had a faster growth rate while E. coli ABRL132 had slower growth among the isolates. The rate of TCP accumulation calculated by the SGompertz equation was 0.21 ± 0.02 to 1.18 ± 0.19 d-1. The Pseudomonas monteilii showed a lower accumulation rate of TCP. Among these, four highly effective isolates were Pseudomonas aeruginosa Pa608, Pseudomonas monteilii NBFPALD_RAS131, Stenotrophomonas maltophilia PEG-390, and Pseudomonas hibiscicola R4-721. Illustrations of the degradation pathways indicated that the difference in metabolic pathways of each isolate was associated with their growth rate, phosphatase, dehydrogenase, oxidase, and dechlorination activities.
Collapse
Affiliation(s)
- Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Versha Pandey
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Sifuna D, Omwoma S, Lagat S, Okello F, Nelson FA, Pembere A. Theory guided engineering of zeolite adsorbents for acaricide residue adsorption from the environment. J Mol Model 2024; 30:208. [PMID: 38877313 DOI: 10.1007/s00894-024-06004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
CONTEXT Zeolites have attracted attention for their potential in adsorbing environmental contaminants. However, contaminants, such as acaricides used extensively in livestock production to control ticks and mites, have received limited exploration regarding their adsorption onto zeolite surfaces. This study aimed to identify the most appropriate zeolite frameworks for the adsorption of acaricide residues, deduce the mechanism underlying the adsorption process, and evaluate the impact of surface modification on the adsorption capabilities of zeolites. METHODS Grand Canonical Monte Carlo (GCMC) was used to screen the entire zeolite database to analyze their adsorption properties, where the cloverite zeolite framework (CLO) exhibits the highest adsorption capacity (percentage weight, 54%). Machine learning was employed to rank structural feature importance on adsorption. Density and helium void fraction appeared to be the most important structural features. Thus, engineering these features is of utmost significance in harvesting the desired acaricides. The second step involved engineering the structural and electronic properties of the shortlisted zeolite frameworks via cation substitution with suitable atoms. DFT calculations involving natural bond orbital (NBO) analysis and quantum theory of atoms in molecules (QTAIM) have been done to understand the influence of cation substitution on the electronic structure.
Collapse
Affiliation(s)
- Douglas Sifuna
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Silas Lagat
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Felix Okello
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Favour A Nelson
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
10
|
Pakar NP, Rehman FU, Mehmood S, Ali S, Zainab N, Munis MFH, Chaudhary HJ. Microbial detoxification of chlorpyrifos, profenofos, monocrotophos, and dimethoate by a multifaceted rhizospheric Bacillus cereus strain PM38 and its potential for the growth promotion in cotton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39714-39734. [PMID: 38831144 DOI: 10.1007/s11356-024-33804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Bacillus genera, especially among rhizobacteria, are known for their ability to promote plant growth and their effectiveness in alleviating several stress conditions. This study aimed to utilize indigenous Bacillus cereus PM38 to degrade four organophosphate pesticides (OPs) such as chlorpyrifos (CP), profenofos (PF), monocrotophos (MCP), and dimethoate (DMT) to mitigate the adverse effects of these pesticides on cotton crop growth. Strain PM38 exhibited distinct characteristics that set it apart from other Bacillus species. These include the production of extracellular enzymes, hydrogen cyanide, exopolysaccharides, Indol-3-acetic acid (166.8 μg/mL), siderophores (47.3 μg/mL), 1-aminocyclopropane-1-carboxylate deaminase activity (32.4 μg/mL), and phosphorus solubilization (162.9 μg/mL), all observed at higher concentrations. This strain has also shown tolerance to salinity (1200 mM), drought (20% PEG-6000), and copper and cadmium (1200 mg/L). The amplification of multi-stress-responsive genes, such as acdS, ituC, czcD, nifH, sfp, and pqqE, further confirmed the plant growth regulation and abiotic stress tolerance capability in strain PM38. Following the high-performance liquid chromatography (HPLC) analysis, the results showed striking compatibility with the first kinetic model. Strain PM38 efficiently degraded CP (98.4%), PF (99.7%), MCP (100%), and DMT (95.5%) at a concentration of 300 ppm over 48 h at 35 °C under optimum pH conditions, showing high coefficients of determination (R2) of 0.974, 0.967, 0.992, and 0.972, respectively. The Fourier transform infrared spectroscopy (FTIR) analysis and the presence of opd, mpd, and opdA genes in the strain PM38 further supported the potential to degrade OPs. In addition, inoculating cotton seedlings with PM38 improved root length under stressful conditions. Inoculation of strain PM38 reduces stress by minimizing proline, thiobarbituric acid-reactive compounds, and electrolyte leakage. The strain PM38 has the potential to be a good multi-stress-tolerant option for a biological pest control agent capable of improving global food security and managing contaminated sites.
Collapse
Affiliation(s)
- Najeeba Parre Pakar
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, Hobart, TAS, Australia
| | - Shehzad Mehmood
- Department of Biotechnology, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Sarfaraz Ali
- Department of Virology, National Institute of Health, Islamabad, Pakistan
| | - Nida Zainab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | | |
Collapse
|
11
|
Tang S, Li Y, Zhu Z, Wang Y, Peng Y, Zhang J, Nong P, Pan S, Fan Y, Zhu Y. Biotransformation of Chlorpyrifos Shewanella oneidensis MR-1 in the Presence of Goethite: Experimental Optimization and Degradation Products. TOXICS 2024; 12:402. [PMID: 38922082 PMCID: PMC11209498 DOI: 10.3390/toxics12060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.
Collapse
Affiliation(s)
- Shen Tang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yanhong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
| | - Yaru Wang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yuqing Peng
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Jing Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Peijie Nong
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Shufen Pan
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;
| |
Collapse
|
12
|
Zhang X, Li Z. Harmonizing pesticides environmental quality standards: A fate-pathway perspective. CHEMOSPHERE 2024; 350:141063. [PMID: 38159736 DOI: 10.1016/j.chemosphere.2023.141063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Regulatory agencies worldwide set pesticide environmental quality standards, which are proposed independently in each dependent environmental media rather than across the complete fate route. Thus, lacking the fate-pathway perspective in defining pesticide environmental quality standards might cause undesirable pesticide residue from the upper compartment (e.g., soil) to the lower compartment (e.g., water). This study aimed to harmonize the self-consistency of pesticide environmental quality standards across environmental media via the fate-pathway analysis. The introduced qualitative and quantitative rules defined environmental quality standards of pesticides in six major environmental scenarios in the soil and water system based on related regulatory objectives. Fate factors simulated via USEtox were used to create a preliminary quantitative link between theoretical maximum legal masses of pesticides across environmental compartments. Using chlorpyrifos and 2,4-D as examples, their standard values were comparatively assessed in selected environmental media in China and the United States. According to the investigative findings, missing the respective environmental quality standards of pesticides in the agricultural soil could significantly influence the implementation of those in freshwater. Taking a fate-pathway perspective, the self-consistency test highlighted that defining pesticide environmental quality standards for freshwater was the most challenging task, as the freshwater compartment typically comprises multiple lower environmental compartments with diverse regulatory objectives. Overall, this theoretical study has the potential to illuminate the harmonization of pesticide environmental quality standards throughout the entire environmental fate pathway, ultimately leading to improved regulatory efficiency and communication. Future research should focus on risk-based model implementation, regulatory response evaluation, and legal limit interpretation to better integrate environmental pesticide management under a variety of regulatory goals.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
13
|
Lamnoi S, Boonupara T, Sumitsawan S, Vongruang P, Prapamontol T, Udomkun P, Kajitvichyanukul P. Unveiling the Aftermath: Exploring Residue Profiles of Insecticides, Herbicides, and Fungicides in Rice Straw, Soils, and Air Post-Mixed Pesticide-Contaminated Biomass Burning. TOXICS 2024; 12:86. [PMID: 38251041 PMCID: PMC10819870 DOI: 10.3390/toxics12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health.
Collapse
Affiliation(s)
- Suteekan Lamnoi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Patipat Vongruang
- Environmental Health, School of Public Health, University of Phayao, Phayao 56000, Thailand;
| | - Tippawan Prapamontol
- Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| |
Collapse
|
14
|
Farkhondeh T, Zardast M, Rajabi S, Abdollahi-Karizno M, Roshanravan B, Havangi J, Aschner M, Samarghandian S. Neuroprotective Effects of Curcumin against Chronic Chlorpyrifos- Induced Oxidative Damage in Rat Brain Tissue. Curr Aging Sci 2024; 17:205-209. [PMID: 38347791 DOI: 10.2174/0118746098244014240119112706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chlorpyrifos (CPF) is an organophosphate pesticide that inhibits acetylcholinesterase (AChE) activity. Investigations have also focused on its neurotoxicity, which is independent of AChE inhibition. Here, we evaluated the effect of CPF on oxidative indices in the brain tissue and explored the protective effect of curcumin (Cur) against its toxicity. METHODS Forty male Wistar rats were divided into five groups, each consisting of eight rats (n = 8) per group. Animals were administrated by oral gavage for 90 days with the following treatments: control (C), CPF, CPF + CUR 25 mg/kg, CPF + CUR50, and CPF + cur 100 received olive oil, CPF, CPF plus 25 mg/kg of CUR, CPF plus 50 mg/kg of CUR, and CPF plus 100 mg/kg of CUR, respectively. After anesthetization, animal brain tissues were obtained for assessment of oxidative stress indices. RESULTS The concentration of MDA significantly increased in the brains of the CPF group as compared to the control group (p < 0.01). Also, a significant decrease in MDA concentrations was observed in the brains of rats in the CPF + Cur 100 group compared to the CPF group (p < 0.05). A significant decrease was noted in the GSH concentration in the brains of the CPF group compared to the control group (p < 0.05). Treatment with Cur at 100 mg/kg exhibited a significant increase in GSH concentrations in the brains of the CPF-exposed group compared to the CPF group without Cur administration (p < 0.05). The concentration of NO exhibited a significant increase in the brains of the CPF group when compared to the control group (p < 0.05). Also, a significant decrease in NO concentration was observed in the brain tissue of the CPF + Cur 100 group compared to the CPF group (p < 0.05). CONCLUSION Our data establish that chronic exposure to CPF induced oxidative stress in brain tissue, which was reversed by CUR administration. Additional experimental and clinical investigations are needed to validate the efficacy of CUR as a potential antidote for CPF poisoning.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Rajabi
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Jalal Havangi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Kumar P, Arshad M, Gacem A, Soni S, Singh S, Kumar M, Yadav VK, Tariq M, Kumar R, Shah D, Wanale SG, Al Mesfer MKM, Bhutto JK, Yadav KK. Insight into the environmental fate, hazard, detection, and sustainable degradation technologies of chlorpyrifos-an organophosphorus pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108347-108369. [PMID: 37755596 DOI: 10.1007/s11356-023-30049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Pesticides play a critical role in terms of agricultural output nowadays. On top of that, pesticides provide economic support to our farmers. However, the usage of pesticides has created a public health issue and environmental hazard. Chlorpyrifos (CPY), an organophosphate pesticide, is extensively applied as an insecticide, acaricide, and termiticide against pests in various applications. Environmental pollution has occurred because of the widespread usage of CPY, harming several ecosystems, including soil, sediment, water, air, and biogeochemical cycles. While residual levels in soil, water, vegetables, foodstuffs, and human fluids have been discovered, CPY has also been found in the sediment, soil, and water. The irrefutable pieces of evidence indicate that CPY exposure inhibits the choline esterase enzyme, which impairs the ability of the body to use choline. As a result, neurological, immunological, and psychological consequences are seen in people and the natural environment. Several research studies have been conducted worldwide to identify and develop CPY remediation approaches and its derivatives from the environment. Currently, many detoxification methods are available for pesticides, such as CPY. However, recent research has shown that the breakdown of CPY using bacteria is the most proficient, cost-effective, and sustainable. This current article aims to outline relevant research events, summarize the possible breakdown of CPY into various compounds, and discuss analytical summaries of current research findings on bacterial degradation of CPY and the potential degradation mechanism.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Mohd Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | | | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh, 462044, India.
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
16
|
Lyu R, Lei Y, Zhang C, Li G, Han R, Zou L. An ultra-sensitive photoelectrochemical sensor for chlorpyrifos detection based on a novel BiOI/TiO 2 n-n heterojunction. Anal Chim Acta 2023; 1275:341579. [PMID: 37524465 DOI: 10.1016/j.aca.2023.341579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Due to widespread application of chlorpyrifos for controlling pests in agriculture, the continuous accumulation of chlorpyrifos residue has caused serious environmental pollution.The detection of chlorpyrifos is of great significance for humans and environment because it can arise a series of diseases by inhibiting acetylcholinesterase (AChE) activity. Photoelectrochemical sensing, as an emerging sensing technology, has great potential in the detection of chlorpyrifos. It is urgent that find a suitable photoelectric sensing strategy to effectively monitor chlorpyrifos. Herein, an n-n heterojunction was constructed by uniformly immobilizing n-type 3DBiOI, which had loose porous structure composed of numerous small and thin nanosheets, on the surface of TiO2 with anatase/rutile (AR-TiO2) heterophase junction. Under light irradiation, the proposed BiOI/AR-TiO2 n-n heterojunction exhibited excellent optical absorption characteristics and photoelectrochemical activity. Additionally, the photoelectrochemical sensing platform demonstrated excellent analytical performance in monitoring chlorpyrifos. Under optimized conditions, it showed a wide detection range of 1 pg mL-1- 200 ng mL-1 and a detection limit (S/N = 3) as low as 0.24 pg mL-1, with superior selectivity and stability. The ultra-sensitivity and great specificity for detection of chlorpyrifos can be ascribed to chelation between Bi (Ⅲ) and C=N and P=S bonds in chlorpyrifos, which had been confirmed in this work. Meanwhile, the PEC sensor also had potential application value for monitoring chlorpyrifos in water samples, lettuce and pitaya, which the recoveries of samples ranged from 96.9% to 104.7% with a relative standard deviation (RSD) of 1.11%-5.93%. This sensor provided a novel idea for constructing heterojunctions with high photoelectric conversion efficiency and had a high application prospect for the detection of chlorpyrifos and other structural analogues.
Collapse
Affiliation(s)
- Ruili Lyu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yiting Lei
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
17
|
Wang B, Chen J, Wu S, Fang J, Li Q, Wang G. Reusable carboxylesterase immobilized in ZIF for efficient degradation of chlorpyrifos in enviromental water. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105519. [PMID: 37532333 DOI: 10.1016/j.pestbp.2023.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
The past few decades have witnessed biodegradation of pesticides as a significant method in remediation of the environment for its specificity, efficiency and biocompatibility. However, the tolerability and recyclability of the enzymes in pesticide degradation and the development of enzymes that biodegrad pesticides are still urgent problems to be solved so far. Herein, a novel hyper-thermostable and chlorpyrifos-hydrolyzing carboxylesterase EstC was immobilized by biomineralization using zeolitic imidazolate framework (ZIF), one of the metal-organic frameworks (MOFs) with highly diverse structure and porosity. Compared with free enzyme, EstC@ZIF with a cruciate flower-like morphology presented scarcely variation in catalytic efficiency and generally improved the tolerance to organic solvents or detergents. Furthermore, there was scarcely decrease in the catalytic efficiency of EstC@ZIF and it also showed good reusability with about 50% residual activity after 12 continuous uses. Notably, EstC@ZIF could be used in actual water environment with an excellent value of degradation rate of 90.27% in 120 min, and the degradation efficiency remained about 50% after 9 repetitions. The present strategy of immobilizing carboxylesterase to treat pesticide-contaminated water broadens the method of immobilized enzymes on MOFs, and envisions its recyclable applicability in globe environmental remediation.
Collapse
Affiliation(s)
- Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China.
| | - Jie Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Shuang Wu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Jinxin Fang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Quanfa Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
18
|
Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe 3O 4-bentonite as a versatile nanoadsorbent. Sci Rep 2023; 13:10764. [PMID: 37402768 DOI: 10.1038/s41598-023-38005-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The magnetic mesoporous hydrogel-based nanoadsornet was prepared by adding the ex situ prepared Fe3O4 magnetic nanoparticles (MNPs) and bentonite clay into the three-dimentional (3D) cross-linked pectin hydrogel substrate for the adsorption of organophosphorus chlorpyrifos (CPF) pesticide and crystal violet (CV) organic dye. Different analytical methods were utilized to confirm the structural features. Based on the obtained data, the zeta potential of the nanoadsorbent in deionized water with a pH of 7 was - 34.1 mV, and the surface area was measured to be 68.90 m2/g. The prepared hydrogel nanoadsorbent novelty owes to possessing a reactive functional group containing a heteroatom, a porous and cross-linked structure that aids convenient contaminants molecules diffusion and interactions between the nanoadsorbent and contaminants, viz., CPF and CV. The main driving forces in the adsorption by the Pectin hydrogel@Fe3O4-bentonite adsorbent are electrostatic and hydrogen-bond interactions, which resulted in a great adsorption capacity. To determine optimum adsorption conditions, effective factors on the adsorption capacity of the CV and CPF, including solution pH, adsorbent dosage, contact time, and initial concentration of pollutants, have been experimentally investigated. Thus, in optimum conditions, i.e., contact time (20 and 15 min), pH 7 and 8, adsorbent dosage (0.005 g), initial concentration (50 mg/L), T (298 K) for CPF and CV, respectively, the CPF and CV adsorption capacity were 833.333 mg/g and 909.091 mg/g. The prepared pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent presented high porosity, enhanced surface area, and numerous reactive sites and was prepared using inexpensive and available materials. Moreover, the Freundlich isotherm has described the adsorption procedure, and the pseudo-second-order model explained the adsorption kinetics. The prepared novel nanoadsorbent was magnetically isolated and reused for three successive adsorption-desorption runs without a specific reduction in the adsorption efficiency. Therefore, the pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent is a promising adsorption system for eliminating organophosphorus pesticides and organic dyes due to its remarkable adsorption capacity amounts.
Collapse
Affiliation(s)
- Paria Beigi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
19
|
Barzegarzadeh M, Amini-Fazl MS, Sohrabi N. Ultrasound-assisted adsorption of chlorpyrifos from aqueous solutions using magnetic chitosan/graphene quantum dot‑iron oxide nanocomposite hydrogel beads in batch adsorption column and fixed bed. Int J Biol Macromol 2023; 242:124587. [PMID: 37100318 DOI: 10.1016/j.ijbiomac.2023.124587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Chlorpyrifos is a hazardous material that pollutes the environment and also poses risks to human health. Thus, it is necessary to remove chlorpyrifos from aqueous media. In this study, chitosan-based hydrogel beads with different content of iron oxide-graphene quantum dots were synthesized and used for the ultrasonic-assisted removal of chlorpyrifos from wastewater. The results of batch adsorption experiments showed that among the hydrogel beads-based nanocomposites, the chitosan/graphene quantum dot‑iron oxide (10) indicated a higher adsorption efficiency of about 99.997 % at optimum conditions of the response surface method. Fitting the experimental equilibrium data to different models shows that the adsorption of chlorpyrifos is well described by the Jossens, Avrami, and double exponential models. Furthermore, for the first time, the study of the ultrasonic effect on the removal performance of chlorpyrifos showed that the ultrasonic-assisted removal of chlorpyrifos significantly reduces the equilibration time. It is expected that the ultrasonic-assisted removal strategy can be a new method to develop highly efficient adsorbents for rapid removal of pollutants in wastewater. Also, the results of the fixed bed adsorption column showed that the breakthrough time and exhausting time of chitosan/graphene quantum dot‑iron oxide (10) were equal to 485 and 1099 min, respectively. And finally, the adsorption-desorption study showed the successful reuse of adsorbent for chlorpyrifos adsorption in seven runs without a significant decrease in adsorption efficiency. Therefore, it can be said that the adsorbent has a high economic and functional potential for industrial applications.
Collapse
Affiliation(s)
- Mehdi Barzegarzadeh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Negin Sohrabi
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Paker NP, Mehmood S, Javed MT, Damalas CA, Rehman FU, Chaudhary HJ, Munir MZ, Malik M. Elucidating molecular characterization of chlorpyrifos and profenofos degrading distinct bacterial strains for enhancing seed germination potential of Gossypium arboreum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48120-48137. [PMID: 36752920 DOI: 10.1007/s11356-023-25343-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CP) and profenofos (PF) are organophosphate pesticides (OPs) widely used in agriculture and are noxious to both fauna and flora. The presented work was designed to attenuate the toxicity of both pesticides in the growth parameters of a cotton crop by applying plant growth-promoting rhizobacteria (PGPR), namely Pseudomonas aeruginosa PM36 and Bacillus sp. PM37. The multifarious biological activities of both strains include plant growth-promoting traits, including phosphate solubilization; indole-3-acetic acid (IAA), siderophore, and HCN production; nitrogen fixation; and enzymatic activity such as cellulase, protease, amylase, and catalase. Furthermore, the molecular profiling of multi-stress-responsive genes, including acdS, ituC, czcD, nifH, and sfp, also confirmed the plant growth regulation and abiotic stress tolerance potential of PM36 and PM37. Both strains (PM36 and PM37) revealed 92% and 89% of CP degradation at 50 ppm and 87% and 81% at 150 ppm within 7 days. Simultaneously 94% and 98% PF degradation was observed at 50 ppm and 90% and 92% at 150 ppm within 7 days at 35 °C and pH 7. Biodegradation was analyzed using HPLC and FTIR. The strains exhibited first-order reaction kinetics, indicating their reliance on CP and PF as energy and carbon sources. The presence of opd, mpd, and opdA genes in both strains also supported the CP and PF degradation potential of both strains. Inoculation of strains under normal and OP stress conditions resulted in a significant increase in seed germination, plant biomass, and chlorophyll contents of the cotton seedling. Our findings indicate that the strains PM36 and PM37 have abilities as biodegraders and plant growth promoters, with potential applications in crop sciences and bioremediation studies. These strains could serve as an environmentally friendly, sustainable, and socially acceptable solution to manage OP-contaminated sites.
Collapse
Affiliation(s)
- Najeeba Paree Paker
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | | | - Christos A Damalas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Fazal Ur Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zeshan Munir
- Schools of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd, Shenzhen, 518055, China
| | - Mahrukh Malik
- Drug Control and Traditional Medicines Division, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
21
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
22
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Sanchez-Hernandez JC, Narváez C, Cares XA, Sabat P, Naidu R. Predicting the bioremediation potential of earthworms of different ecotypes through a multi-biomarker approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160547. [PMID: 36481136 DOI: 10.1016/j.scitotenv.2022.160547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Earthworms are attracting the attention of bioremediation research because of their short-term impact on pollutant fate. However, earthworm-assisted bioremediation largely depends on the earthworm sensitivity to target pollutants and its metabolic capacity to break down contaminants. The most studied species in soil bioremediation has been Eisenia fetida, which inhabits the soil surface feeding on decomposing organic residues. Therefore, its bioremediation potential may be limited to organic matter-rich topsoil. We compared the detoxification potential against organophosphate (OP) pesticides of three earthworm species representative of the main ecotypes: epigeic, anecic, and endogeic. Selected biomarkers of pesticide detoxification (esterases, cytochrome P450-dependent monooxygenase, and glutathione S-transferase) and oxidative homeostasis (total antioxidant capacity, glutathione levels, and glutathione reductase [GR] and catalase activities) were measured in the muscle wall and gastrointestinal tract of E. fetida (epigeic), Lumbricus terrestris (anecic) and Aporrectodea caliginosa (endogeic). Our results show that L. terrestris was the most suitable species to bioremediate OP-contaminated soil for the following reasons: 1) Gut carboxylesterase (CbE) activity of L. terrestris was higher than that of E. fetida, whereas muscle CbE activity was more sensitivity to OP inhibition than that of E. fetida, which means a high capacity to inactivate the toxic oxon metabolites of OPs. 2) Muscle and gut phosphotriesterase activities were significantly higher in L. terrestris than in the other species. 3) Enzymatic (catalase and GR) and molecular mechanisms of free radical inactivation (glutathione) were 3- to 4-fold higher in L. terrestris concerning E. fetida and A. caliginosa, which reveals a higher potential to keep the cellular oxidative homeostasis against reactive metabolites formed during OP metabolism. Together with biological and ecological traits, these toxicological traits suggest L. terrestris a better candidate for soil bioremediation than epigeic earthworms.
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Cristóbal Narváez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Ximena Andrade Cares
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
24
|
Poudyal DC, Dhamu VN, Samson M, Malik S, Kadambathil CS, Muthukumar S, Prasad S. How safe is our food we eat? An electrochemical lab-on-kitchen approach towards combinatorial testing for pesticides and GMOs; A case study with edamame. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114635. [PMID: 36787687 DOI: 10.1016/j.ecoenv.2023.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In our daily life, as consumers we are constantly made aware of the impact of pesticides and other modifications to food products derived from genetically modified organisms (GMO's) that have an impact on human health. In our connected world, there is an immense interest for on-demand information about food quality prior to consumption. The gold standard method to detect pesticides or GMOs residues in food is complex and is not amenable to rapid consumer use. In this study, we demonstrate the feasibility of an electrochemical portable sensing approach for the simultaneous direct detection of spiked pesticides chlorpyrifos (Chlp) and GMOs protein Cry1Ab in real edamame soy matrix. The immunoassay based two-plex sensing platform was fabricated using respective antibody's Chlp on one side and Cry1Ab on other side. A simple lab-on-kitchen level preparation of matrix has been demonstrated and sensor response was tested using non-faradaic electrochemical impedance spectroscopy (EIS), which showed a linear response in Cry1Ab/Chlp concentrations from 0.3 ng/mL to 243 ng/mL with limit of detection 0.3 ng /mL for both the target antigens (Cry1Ab and Chlp) respectively. The spiked and recovery test results fall within ± 20% error in real sample matrix which demonstrates the performance of the our platform with maximum residue limit (MRL) for the given targets. Such electrochemical portable multi-analyte direct sensing tool with simple matrix processing protocol can be a future commercial field-testing tool for use at everyday consumer level.
Collapse
Affiliation(s)
- Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Vikram Narayanan Dhamu
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Manish Samson
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Shahryar Malik
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, United States
| | | | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, United States.
| |
Collapse
|
25
|
Malla MA, Dubey A, Kumar A, Patil A, Ahmad S, Kothari R, Yadav S. Optimization and elucidation of organophosphorus and pyrethroid degradation pathways by a novel bacterial consortium C3 using RSM and GC-MS-based metabolomics. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
26
|
Podbielska M, Kus-Liśkiewicz M, Jagusztyn B, Szpyrka E. Effect of microorganisms on degradation of fluopyram and tebuconazole in laboratory and field studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47727-47741. [PMID: 36745346 PMCID: PMC10097794 DOI: 10.1007/s11356-023-25669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
Nowadays, chemical pesticides are the most widespread measure used to control crop pests and diseases. However, their negative side effects prompted the researchers to search for alternative options that were safer for the environment and people. Pesticide biodegradation by microorganisms seems to be the most reasonable alternative. The aim of the laboratory studies was to assess the influence of Bacillus subtilis and Trichoderma harzianum, used separately and combined together, on fluopyram and tebuconazole degradation. In field studies, the degradation of fluopyram and tebuconazole after the application of the biological preparation in apples was investigated. The results from the laboratory studies show that the greatest decomposition of fluopyram and tebuconazole was observed in tests with T. harzianum in a range of 74.3-81.5% and 44.5-49.2%, respectively. The effectiveness of fluopyram degradation by B. subtilis was 7.5%, while tebuconazole inhibited bacterial cell growth and no degradation was observed. The mixture of microorganisms affected the degradation of fluopyram in a range of 8.3-24.1% and tebuconazole in a range of 6.1-23.3%. The results from the field studies show that degradation increased from 3.1 to 30.8% for fluopyram and from 0.4 to 14.3% for tebuconazole when compared to control samples. The first-order kinetics models were used to simulate the residue dissipation in apples. For the determination of pesticide residues, the QuEChERS method for apple sample preparation was performed, followed by GC-MS/MS technique. Immediately after the treatments, the maximum residue level (MRL) values for tebuconazole were exceeded, and it was equal to 100.7% MRL for the Red Jonaprince variety and 132.3% MRL for the Gala variety. Thus, preharvest time is recommended to obtain apples in which the concentration of pesticides is below the MRL and which can be recognized as safe for humans.
Collapse
Affiliation(s)
- Magdalena Podbielska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Małgorzata Kus-Liśkiewicz
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszow, Poland
| | - Bartosz Jagusztyn
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszow, Poland
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszow, Poland
| |
Collapse
|
27
|
Zhou W, Zhang C, Wang P, Deng Y, Dai H, Tian J, Wu G, Zhao L. Chlorpyrifos-induced dysregulation of synaptic plasticity in rat hippocampal neurons. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:100-109. [PMID: 36722685 DOI: 10.1080/03601234.2023.2171236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphorus pesticide. Increasing evidence has shown that exposure to CPF in early life might induce neurodevelopmental disorders, but the pathogenesis remains uncertain. Synaptic plasticity plays a crucial role in neurodevelopment. This study aimed to investigate the effect of CPF on synaptic plasticity in hippocampal neurons and establish the cellular mechanism underlying these effects. Using CPF-exposed rat and primary hippocampal neurons model, we analyzed the impact of CPF on the synaptic morphology, the expression level of a presynaptic protein, a postsynaptic protein and ionotropic glutamate receptors (iGluRs), as well as the effects on the Wnt/β-catenin pathway. We found that the synapses were shortened, the spines were decreased, and the expression of synaptophysin (Syp), postsynaptic density-95 (PSD-95), GluN1, GluA1 and Wnt7a, as well as active β-catenin in primary hippocampal neurons was decreased. Our study suggests that CPF exposure induced dysregulation of synaptic plasticity in rat hippocampal neurons, which might provide novel information regarding the mechanism of CPF-induced neurodevelopmental disorders.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Chen Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Peipei Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuanying Deng
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Hongmei Dai
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Jing Tian
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Guojiao Wu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Lingling Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
28
|
Thiacalix[4]arene-functionalized magnetic xanthan gum (TC4As-XG@FeO) as a hydrogel adsorbent for removal of dye and pesticide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Kushwaha CS, Abbas NS, Shukla SK. Chemically functionalized CuO/Sodium alginate grafted polyaniline for nonenzymatic potentiometric detection of chlorpyrifos. Int J Biol Macromol 2022; 217:902-909. [PMID: 35870631 DOI: 10.1016/j.ijbiomac.2022.07.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Non-enzymatic sensing of chlorpyrifos (CPF) has been demonstrated over structurally functionalized the ternary bio nanocomposite comprised of cupric oxide, sodium alginate, and polyaniline-based hybrid (CuO/SA-g-PANI) based electrode using a laboratory designed portable potentiometric set up. The prepared composite and constituents were characterized for structure, morphology, and physical properties with the help of fourier transform infrared, X-ray diffraction, Scanning electron microscope, and other relevant standard methods. The obtained results revealed the formation of porous, electrical conductivity, structurally functionalized, responsiveness composite due to molecular engineering, and structural synergism for sensing applications. Further, the film of the prepared composite was explored as the electrode for nonenzymatic potentiometric sensing of residual chlorpyrifos in synthetic and natural sample i.e., tap water, soil, mango, and cabbage. The sensor exhibits a wider sensing range 1.0-120.0 μM, improved sensitivity 1.8790 mV·μM-1·cm-2, detection limit 0.375 μM, response time 120 s, recovery time 16 s with 99.80 % accuracy, and stability of 72 days at neutral 7.0 pH and ambient temperature i.e. 25 °C. Further, the sensing mechanism has been also explained on the basis of structural change in CPF and electrode materials due to their surface interaction along with formation induced electrode potential.
Collapse
Affiliation(s)
- Chandra Shekhar Kushwaha
- Department of Chemistry, University of Delhi, Delhi 110007, India; Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - N S Abbas
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Saroj Kr Shukla
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India.
| |
Collapse
|
30
|
Wołejko E, Łozowicka B, Jabłońska-Trypuć A, Pietruszyńska M, Wydro U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12209. [PMID: 36231509 PMCID: PMC9566616 DOI: 10.3390/ijerph191912209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/15/2023]
Abstract
Chlorpyrifos (CPF) was the most frequently used pesticide in food production in the European Union (EU) until 2020. Unfortunately, this compound is still being applied in other parts of the world. National monitoring of pesticides conducted in various countries indicates the presence of CPF in soil, food, and water, which may have toxic effects on consumers, farmers, and animal health. In addition, CPF may influence changes in the population of fungi, bacteria, and actinomycete in soil and can inhibit nitrogen mineralization. The mechanisms of CPF activity are based on the inhibition of acetylcholinesterase (AChE) activity. This compound also exhibits reproductive toxicity, neurotoxicity, and genotoxicity. The problem seems to be the discrepancy between the actual observations and the final conclusions drawn for the substance's approval in reports presenting the toxic impact of CPF on human health. Therefore, this influence is still a current and important issue that requires continuous monitoring despite its withdrawal from the market in the EU. This review traces the scientific reports describing the effects of CPF resulting in changes occurring in both the environment and at the cellular and tissue level in humans and animals. It also provides an insight into the hazards and risks to human health in food consumer products in which CPF has been detected.
Collapse
Affiliation(s)
- Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| | - Marta Pietruszyńska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24A Street, 15-276 Białystok, Poland
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| |
Collapse
|
31
|
Kumar G, Lal S, Soni SK, Maurya SK, Shukla PK, Chaudhary P, Bhattacherjee AK, Garg N. Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front Microbiol 2022; 13:891870. [PMID: 35958149 PMCID: PMC9360973 DOI: 10.3389/fmicb.2022.891870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L-1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 μg mL-1), HCN (19.85, 17.85, 12.18, and 9.85 μg mL-1), and ammonium (14.73, 16.73, 8.05, and 10.87 μg mL-1) production, and potassium (49.53, 66.72, 46.14, and 52.72 μg mL-1), phosphate (52.37, 63.89, 33.33, and 71.89 μg mL-1), and zinc (29.75, 49.75, 49.12, and 57.75 μg mL-1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL-1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k -day value and low t 1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism.
Collapse
Affiliation(s)
- Govind Kumar
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Shatrohan Lal
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Sumit K. Soni
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Shailendra K. Maurya
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Pradeep K. Shukla
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Parul Chaudhary
- Department of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)–National Dairy Research Institute, Karnal, Haryana, India
| | - A. K. Bhattacherjee
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Neelima Garg
- Indian Council of Agricultural Research (ICAR)–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| |
Collapse
|
32
|
“Unity and Struggle of Opposites” as a Basis for the Functioning of Synthetic Bacterial Immobilized Consortium That Continuously Degrades Organophosphorus Pesticides. Microorganisms 2022; 10:microorganisms10071394. [PMID: 35889114 PMCID: PMC9317566 DOI: 10.3390/microorganisms10071394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/26/2022] Open
Abstract
This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera Rhodococcus and Pseudomonas, the required combination of two cultures (P. esterophilus and R. ruber) was found. A further change in the ratio between the biomass of the cells inside the granules of IMAC, increasing the packing density of cells inside the same granules and decreasing the size of the granules with IMAC, gave a 225% improvement in the degradation activity of the cell combination. The increase in the velocity and the OPP degradation degree was 4.5 and 16 times greater than the individual P. esterophilus and R. ruber cells, respectively. Multiple uses of the obtained IMAC were demonstrated. The increase in IMAC lactonase activity confirmed the role of the cell quorum in the action efficiency of the synthetic biosystem. The co-inclusion of natural strains in a carrier during immobilization strengthened the IMAC activities without the genetic enhancement of the cells.
Collapse
|
33
|
Adsorptive decontamination of organophosphate pesticide chlorpyrifos from aqueous systems using bagasse-derived biochar alginate beads: thermodynamic, equilibrium, and kinetic studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Nandi NK, Vyas A, Akhtar MJ, Kumar B. The growing concern of chlorpyrifos exposures on human and environmental health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105138. [PMID: 35772841 DOI: 10.1016/j.pestbp.2022.105138] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) and its highly electrophilic intermediates are principal toxic metabolites. The active form of CP i.e. chlorpyrifos oxon (CP-oxon) is responsible for both the insecticidal activity and is also of greater risk when present in the atmosphere. Thus, the combined effects of both CP, CP-oxan, and other metabolites enhance our understanding of the safety and risk of the insecticide CP. They cause major toxicities such as AChE inhibition, oxidative stress, and endocrine disruption. Further, it can have adverse hematological, musculoskeletal, renal, ocular, and dermal effects. Excessive use of this compound results in poisoning and potentially kills a non-target species upon exposure including humans. Several examples of reactive metabolites toxicities on plants, aquatic life, and soil are presented herein. The review covers the general overview on reactive metabolites of CP, chemistry and their mechanism through toxic effects on humans as well as on the environment. Considerable progress has been made in the replacement or alternative to CP. The different strategies including antidote mechanisms for the prevention and treatment of CP poisoning are discussed in this review. The approach analyses also the active metabolites for the pesticide activity and thus it becomes more important to know the pesticide and toxicity dose of CP as much as possible.
Collapse
Affiliation(s)
- Nilay Kumar Nandi
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Akshun Vyas
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
35
|
Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. A Pretreatment with Isoorientin Attenuates Redox Disruption, Mitochondrial Impairment, and Inflammation Caused by Chlorpyrifos in a Dopaminergic Cell Line: Involvement of the Nrf2/HO-1 Axis. Neurotox Res 2022; 40:1043-1056. [PMID: 35583593 DOI: 10.1007/s12640-022-00517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
The C-glucosyl flavone isoorientin (ISO) is obtained by humans from the diet and exhibits several cytoprotective effects, as demonstrated in different experimental models. However, it was not previously shown whether ISO would be able to prevent mitochondrial impairment in cells exposed to a chemical stressor. Thus, we treated the human neuroblastoma SH-SY5Y cells with ISO (0.5-20 µM) for 18 h before a challenge with chlorpyrifos (CPF) at 100 µM for additional 24 h. We observed that ISO prevented the CPF-induced lipid peroxidation and protein carbonylation and nitration in the membranes of mitochondria extracted from CPF-treated cells. ISO also attenuated the CPF-elicited increase in the production of reactive species in this experimental model. Moreover, ISO prevented the CPF-induced disruption in the activity of components of the oxidative phosphorylation (OXPHOS) system in the SH-SY5Y cells. ISO also promoted an anti-inflammatory action in the cells exposed to CPF. CPF caused a decrease in the activity of the enzyme heme oxygenase-1 (HO-1), a cytoprotective agent. On the other hand, ISO upregulated HO-1 activity in SH-SY5Y cells. Inhibition of HO-1 by zinc protoporphyrin-IX (ZnPP-IX) suppressed the cytoprotection induced by ISO in the CPF-treated cells. Besides, silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) abolished the ISO-induced HO-1 upregulation and mitochondrial benefits induced by this flavone on the CPF-challenged cells. Thus, ISO protected mitochondria of the CPF-treated cells by an Nrf2/HO-1-dependent fashion in the SH-SY5Y cells.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras - Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação Em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, Mato Grosso, Brazil.,Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil.
| |
Collapse
|
36
|
Rajput VD, Singh A, Minkina T, Rawat S, Mandzhieva S, Sushkova S, Shuvaeva V, Nazarenko O, Rajput P, Komariah, Verma KK, Singh AK, Rao M, Upadhyay SK. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:2727. [PMID: 34961197 PMCID: PMC8707238 DOI: 10.3390/plants10122727] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 09/01/2023]
Abstract
Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1-100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Abhishek Singh
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Sapna Rawat
- Department of Botany, University of Delhi, Delhi 110007, India;
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Victoria Shuvaeva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Olga Nazarenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Priyadarshani Rajput
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Komariah
- Soil Science Department, Faculty of Agriculture, Sebelas Maret University, Surakarta 57126, Indonesia;
| | - Krishan K. Verma
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Awani Kumar Singh
- Centre for Protected Cultivation, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Mahesh Rao
- Pusa Campus, ICAR-National Institute for Plant Biotechnology (NIPB), New Delhi 110012, India;
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanhal University, Jaunpur 222003, India;
| |
Collapse
|