1
|
Wang X, Ali W, Zhang K, Ma Y, Zou H, Tong X, Zhu J, Song R, Zhao H, Liu Z, Dong W. The attenuating effects of serine against cadmium induced immunotoxicity through regulating M1/M2 and Th1/Th2 balance in spleen of C57BL/6 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117216. [PMID: 39437518 DOI: 10.1016/j.ecoenv.2024.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Cadmium (Cd) has adverse effects on organisms. Serine is an essential nutritional factor and its nutritional value is extremely high for body. To explore the effects of serine on spleen toxicity induced by Cd in mice, cadmium chloride (CdCl2, 50 mg/L) and serine (50 g/L) were individually administered or co-administrated in drinking water of mice for 18 weeks. Results demonstrated that Cd exposure induced splenic toxicity and serine against the toxicity damage caused by Cd in mice. Under Cd stress, trace element homeostasis was disturbed, the mice's body weight and spleen index were increased, and splenic morphology and ultrastructure were altered. Furthermore, Cd exposure led to the cell populations disorder, which in turn triggers cell death. Notably, Cd treatment induced oxidative stress and inflammation, increased M1/M2 (iNOS, CD68) and Th1/Th2 (T-bet, CD4) levels, decreased M1/M2 (Arg1) and Th1/Th2 (GATA3) levels, while disrupted the macrophages and lymphocytes homeostasis, which trigged apoptosis and pyroptosis in spleen. In contrast, serine supplementation changed the levels of Cd and other elements, weakened Cd-induced tissue damage and inflammation, enhanced antioxidant capacity, significantly restored cell homeostasis, and effectively inhibited Cd-induced apoptosis and pyroptosis in the spleen. Shortly, the results verified that serine had an ameliorating toxicity effect and restored the M1/M2 and Th1/Th2 balance, restrained apoptosis and pyroptosis induced by Cd.
Collapse
Affiliation(s)
- Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Wenxuan Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, PR China.
| |
Collapse
|
2
|
Zhang H, Tang M, Liu Q, Wu D, Sun B, Dong J, Guan L, Luo J, Zeng M. PAT exposure caused human hepatocytes apoptosis and induced mice subacute liver injury by activating oxidative stress and the ERS-associated PERK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177003. [PMID: 39433224 DOI: 10.1016/j.scitotenv.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
With the widespread use of antimony compounds in synthetic materials and processing, the occupational exposure and environmental pollution caused by antimony have attracted the attention of researchers. Studies have shown that antimony compounds can cause liver damage, but the mechanism has not yet been elucidated. In this study, we used the trivalent potassium antimony tartrate (PAT) to infect L02 hepatocytes and Kunming (KM) mice to establish an antimony-induced apoptosis model of L02 cells and a subacute liver injury model of KM mice. We found that PAT exposure caused hepatocyte apoptosis and was accompanied by oxidative stress and endoplasmic reticulum stress (ERS), and the ERS-associated PERK pathway was activated. Further experimental results showed that N-acetyl-l-cysteine (NAC) pretreatment or silencing of the PERK gene in L02 cells reduced PAT-induced apoptosis. The activity of SOD and CAT in treated L02 cells was increased, the malondialdehyde content in L02 cells and liver tissues was decreased, and the content of ERS-related proteins GRP78 and CHOP, as well as the content of PERK-pathway-related proteins p-PERK/PERK, p-eif2α/eif2α and ATF4 protein were significantly reduced. Overall, PAT exposure triggered hepatocyte apoptosis and liver injury by inducing oxidative stress and activating the ERS-associated PERK pathway; however, this effect could be alleviated by NAC intervention or silencing of PERK in hepatocytes.
Collapse
Affiliation(s)
- Hualing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Meng Tang
- Center for Disease Control and Prevention, Jiulongpo District, Chongqing 400050, PR China
| | - Qin Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Die Wu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Bing Sun
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jingbang Dong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jianlan Luo
- Institute of Geophysical & Geochemical Exploration of Hunan, Changsha 411100, PR China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
3
|
Camilli S, Madavarapu T, El Ghissassi R, Desaraju AB, Busler C, Soundararajan R, Flam B, Lockey R, Kolliputi N. Determining the Feasibility of a Cadmium Exposure Model to Activate the Inflammatory Arm of PANoptosis in Murine Monocytes. Int J Mol Sci 2024; 25:10339. [PMID: 39408668 PMCID: PMC11476399 DOI: 10.3390/ijms251910339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
A prevalence of cigarette smoking can cause the accumulation of cadmium (Cd2+) in the lungs, kidneys, and blood. The effects of exposure can cause multiple chronic disease types to emerge in the affected organ systems. The only moderately effective therapeutic option is chelation therapy; the health risks associated with this therapy have caused much criticism. The disease types associated with Cd2+ toxicity have inflammatory components and greatly impact innate immunity. These factors are affected at the cellular level and cause pathways like apoptosis, pyroptosis, and necroptosis. A development in understanding these pathways stipulates that these three pathways act as one complex of pathways, known together as PANoptosis. The inflammatory mechanisms of PANoptosis are particularly interesting in Cd2+ toxicity due to its inflammatory effects. Proteins in the gasdermin family act to release inflammatory cytokines, like interleukin-1β, into the extracellular environment. Cytokines cause inflammatory disease pathologies like fibrosis and cancer. RAW 264.7 monocytes are key in the murine immune system and provide an excellent model to investigate Cd2+ toxicity. Exposure of 0-15 µM CdCl2 was sufficient to increase expression of cleaved gasdermin D (GSDMD) and gasdermin E (GSDME) in this cell type. Cd2+ also exhibits a dose-dependent cytotoxicity in this cell type.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Narasaiah Kolliputi
- Internal Medicine, Allergy and Immunology, University of South Florida, Tampa, FL 33620, USA; (S.C.); (T.M.); (R.S.); (B.F.); (R.L.)
| |
Collapse
|
4
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
5
|
Cui T, Dai X, Guo H, Wang D, Huang B, Pu W, Chu X, Zhang C. Molybdenum and cadmium co-induce necroptosis through Th1/Th2 imbalance-mediated endoplasmic reticulum stress in duck ovaries. J Environ Sci (China) 2024; 142:92-102. [PMID: 38527899 DOI: 10.1016/j.jes.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 03/27/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) pose serious threats to animal health. Our previous study has determined that Cd and/or Mo exposure can cause ovarian damage of ducks, while the specific mechanism is still obscure. To further investigate the toxic mechanism of Cd and Mo co-exposure in the ovary, forty 8-day-old female ducks were randomly allocated into four groups for 16 weeks, and the doses of Cd and Mo in basic diet per kg were as follows: control group, Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo + 4 mg Cd). Cadmium sulfate 8/3-hydrate (CdSO4·8/3H2O) and hexaammonium molybdate ((NH4)6Mo7O24·4H2O) were the origins of Cd and Mo, respectively. At the 16th week of the experiment, all ovary tissues were collected for the detection of related indexes. The data indicated that Mo and/or Cd induced trace element disorders and Th1/Th2 balance to divert toward Th1 in the ovary, which activated endoplasmic reticulum (ER) stress and then provoked necroptosis through triggering RIPK1/RIPK3/MLKL signaling pathway, and eventually caused ovarian pathological injuries and necroptosis characteristics. The alterations of above indicators were most apparent in the joint group. Above all, this research illustrates that Mo and/or Cd exposure can initiate necroptosis through Th1/Th2 imbalance-modulated ER stress in duck ovaries, and Mo and Cd combined exposure aggravates ovarian injuries. This research explores the molecular mechanism of necroptosis caused by Mo and/or Cd, which reveals that ER stress attenuation may be a therapeutic target to alleviate necroptosis.
Collapse
Affiliation(s)
- Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
6
|
Wang H, Gan X, Tang Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol Trace Elem Res 2024:10.1007/s12011-024-04189-2. [PMID: 38683269 DOI: 10.1007/s12011-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.
Collapse
Affiliation(s)
- Hairong Wang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Xuehui Gan
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China.
| |
Collapse
|
7
|
Wang X, Sun J, Xu T, Lei Y, Gao M, Lin H. Resveratrol alleviates imidacloprid-induced mitochondrial apoptosis, necroptosis, and immune dysfunction in chicken lymphocyte lines by inhibiting the ROS/MAPK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2052-2063. [PMID: 38095043 DOI: 10.1002/tox.24097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Imidacloprid (IMI) is a neonicotinoid insecticide with the highest global market share, and IMI exposure in the environment can negatively affect many nontarget organisms (a general term for organisms affected by drugs other than target organisms). Resveratrol (RSV), a non-flavonoid polyphenolic organic compound derived from peanuts, grapes, and other plants, has anti-inflammatory and antioxidant effects. It is currently unclear how RSV protects against cell damage caused by IMI. Therefore, we established an experimental model of chicken lymphocyte lines exposed to 110 μg/mL IMI and/or 0.5 μM RSV for 24 h. According to the experimental results, IMI markedly raised intracellular reactive oxygen species levels and diminished the activity of the cellular antioxidant enzymes (CAT, SOD, and GPx), leading to MDA accumulation and decreased T-AOC. JNK, ERK, and P38, the essential components of the mitogen-activated protein kinase (MAPK) signaling pathway, were also expressed more when IMI was present. Additionally, IMI resulted in upregulation of mitochondrial apoptosis (Caspase 3, Caspase 9, Bax, and Cyt-c) and necroptosis (Caspase 8, RIPK1, RIPK3, and MLKL) related factors expression, downregulation of Bcl-2 expression, induction of upregulation of cytokine IL-6 and TNF-α expression, and downregulation of IFN-γ expression. The combined treatment of RSV and IMI significantly reduced cellular oxidative stress levels, inhibited the MAPK signaling pathway, and alleviated IMI-induced mitochondrial apoptosis, necroptosis, and immune dysfunction. To summarize, RSV antagonized IMI-induced mitochondrial apoptosis, necroptosis, and immune dysfunction in chicken lymphocyte lines by inhibiting the ROS/MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
8
|
Zhong G, Li Y, Ma F, Huo Y, Liao J, Han Q, Hu L, Tang Z. Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis. Biol Trace Elem Res 2024; 202:1711-1721. [PMID: 37474886 DOI: 10.1007/s12011-023-03773-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Copper (Cu) is one of the most significant trace elements in the body, but it is also a widespread environmental toxicant health. Ferroptosis is a newly identified programmed cell death, which involves various heavy metal-induced organ toxicity. Nevertheless, the role of ferroptosis in Cu-induced hepatotoxicity remains poorly understood. In this study, we found that 330 mg/kg Cu could disrupt the liver structure and cause characteristic morphological changes in mitochondria associated with ferroptosis. Additionally, Cu treatment increased MDA (malondialdehyde) and LPO (lipid peroxide) production while reducing GSH (reduced glutathione) content and GCL (glutamate cysteine ligase) activity. However, it is noticeable that there were no appreciable differences in liver iron content and key indicators of iron metabolism. Meanwhile, our further investigation found that 330 mg/kg Cu-exposure changed multiple ferroptosis-related indicators in chicken livers, including inhibition of the expression of SLC7A11, GPX4, FSP1, and COQ10B, whereas enhances the levels of ACLS4, LPCAT3, and LOXHD1. Furthermore, the changes in the expression of NCOA4, TXNIP, and Nrf2/Keap1 signaling pathway-related genes and proteins also further confirmed 330 mg/kg Cu exposure-induced ferroptosis. In conclusion, our results indicated that ferroptosis may play essential roles in Cu overload-induced liver damage, which offered new insights into the pathogenesis of Cu-induced hepatotoxicity.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Yang X, Xu J, Xu Y, Wang C, Lin F, Yu J. Regulatory mechanism of perinatal nonylphenol exposure on cardiac mitochondrial autophagy and the PINK1/Parkin signaling pathway in male offspring rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155434. [PMID: 38367424 DOI: 10.1016/j.phymed.2024.155434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE This study investigated whether perinatal exposure to nonylphenol (NP) induces mitochondrial autophagy (i.e., mitophagy) damage in neonatal rat cardiomyocytes (NRCMs) and whether the PINK1/Parkin signaling pathway is involved in NP-induced primary cardiomyocyte injury. METHODS AND RESULTS In vivo: Perinatal NP exposure increased apoptosis and mitochondrial damage in NRCMs. Mitochondrial swelling and autophagosome-like structures with multiple concentric membranes were observed in the 100 mg/kg NP group, with an increase in the number of autophagosomes. Disorganized fiber arrangement and elevated serum myocardial enzyme levels were observed with increasing NP dosage. Additionally, NP exposure led to increased MDA levels and decreased SOD activity and ATP levels in myocardial tissue. The mRNA expression levels of autophagy-related genes, including Beclin-1, p62, and LC3B, as well as the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, p62, LC3-I, LC3-II, and LC3-II/I) and apoptosis-related proteins (Bax and caspase-3), increased, whereas the expression levels of the mitochondrial membrane protein TOMM20 and the anti-apoptotic protein Bcl-2 decreased. In vitro: NP increased ROS levels, LDH release, and decreased ATP levels in NRCMs. CsA treatment significantly inhibited the expression of autophagy-related proteins (Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased the expression levels of TOMM20 and Bcl-2 proteins, increased cellular ATP levels, and inhibited LDH release. The inhibition of the PINK1/Parkin signaling pathway suppressed the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased TOMM20 and Bcl-2 protein expression, increased ATP levels, and decreased LDH levels in NRCMs. CONCLUSIONS This study is novel in reporting that perinatal NP exposure induced myocardial injury in male neonatal rats, thereby inducing mitophagy. The PINK1/Parkin signaling pathway was involved in this injury by regulating mitophagy.
Collapse
Affiliation(s)
- Xiaolian Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fangmei Lin
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
10
|
Li Y, Zhong G, Li L, Li T, Li H, Li Y, Zhang H, Pan J, Hu L, Liao J, Yu W, Tang Z. MitomiR-1736-3p regulates copper-induced mitochondrial pathway apoptosis by inhibiting AATF in chicken hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167825. [PMID: 37839473 DOI: 10.1016/j.scitotenv.2023.167825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Copper (Cu) is a toxic heavy metal pollutant. The hepatic toxicity of Cu has attracted widespread attention from researchers. However, its underlying mechanism remains elusive. Mitochondrial microRNAs (mitomiRs) are considered important factors in regulating mitochondrial and cellular functions, and their roles have been implicated in the mechanisms of metal toxicity. Therefore, this research revealed the changes in the mitomiRs expression profile of chicken liver after Cu exposure. It was ultimately determined that mitomiR-1736-3p can be involved in Cu-induced chicken liver damage by targeting AATF. In particular, our investigations have uncovered that exposure to Cu can trigger heightened levels of apoptosis in the hepatic tissue of chickens and primary chicken embryo hepatocytes (CEHs). It is noteworthy that we found upregulation of miR-1736-3p expression can exacerbate Cu-induced cell apoptosis, while inhibition of miR-1736-3p can effectively reduce apoptosis occurrence. Subsequently, we found that Cu-induced cell apoptosis could be restored by overexpressing AATF, while silencing AATF exacerbated the level of apoptosis. Fascinatingly, this change in apoptotic level is directly influenced by AATF on Bax and Bak1, rather than on p53 and Bcl-2. Overall, these findings suggest that the mitomiR-1736-3p/AATF axis mediates the mitochondrial pathway of cell apoptosis potentially involved in Cu-induced chicken liver toxicity.
Collapse
Affiliation(s)
- Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Lei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Huayu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Wenlan Yu
- Laboratory Animal Center, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
11
|
Wang C, Dai X, Xing C, Zhang C, Cao H, Guo X, Liu P, Yang F, Zhuang Y, Hu G. Hexavalent-Chromium-Induced Disruption of Mitochondrial Dynamics and Apoptosis in the Liver via the AMPK-PGC-1α Pathway in Ducks. Int J Mol Sci 2023; 24:17241. [PMID: 38139070 PMCID: PMC10743743 DOI: 10.3390/ijms242417241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| |
Collapse
|
12
|
Yan Z, Zhang Y, Du L, Liu L, Zhou H, Song W. U(VI) exposure induces apoptosis and pyroptosis in RAW264.7 cells. CHEMOSPHERE 2023; 342:140154. [PMID: 37714482 DOI: 10.1016/j.chemosphere.2023.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
U(VI) pollution has already led to serious harm to the environment and human health with the increase of human activities. The viability of RAW264.7 cells was assessed under various U(VI) concentration stress for 24 and 48 h. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and superoxide dismutase (SOD) activities of RAW264.7 cells under U(VI) stress were measured. The results showed that U(VI) decreased cell activity, induced intracellular ROS production, abnormal MMP, and increased SOD activity. The flow cytometry with Annexin-V/PI double labeling demonstrated that the rate of late apoptosis increased with the increase of U(VI) concentration, resulting in decreased Bcl-2 expression and increased Bax expression. The morphology of RAW264.7 cells dramatically changed after 48 h U(VI) exposure, including the evident bubble phenomenon. Besides, U(VI) also increased the proportion of LDH releases and increased GSDMD, and Ras, p38, JNK, and ERK1/2 protein expression, which indicated that the MAPK pathway was also involved. Therefore, U(VI) ultimately led to apoptosis and pyroptosis in RAW264.7 cells. This study offered convincing proof of U(VI) immunotoxicity and established the theoretical framework for further fundamental studies on U(VI) toxicity.
Collapse
Affiliation(s)
- Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Liang Du
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, PR China.
| |
Collapse
|
13
|
Nusair SD, Abandah B, Al-Share QY, Abu-Qatouseh L, Ahmad MIA. Toxicity induced by orellanine from the mushroom Cortinarius orellanus in primary renal tubular proximal epithelial cells (RPTEC): Novel mechanisms of action. Toxicon 2023; 235:107312. [PMID: 37806454 DOI: 10.1016/j.toxicon.2023.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
The toxicity of Orellanine (OR), a significant factor in mushroom poisoning, has severe effects on the kidneys, particularly the proximal tubules. This study investigated the acute toxicity of OR from the Cortinarius orellanus mushroom in human Primary Renal Tubular Proximal Epithelial Cells (RPTEC). Additionally, the half maximal inhibitory concentration (IC50) of OR in MCF-7 cells was established. RPTEC were subjected to a 6.25 μg/ml dose of orellanine for 24 h, while Control cells were exposed to 0.05% DMSO (vehicle). The RT2 Profiler™ PCR Array Human Nephrotoxicity was utilized to identify genes that were upregulated or downregulated. Western blotting confirmed the protein product of some significantly regulated genes compared to control cells. The IC50 of OR was found to be 319.2 μg/ml. The mechanism of OR toxicity involved several pathways including apoptosis, metal ion binding, cell proliferation, tissue remodeling, xenobiotic metabolism, transporters, extracellular matrix molecules, and cytoskeleton pathways. Other genes from non-specific pathways were also identified. These findings enhance our understanding of OR nephrotoxicity and pave the way for future research into potential treatments or antidotes for natural mushroom poisoning.
Collapse
Affiliation(s)
- Shreen D Nusair
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan.
| | - Bayan Abandah
- Department of Legal Medicine, Toxicology and Forensic Science, Faculty of Medicine, Jordan University of Science and Technology, Jordan
| | - Qusai Y Al-Share
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan
| | - Luay Abu-Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Jordan
| | - Mohammad I A Ahmad
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy & Medical Sciences, University of Petra, Jordan; Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
14
|
Lin X, Xu Y, Tong T, Zhang J, He H, Yang L, Deng P, Yu Z, Pi H, Hong H, Zhou Z. Cadmium exposure disturbs myocardial lipid signature and induces inflammation in C57BL/6J mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115517. [PMID: 37776818 DOI: 10.1016/j.ecoenv.2023.115517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Cadmium is a highly ubiquitous environmental pollutant that poses a serious threat to human health. In this study, we assessed the cardiotoxicity of Cd exposure and explored the possible mechanisms by which Cd exerts its toxic effects. The results demonstrated that exposure to Cd via drinking water containing CdCl2 10 mg/dL for eight consecutive weeks induced cardiac injury in C57BL/6J mice. The histopathological changes of myocardial hemolysis, widening of myocardial space, and fracture of myocardial fiber were observed. Meanwhile, elevated levels of cardiac enzyme markers and up-regulation of pro-apoptotic genes also indicated cardiac injury after Cd exposure. Non-targeted lipidomic analysis demonstrated that Cd exposure altered cardiac lipid metabolism, resulted in an increase in pro-inflammatory lipids, and changed lipid distribution abundance. In addition, Cd exposure affected the secretion of inflammatory cytokines by activating the NF-κB signaling pathway, leading to cardiac inflammation in mice. Taken together, results of our present study expand our understanding of Cd cardiotoxicity at the lipidomic level and provide new experimental evidence for uncovering the association of Cd exposure with cardiovascular diseases.
Collapse
Affiliation(s)
- Xiqin Lin
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Huihui Hong
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| | - Zhou Zhou
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
15
|
Qiu W, Ye J, Su Y, Zhang X, Pang X, Liao J, Wang R, Zhao C, Zhang H, Hu L, Tang Z, Su R. Co-exposure to environmentally relevant concentrations of cadmium and polystyrene nanoplastics induced oxidative stress, ferroptosis and excessive mitophagy in mice kidney. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121947. [PMID: 37270049 DOI: 10.1016/j.envpol.2023.121947] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nanoplastics (NPs) are defined as a group of emerging pollutants. However, the adverse effect of NPs and/or heavy metals on mammals is still largely unclear. Therefore, we performed a 35-day chronic toxicity experiment with mice to observe the impacts of exposure to Cadmium (Cd) and/or polystyrene nanoplastics (PSNPs). This study revealed that combined exposure to Cd and PSNPs added to the mice's growth toxicity and kidney damage. Moreover, Cd and PSNPs co-exposure obviously increased the MDA level and expressions of 4-HNE and 8-OHDG while decreasing the activity of antioxidase in kidneys via inhibiting the Nrf2 pathway and its downstream genes and proteins expression. More importantly, the results suggested for the first time that Cd and PSNPs co-exposure synergistically increased iron concentration in kidneys, and induced ferroptosis through regulating expression levels of SLC7A11, GPX4, PTGS2, HMGB1, FTH1 and FTL. Simultaneously, Cd and PSNPs co-exposure further increased the expression levels of Pink, Parkin, ATG5, Beclin1, and LC3 while significantly reducing the P62 expression level. In brief, this study found that combined exposure to Cd and PSNPs synergistically caused oxidative stress, ferroptosis and excessive mitophagy ultimately aggravating kidney damage in mice, which provided new insight into the combined toxic effect between heavy metals and PSNPs on mammals.
Collapse
Affiliation(s)
- Wenyue Qiu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jiali Ye
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Cuiyan Zhao
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Hui Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China.
| |
Collapse
|
16
|
Akaras N, Ileriturk M, Gur C, Kucukler S, Oz M, Kandemir FM. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89479-89494. [PMID: 37453011 DOI: 10.1007/s11356-023-28747-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to determine the potential protective effects of chrysin (CHR) on experimental cadmium (Cd)-induced lung toxicity in rats. To this end, rats were divided into five groups; Control, CHR, Cd, Cd + CHR25, Cd + CHR50. In the study, rats were treated with CHR (oral gavage, 25 mg/kg and 50 mg/kg) 30 min after giving Cd (oral gavage, 25 mg/kg) for 7 consecutive days. The effects of Cd and CHR treatments on oxidative stress, inflammatory response, ER stress, apoptosis and tissue damage in rat lung tissues were determined by biochemical and histological methods. Our results revealed that CHR therapy for Cd-administered rats could significantly reduce MDA levels in lung tissue while significantly increasing the activity of antioxidant enzymes (SOD, CAT, GPx) and GSH levels. CHR agent exerted antiinflammatory effect by lowering elevated levels of NF-κB, IL-1β IL-6, TNF-α, RAGE and NRLP3 in Cd-induced lung tissue. Moreover CHR down-regulated Cd-induced ER stress markers (PERK, IRE1, ATF6, CHOP, and GRP78) and apoptosis markers (Caspase-3, Bax) lung tissue. CHR up-regulated the Bcl-2 gene, an anti-apoptotic marker. Besides, CHR attenuated the side effects caused by Cd by modulating histopathological changes such as hemorrhage, inflammatory cell infiltration, thickening of the alveolar wall and collagen increase. Immunohistochemically, NF-κB and Caspase-3 expressions were intense in the Cd group, while these expressions were decreased in the Cd + CHR groups. These results suggest that CHR exhibits protective effects against Cd-induced lung toxicity in rats by ameliorating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress and histological changes.
Collapse
Affiliation(s)
- Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Oz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
17
|
Huang P, Du J, Cao L, Gao J, Li Q, Sun Y, Shao N, Zhang Y, Xu G. Effects of prometryn on oxidative stress, immune response and apoptosis in the hepatopancreas of Eriocheir sinensis (Crustacea: Decapoda). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115159. [PMID: 37356403 DOI: 10.1016/j.ecoenv.2023.115159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Prometryn, a triazine pesticide product used to control weed growth, poses a high risk to aquatic organisms in the environment. Several toxicological evaluations have been performed on bony fish and shrimp exposed to prometryn. However, there have been no reports conducted on the toxic mechanism of prometryn with regard to Eriocheir sinensis. In this study, our research evaluated the toxic effects of prometryn via in vitro and in vivo toxicity tests on E. sinensis. Firstly, we estimated the exposure toxicity of prometryn to E. sinensis, and then we constructed a 6 h transcriptional profile and conducted an enrichment analysis. To further reveal the toxicity of prometryn, the hepatopancreas (hepatopancreatic cells) was analyzed for antioxidant, immune and lipid-metabolism-related enzymes, antioxidant- and apoptosis-related gene expression, histopathology and TUNEL. From the results, we determined that the 96 h-LD50 was 70.059 mg/kg, and using RNA-seq, we identified 933 differentially expressed genes (DEGs), which were mainly enriched in the amino and fatty acid metabolism and the cell-fate-determination-related signaling pathway. The results of the biochemical assays showed that prometryn could significantly decrease the activities/levels of CAT, SOD, GSH, AKP and ACP, reduce the levels of T-AOC, TG, TCH, C3 and C4, and increase the MDA content. In addition, the expression levels of Nrf2, GSTs and HO-1 were first upregulated and then downregulated with increasing time. Histopathology showed that prometryn damaged the structure of the hepatopancreas cells and induced apoptosis, suggesting that the PI3K-Akt signaling pathway may be involved in the damage process of hepatopancreas cells (PI3K, PDK and Akt were downregulated whereas Bax was upregulated), leading to their apoptosis. The above results indicated that prometryn could cause injury of the hepatopancreas through oxidative stress, induce cell apoptosis, disrupt the lipid metabolism and cause immune damage. This study provided useful data for understanding and evaluating the toxicity of prometryn to aquatic crustacea.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
18
|
Yu J, Hu G, Guo X, Cao H, Zhang C. Quercetin Alleviates Inflammation and Energy Deficiency Induced by Lipopolysaccharide in Chicken Embryos. Animals (Basel) 2023; 13:2051. [PMID: 37443849 DOI: 10.3390/ani13132051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Energy deficiency causes multiple organ dysfunctions after LPS induction. Quercetin is a phenolic compound found in herbal medicines. However, the effects of quercetin in alleviating LPS-induced energy deficiency remain unclear. In the present study, an in vivo LPS-induced inflammation model was established in chicken embryos. Specific pathogen-free chicken embryos (n = 120) were allocated to control, PBS with or without ethanol, quercetin (10, 20, or 40 nmol, respectively), and LPS (125 ng/egg) with or without quercetin groups. Fifteen day old embryonated eggs were injected with the abovementioned solutions via the allantoic cavity. On embryonic day 19, the tissues of the embryos were collected for histopathological examination using frozen oil red O staining, RNA extraction, real-time quantitative polymerase chain reaction, and immunohistochemical investigations. The glycogen and lipid contents in the liver increased after LPS stimulation as compared with the PBS group, whereas quercetin decreased the accumulation as compared with the LPS group. The mRNA expressions of AMPKα1 and AMPKα2 in the duodena, ceca, and livers were upregulated after LPS induction as compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. The immunopositivity of AMPKα2 in the villus, crypt, lamina propria, tunica muscularis, and myenteric plexus in the duodena and in the cytoplasms of hepatocytes significantly increased after LPS induction when compared with the PBS group (p < 0.01), whereas the immunopositivity to AMPKα2 in the quercetin treatment group significantly decreased when compared with the LPS group (p < 0.01 or p < 0.05). The LPS-induced high expressions of transcription factor PPARα and glucose transporter (SGLT1) were blocked by quercetin in the duodena, ceca, and livers. Quercetin treatment improved the LPS-induced decrease in APOA4 in the duodena, ceca, and livers. The mRNA expression of PEPT1 in the duodena and ceca increased after LPS challenge, whereas quercetin could downregulate PEPT1 gene expression. These data demonstrate that quercetin improved the energy deficiency induced by LPS in chicken embryos. The LPS-induced inflammation model was established to avoid the effect of LPS exposure from the environment and intestinal flora. The results form the basis the administration of quercetin pretreatment (in ovo infection) to improve the energy state of chicken embryos and improve the inflammation response.
Collapse
Affiliation(s)
- Jinhai Yu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
19
|
Aslam S, Khurram A, Hussain R, Qadir A, Ahmad SR. Sources, distribution, and incipient threats of polymeric microplastic released from food storage plastic materials. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:638. [PMID: 37138178 DOI: 10.1007/s10661-023-11242-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
The present study aimed to find out the source, distribution, quantity, and incipient threats of the microplastics (MPs) released by food-packing plastic materials, plastic bags, bottles, and containers on human health, biodiversity, water bodies, and atmosphere. For this purpose, 152 articles about MPs (0.1 to 5000 µm) and nanoplastics (NP) 1 to 100 nm) were reviewed and interpreted their results in the present articles about microplastics. The highest plastic waste is generated by China (⁓ 59 Mt), the USA (⁓ 38 Mt), Brazil (⁓ 12 Mt), Germany (⁓ 15 Mt), and Pakistan (⁓ 6 Mt). The count of MPs (MPs/kg) in Chinese salt was 718, UK 136, Iran 48, and USA 32, while MPs in bivalves, i.e., in Chinese bivalves was 2.93, UK 2.9, Iran 2.2, and Italy 7.2 in MPs/kg, respectively. The MPs count in Chinese fish was 7.3, Italy's 23, the USA's 13, and UK's 1.25 in MPs/kg, respectively. The MP concentrations in the water bodies, i.e., USA, were 15.2, Italy 7, and UK 4.4 in mg/L, respectively. It was critically reviewed that MPs can enter the human body causing various disorders (neurotoxic, biotoxic, mutagenic, teratogenic, and carcinogenic disorders) because of the presence of various polymers. The present study concluded that MPs were released from processed and stored food containers, either through physical, biological, or chemical means, which harshly affect the surrounding environment and human health. The study recommended that alternatives to plastic containers are glass and bioplastic containers, papers, cotton bags, wooden boxes, and tree leaves need to use to avoid direct consumption of MPs from food.
Collapse
Affiliation(s)
- Sarfa Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Ayesha Khurram
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Rahib Hussain
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Geographic Sciences &, Natural Resources Research, CAS, Beijing, 100101, China.
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
20
|
Chu X, Dai X, Pu W, Guo H, Huang G, Huang B, Cui T, Zhang C. Co-exposure to molybdenum and cadmium triggers pyroptosis and autophagy by PI3K/AKT axis in duck spleens. ENVIRONMENTAL TOXICOLOGY 2023; 38:635-644. [PMID: 36399440 DOI: 10.1002/tox.23712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Excessive amounts of molybdenum (Mo) and cadmium (Cd) are toxicant, but their combined immunotoxicity are not clearly understood. To estimate united impacts of Mo and Cd on pyroptosis and autophagy by PI3K/AKT axis in duck spleens, Mo or/and Cd subchronic toxicity models of ducks were established by feeding diets with different dosages of Mo or/and Cd. Data show that Mo or/and Cd cause oxidative stress by increasing MDA concentration, and decreasing T-AOC, CAT, GSH-Px and T-SOD activities, restrain PI3K/AKT axis by decreasing PI3K, AKT, p-AKT expression levels, which evokes pyroptosis and autophagy by elevating IL-1β, IL-18 concentrations and NLRP3, Caspase-1, ASC, GSDME, GSDMA, NEK7, IL-1β, IL-18 expression levels, promoting autophagosomes, LC3 puncta, Atg5, LC3A, LC3B, LC3II/LC3I and Beclin-1 expression levels, and reducing expression levels of P62 and Dynein. Furthermore, the variations of abovementioned indexes are most pronounced in co-treated group. Overall, results reveal that Mo or/and Cd may evoke pyroptosis and autophagy by PI3K/AKT axis in duck spleens. The association of Mo and Cd exacerbates the changes.
Collapse
Affiliation(s)
- Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
21
|
Baohong L, Zhongyuan L, Ying T, Beibei Y, Wenting N, Yiming Y, Qinghua C, Qingjun Z. Latex derived from Ficus carica L. inhibited the growth of NSCLC by regulating the caspase/gasdermin/AKT signaling pathway. Food Funct 2023; 14:2239-2248. [PMID: 36762489 DOI: 10.1039/d2fo02284b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Previous studies reported the latex from the fruit of Ficus carica L. (fig) has anti-tumor and antioxidant activities in animal models. However, its active constituents, mechanism of action, and safety remain unknown. The alcohol-precipitated fraction of fig fruit latex (AFFL) was purified and prepared for testing against non-small cell lung cancer (NSCLC). UPLC-TOF-MS/MS was used to examined the components of AFFL. We validated efficacy by researching antitumor phenotypes in vitro and constructing subcutaneous grafts of nude mice with NSCLC, as well as showing the underlying mechanism at the protein level. The results showed that 11 components of AFFL were screened. AFFL significantly inhibited the proliferation, migration, invasion, and clonogenesis of NSCLC cells, promoted cell apoptosis, inhibited tumor growth in A549 xenograft mice, but induced no obvious damage to normal mouse tissues (liver or kidney). Molecular mechanism studies revealed that AFFL could increase Caspase-1 expression in cancer cells by activating the cleavage of Caspase-3 and Caspase-9, inhibiting the activity of Bcl-2, and promoting tumor cell apoptosis. These processes cause gasdermin proteins (GSDMD and GSDME) to be cleaved, releasing N-terminal domain proteins to accumulate and perforate the cell membrane, and promoting tumor cell pyroptosis. In conclusion, our findings suggested that AFFL may promote tumor cell apoptosis and pyroptosis via the Caspase/Gasdermin/AKT signaling pathway and inhibit NSCLC growth in vitro and in vivo, demonstrating that fig latex can be developed as a functional food and drug with anti-NSCLC properties.
Collapse
Affiliation(s)
- Li Baohong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Li Zhongyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Tan Ying
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan Beibei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Ni Wenting
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yin Yiming
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Cui Qinghua
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhu Qingjun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
22
|
Li H, Wang X, Yu L, Wang J, Cao Y, Ma B, Zhang W. Duck gasdermin E is a substrate of caspase-3/-7 and an executioner of pyroptosis. Front Immunol 2023; 13:1078526. [PMID: 36703987 PMCID: PMC9871645 DOI: 10.3389/fimmu.2022.1078526] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Gasdermin (GSDM)-mediated cell death is an ancient immune defensive mechanism that plays an essential role in bacteria, fungi, coral, teleost, and mammals. After being cleaved by proteases of hosts or pathogens, amino-terminal (NT) fragment of GSDMs (GSDM-NTs) form pores in the membrane structure of cells, thereby leading to pyroptotic cell death. However, the expression profile, activation mechanism and function of avian GSDMs have not been studied in depth yet. In the current study, genes encoding duck gasdermin E (duGSDME), caspase-3 (ducaspase-3) and ducaspase-7 were cloned from mRNA of a virus-challenged duck embryo. The cleavage of duGSDME by ducaspase-3/-7 was verified in the cell-free system and/or in human embryonic kidney cells (HEK293). Ducaspase-3/-7 could recognize and cleave duGSDME at 270DAVD273. Overexpression of duGSDME-NT (1-273aa) fragment led to pyroptosis-like morphological change, increased lactic dehydrogenase (LDH) release and propidium iodide uptake of HEK293 cells, which indicated that duGSDME-NTs could cause cell membrane damage. In addition, recombinantly expressed duGSDME-NT showed bactericidal activity to an enterotoxic Escherichia coli (F5+) strain. The expression level of duGSDME was low in duckling tissues. DHAV-3 challenge upregulated the expression of duGSDME and ducaspase-3 in different tissues and led to the activation of ducaspase-3 and cleavage of duGSDME. The results indicated that duGSDME is a substrate of ducapsase-3/-7, and duGSDME-NT can cause pyroptosis. In addition, duGSDME may play a role in the immune defense of ducks against infectious diseases after being cleaved by ducaspase-3. The current study provides essential information for further investigation of the mechanisms of avian innate immunity and avian diseases.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China
| | - Lanjie Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China
| | - Junwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China
| | - Yongsheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China
| | - Bo Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China,*Correspondence: Wenlong Zhang, ; Bo Ma,
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China,*Correspondence: Wenlong Zhang, ; Bo Ma,
| |
Collapse
|
23
|
Yin K, Sun X, Zheng Y, Zhang W, Lin H. Bisphenol A exacerbates selenium deficiency-induced pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway in chicken trachea. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109488. [PMID: 36257570 DOI: 10.1016/j.cbpc.2022.109488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Selenium deficiency can lead to multiple tissue and organ damage in the body and could coexist with chronic toxic exposures. Contamination from Bisphenol A (BPA) exposure can induce the occurrence of various injuries including pyroptosis. However, it is not clear whether selenium deficiency and BPA exposure affect tracheal tissue pyroptosis in chickens. To investigate whether selenium deficiency and BPA exposure induce chicken tracheal tissue pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway and the effect of their combined exposure on tissue injury, we developed a model of relevant chicken tracheal injury. Sixty broilers were divided into four groups: the control group (C group), selenium-deficient group (SeD group), BPA-exposed group (BPA group) and combined exposure group (SeD + BPA group). The study examined the expression indicators of markers of pyroptosis (NLRP3&GSDMD), NF-κB pathway-related inflammatory factors (NF-κB, iNOS, TNF-α, COX-2), pyroptosis-related factors (ASC, Caspase-1, IL-1β, IL-18), and some heat shock proteins and interleukins (HSP60, HSP90, IL-6, IL-17) in the samples. The results showed that the expression of the above indicators was significantly upregulated in the different treatment groups (P < 0.05). In addition, the expression levels of the above related indicators were more significantly up-regulated in the combined selenium-deficient and BPA-exposed group compared to the group in which they were individually exposed. It was concluded that selenium deficiency and BPA exposure induced tracheal tissue pyroptosis in chickens through NF-κB/NLRP3/Caspase-1 pathway, and BPA exposure exacerbated selenium deficiency-induced tracheal pyroptosis. The present study provides new ideas into studies related to the co-exposure of organismal micronutrient deficiency and chronic toxicants.
Collapse
Affiliation(s)
- Kexin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yaxin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
24
|
Pu W, Chu X, Guo H, Huang G, Cui T, Huang B, Dai X, Zhang C. The activated ATM/AMPK/mTOR axis promotes autophagy in response to oxidative stress-mediated DNA damage co-induced by molybdenum and cadmium in duck testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120574. [PMID: 36351481 DOI: 10.1016/j.envpol.2022.120574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) have multiple organ toxicity, and testis is one of their important target organs, but the reproductive toxicity of Mo and Cd combined treatment is still unclear. To explore the effects of Mo and Cd co-exposure on DNA damage and autophagy from the insight of ATM/AMPK/mTOR axis in duck testes, we randomly assigned 40 healthy 8-day-old ducks to control, Mo (100 mg/kg Mo), Cd (4 mg/kg Cd), and Mo + Cd groups for 16 weeks. Results found that Mo and/or Cd exposure caused trace elements imbalance, oxidative stress with a decrease in the activities of GSH-Px, CAT, T-SOD and GSH content, an increase in the concentrations of H2O2 and MDA and pathological damage. Additionally, Mo and/or Cd markedly raised DNA damage-related factors expression levels and 8-OHdG content, caused G1/S arrest followed by decreasing CDK2 and Cyclin E protein levels and increasing CDK1 and Cyclin B protein levels, and activated ATM/AMPK/mTOR axis by enhancing p-ATM/ATM, p-AMPK/AMPK and reducing p-mTOR/mTOR protein levels, eventually triggered autophagy by elevating LC3A, LC3B, Atg5, Beclin-1 mRNA levels and LC3II/LC3I, Beclin-1 protein levels and reducing P62, Dynein, mTOR mRNA levels and P62 protein level. Moreover, these changes were most apparent in the combined group. Altogether, the results reveal that autophagy caused by Mo and/or Cd may be associated with activating the DNA damage-mediated ATM/AMPK/mTOR axis in duck testes, and Mo and Cd co-exposure exacerbates these changes.
Collapse
Affiliation(s)
- Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
25
|
Huang G, Luo J, Guo H, Wang X, Hu Z, Pu W, Chu X, Zhang C. Molybdenum and cadmium co-exposure promotes M1 macrophage polarization through oxidative stress-mediated inflammatory response and induces pulmonary fibrosis in Shaoxing ducks (Anas platyrhyncha). ENVIRONMENTAL TOXICOLOGY 2022; 37:2844-2854. [PMID: 36017731 DOI: 10.1002/tox.23641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
High molybdenum (Mo) and cadmium (Cd) are harmful to the body, but pulmonary toxicity induced by Mo and Cd co-exposure is unknown. To assess the combined impacts of Mo and Cd on fibrosis through M1 polarization in the lung of ducks, 80 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were randomly assigned to 4 groups and fed with containing unequal doses of Mo or/and Cd diet. Lung tissues were collected on the 16th week. Results indicated that Mo or/and Cd significantly increased their contents in the lungs, and led to trace elements disorder and histological abnormality, and oxidative stress accompanied by promoting contents of H2 O2 and MDA and decreasing activities of T-SOD, GSH-Px, and CAT, then activated the TLR4/NF-κB/NLRP3 pathway accompanied by upregulating Caspase-1, ASC, IL-18, IL-1β, TLR4, NF-κB, and NLRP3 expression levels, and disrupted M1/M2 balance to divert toward M1, which evoked the TGF-β/Smad2/3-mediated fibrosis by elevating TGF-β1, Smad2, Smad3, COL1A1, α-SMA, and MMP2 expression levels, and decreasing Smad7 and TIMP2 expression levels. The changes of the combined group were most obvious. To sum up, the research demonstrated that Mo or/and Cd may cause macrophages to polarize toward M1 by oxidative stress-mediated the TLR4/NF-κB/NLRP3 pathway, then result in fibrosis through the TGF-β1/Smad2/3 pathway in duck lungs. Mo and Cd may worsen lung damage.
Collapse
Affiliation(s)
- Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci 2022; 23:13491. [PMID: 36362277 PMCID: PMC9659299 DOI: 10.3390/ijms232113491] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Zhang T, Dong Z, Liu F, Pan E, He N, Ma F, Wang G, Wang Y, Dong J. Avermectin induces carp neurotoxicity by mediating blood-brain barrier dysfunction, oxidative stress, inflammation, and apoptosis through PI3K/Akt and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113961. [PMID: 35969982 DOI: 10.1016/j.ecoenv.2022.113961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Avermectin, a "low toxicity insecticide", has been widely used in recent years, but its non-target toxicity, especially to aquatic organisms, has been neglected. In this study, we evaluated the neurotoxic effects of avermectin on carp by establishing a 96 h avermectin acute toxicity test, and its possible mechanism was discussed. The 96 h LC50 of avermectin in carp was found to be 24.04 μg/L. Therefore, 3.005 μg/L and 12.02 μg/L were used as the low-dose and high-dose groups, respectively, to investigate the neurotoxic effects of avermectin on carp. The results of high-performance liquid chromatography (HPLC) analysis showed that avermectin accumulated in the carp brain. Histopathological observation and immunohistochemical analysis (IHC) of TNF-α and Bax showed that avermectin exposure led to inflammatory cell infiltration and neuronal necrosis. The mRNA levels of tight junction genes and the IHC results of ZO-1 and Occludin showed that the structure of the blood-brain barrier (BBB) was destroyed. Biochemical analysis showed that avermectin induced the accumulation of MDA in the brain and decreased the activity of antioxidant enzymes CAT and SOD, leading to oxidative stress. In addition, avermectin induces brain inflammation by activating NF-κB pathway and releasing inflammatory factors IL-1β, IL-6, TNF-α and iNOS. TEM and TUNEL assays showed that exposure to avermectin induced apoptosis in brain. what is more, the expression of apoptosis-related genes and proteins suggested that avermectin-induced apoptosis may be associated with inhibition of the PI3K/Akt signaling pathway. This study also showed that avermectin-induced NF-κB signaling activation was partially dependent on its upstream PI3K/Akt signaling pathway. Therefore, this study concludes that avermectin can induce neurotoxicity in carp by disrupting the blood-brain barrier structure and generating oxidative stress, inflammation, and apoptosis and that NF-κB and PI3K/Akt signaling pathways are involved in this process.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhuhua Dong
- Deapartment of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
28
|
Guo H, Hu R, Huang G, Pu W, Chu X, Xing C, Zhang C. Molybdenum and cadmium co-exposure induces endoplasmic reticulum stress-mediated apoptosis by Th1 polarization in Shaoxing duck (Anas platyrhyncha) spleens. CHEMOSPHERE 2022; 298:134275. [PMID: 35278442 DOI: 10.1016/j.chemosphere.2022.134275] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are deleterious to animals, but immunotoxicity co-induced by Mo and Cd remains unclear. To ascertain the confederate impacts of Mo and Cd on endoplasmic reticulum (ER) stress-mediated apoptosis by Helper T (Th) cells 1 polarization in the spleen of ducks, we randomly allocated forty 8-day-old Shaoxing ducks (Anas platyrhyncha) into 4 groups and reared them with having different doses of Mo and/or Cd basic diet. At the 16th week of the experiment, serum and spleen tissues were extracted. Data confirmed that Mo and/or Cd strikingly promoted their levels in spleen, caused histological abnormality and trace elements imbalance, and disrupted Th1/Th2 balance to divert toward Th1, then triggered ER stress by increasing three branches PERK/eIF2α/CHOP, IRE1/Caspase-12 and TRAF2/JNK signaling pathways-related genes mRNA and proteins levels, which stimulated apoptosis by elevating Bak-1, Bax, Caspase-9, Caspase-3 mRNA expression, and cleaved-Caspase-9/Caspase-9, cleaved-Caspase-3/Caspase-3 proteins expression as well as apoptosis rate, and decreasing Bcl-xL, Bcl-2 mRNA expression and Bcl-2/Bax ratio. Besides, the variation in combined group was most evident. Briefly, the study indicates that Mo and/or Cd exposure trigger ER stress-induced apoptosis via Th1 polarization in duck spleens, and its mechanism is somehow closely linked with the deposition of Cd and Mo, which may aggravate toxic damage to spleen.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
29
|
Cao Z, Yang F, Lin Y, Shan J, Cao H, Zhang C, Zhuang Y, Xing C, Hu G. Selenium Antagonizes Cadmium-Induced Inflammation and Oxidative Stress via Suppressing the Interplay between NLRP3 Inflammasome and HMGB1/NF-κB Pathway in Duck Hepatocytes. Int J Mol Sci 2022; 23:ijms23116252. [PMID: 35682929 PMCID: PMC9181349 DOI: 10.3390/ijms23116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 μM) and/or Se (0.4 μM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chenghong Xing
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| | - Guoliang Hu
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| |
Collapse
|
30
|
Inhibition of KIF23 Alleviates IPAH by Targeting Pyroptosis and Proliferation of PASMCs. Int J Mol Sci 2022; 23:ijms23084436. [PMID: 35457254 PMCID: PMC9032390 DOI: 10.3390/ijms23084436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive vascular disease with high mortality and heritability. Pyroptosis is a novel form of programmed cell death, and it is closely associated with IPAH. However, the roles of pyroptosis-related genes (PRGs) in IPAH are still largely unknown. In this study, we identified KIF23 as the most relevant gene for IPAH and pyroptosis, and its expression was significantly increased in pulmonary arterial smooth muscle cells (PASMCs) of IPAH. Besides, the pyroptosis level of PASMCs was also considerably upregulated in IPAH. Knockdown of KIF23 in PASMCs could significantly suppress the PASMCs’ pyroptosis and proliferation and then alleviate the increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary vascular resistance in IPAH. KIF23 regulated the expression of Caspase3, NLRP3, and HMGB1, and they were all involved in the PI3K/AKT and MAPK pathways, indicating that PI3K/AKT and MAPK pathways might participate in regulating PASMCs pyroptosis by KIF23. In conclusion, our study suggests that KIF23 may be a new therapeutic target for IPAH, which can alleviate the symptoms of IPAH by inhibiting the pyroptosis and proliferation of PASMCs.
Collapse
|