1
|
Chen Y, Gao R, Fang J, Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int J Biol Macromol 2024; 277:134448. [PMID: 39102922 DOI: 10.1016/j.ijbiomac.2024.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polysaccharides are one of the most important and widely used bioactive components of natural products, which can be used to treat metabolic diseases. Natural polysaccharides (NPs) have been the subject of much study and research in the field of treating obesity in recent years. Studies in the past have demonstrated that mitochondria are important for the initiation, progression, and management of obesity. Additionally, NPs have the ability to improve mitochondrial dysfunction via a variety of mechanisms. This review summarized the relationship between the structure of NPs and their anti-obesity activity, focusing on the anti-obesity effects of these compounds at the mitochondrial level. We discussed the association between the structure and anti-obesity action of NPs, including molecular weight, monosaccharide composition, glycosidic linkage, conformation and extraction methods. Furthermore, NPs can demonstrate a range of functions in adipose tissue, including but not limited to improving the mitochondrial oxidative respiratory chain, inhibiting oxidative stress, and maintaining mitochondrial mass homeostasis. The purpose of this work is to acquire a thorough understanding of the function that mitochondria play in the anti-obesity effects of NPs and to offer fresh insights for the investigation of how NPs prevent obesity and the creation of natural anti-obesity medications.
Collapse
Affiliation(s)
- Yongchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Rong Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Guo ZH, Ni HY, Tang MY. Clinical efficacy and pharmacological mechanism analysis of Xubi Capsule in the treatment of patients with liver and kidney deficiency osteoarthritis. Medicine (Baltimore) 2024; 103:e39327. [PMID: 39213231 PMCID: PMC11365649 DOI: 10.1097/md.0000000000039327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
To explore the clinical efficacy and pharmacological mechanism analysis of Xubi capsule in the treatment of patients with liver and kidney deficiency osteoarthritis (OA). In this single-center retrospective study, 120 patients with liver and kidney deficiency OA admitted to the Hangzhou Fuyang Hospital of Traditional Chinese Medicine from January 2020 to May 2022 were included, and patients were divided into the intervention group (n = 60) and the control group (n = 60) according to their treatment. The control group was treated with Ibuprofen, while the intervention group was treated with Xubi capsule combined with Ibuprofen. According to the network pharmacology method, the mechanism of the Xubi capsule in the treatment of patients with liver and kidney deficiency OA was analyzed. After the treatment, the total effective rate in the intervention group was 93.33%, which was significantly higher than that in the control group (P < .001). After treatment, compared with the control group, the degree of joint swelling and tenderness in the intervention group were lighter, the muscle strength was better, the level of erythrocyte sedimentation rate was lower, and the pain visual score was lower (P < .05), while the C-reactive protein level was significantly lower (P < .001). The effective chemical composition of Xubi capsules is 176, with quercetin and palmitoleic acid being the most associated with diseases. There are 209 intersection targets between drugs and diseases. A total of 119 gene ontology cellular components were significantly enriched. The combination of traditional Chinese medicine and Western medicine adopted in this study can effectively treat patients with liver and kidney deficiency OA and relieve the joint pain of patients. In a multicomponent and multitarget approach, the Xubi capsule breaks through the limitations of traditional nonsteroidal anti-inflammatory drugs and has good clinical application value.
Collapse
Affiliation(s)
- Zhi-Hui Guo
- Department of Spinal Minimally Invasive Center, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hui-Ying Ni
- Department of Orthopedics and Traumatology, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Meng-Ya Tang
- Department of Orthopedics and Traumatology, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liu X, Zheng H, Wang F, Atia T, Fan B, Wang Q. Developments in the study of Chinese herbal medicine's assessment index and action mechanism for diabetes mellitus. Animal Model Exp Med 2024; 7:433-443. [PMID: 38973219 PMCID: PMC11369031 DOI: 10.1002/ame2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/26/2024] [Indexed: 07/09/2024] Open
Abstract
In traditional Chinese medicine (TCM), based on various pathogenic symptoms and the 'golden chamber' medical text, Huangdi Neijing, diabetes mellitus falls under the category 'collateral disease'. TCM, with its wealth of experience, has been treating diabetes for over two millennia. Different antidiabetic Chinese herbal medicines reduce blood sugar, with their effective ingredients exerting unique advantages. As well as a glucose lowering effect, TCM also regulates bodily functions to prevent diabetes associated complications, with reduced side effects compared to western synthetic drugs. Chinese herbal medicine is usually composed of polysaccharides, saponins, alkaloids, flavonoids, and terpenoids. These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion, enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals. These actions regulate glycolipid metabolism in the body, eventually achieving the goal of normalizing blood glucose. Using different animal models, a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer. Nonetheless, there is a dearth of scientific data about the pharmacology, dose-effect relationship, and structure-activity relationship of TCM and its constituents. Further research into the efficacy, toxicity and mode of action of TCM, using different metabolic and molecular markers, is key to developing novel TCM antidiabetic formulations.
Collapse
Affiliation(s)
- Xin‐Yue Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Han‐Wen Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Feng‐Zhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tul‐Wahab Atia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Zhang S, Zhang Q, Wang T, Li C, Tang L, Xiao L. Response Surface Optimization of Polysaccharides from Jaboticaba (Myrciaria cauliflora [Mart.] O.Berg) Fruits: Ultrasound-Assisted Extraction, Structure Properties, and Antioxidant/Hypoglycemic Activities. Chem Biodivers 2024; 21:e202302070. [PMID: 38302826 DOI: 10.1002/cbdv.202302070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Ultrasound-assisted extraction (UAE) method proves to be more effective compared to traditional extraction methods. In the present study, response surface methodology (RSM) was used to determine the optimal process parameters for extracting polysaccharides (U-MCP) from jaboticaba fruit using UAE. The optimum extraction conditions were ultrasonic time 70 min, extraction temperature 60 °C, and power 350 W. Under these conditions, the sugar content of U-MCP was 52.8 %. The molecular weights of the ultrasound-assisted extracted U-MCP ranged from 9.52×102 to 3.27×103 Da, and consisted of five monosaccharides including mannose, galacturonic acid, glucose, galactose, and arabinose. Moreover, in vitro antioxidant and hypoglycaemic assay revealed that U-MCP has prominent anti-oxidant activities (1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals, hydroxyl radicals and 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt) (ABTS) radicals scavenging activities) and hypoglycemic activities (α-amylase and α-glucosidase inhibition activities).
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Liqun Tang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Leyi Xiao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
5
|
Zhong L, Li J, Yu J, Cao X, Du J, Liang L, Yang M, Yue Y, Zhao M, Zhou T, Lin J, Wang X, Shen X, Zhong Y, Wang Y, Shu Z. Anemarrhena asphodeloides Bunge total saponins ameliorate diabetic cardiomyopathy by modifying the PI3K/AKT/HIF-1α pathway to restore glycolytic metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117250. [PMID: 37832811 DOI: 10.1016/j.jep.2023.117250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on the theory of traditional Chinese medicine (TCM), diabetic cardiomyopathy (DCM) belongs to the category of "Xiaoke disease" according to the symptoms, and "stasis-heat" is the main pathogenesis of DCM. The Chinese medicine Anemarrhena asphodeloides Bunge (AAB), as a representative of heat-clearing and engendering fluid, is often used clinically in the treatment of DCM. Anemarrhena asphodeloides Bunge total saponins (RATS) are the main bioactive components of AAB, the modern pharmacologic effects of RATS are anti-inflammatory, hypoglycemic, and cardioprotective. However, the potential protective mechanisms of RATS against DCM remain largely undiscovered. AIM OF THE STUDY The primary goal of this study was to explore the effect of RATS on DCM and its mechanism of action. MATERIALS AND METHODS Streptozotocin and a high-fat diet were used to induce DCM in rats. UHPLC/Q-TOF-MS was used to determine the chemical components of RATS. The degenerative alterations and apoptotic cells in the heart were assessed by HE staining and TUNEL. Network pharmacology was used to anticipate the probable targets and important pathways of RATS. The alterations in metabolites and main metabolic pathways in heart tissue were discovered using 1 H-NMR metabolomics. Ultimately, immunohistochemistry was used to find critical pathway protein expression. RESULTS First of all, UHPLC/Q-TOF-MS analysis showed that RATS contained 11 active ingredients. In animal experiments, we found that RATS lowered blood glucose and lipid levels in DCM rats, and alleviated cardiac pathological damage, and decreased cardiomyocyte apoptosis. Furthermore, the study found that RATS effectively reduced inflammatory factor release and the level of oxidative stress. Mechanistically, RATS downregulated the expression levels of PI3K, AKT, HIF-1α, LDHA, and GLUT4 proteins. Additionally, glycolysis was discovered to be a crucial pathway for RATS in the therapy of DCM. CONCLUSIONS Our findings suggest that the protective effect of RATS on DCM may be attributed to the inhibition of the PI3K/AKT/HIF-1α pathway and the correction of glycolytic metabolism.
Collapse
Affiliation(s)
- Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiamin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiazi Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yanmei Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Dong YH, Wang ZX, Chen C, Wang PP, Fu X. A review on the hypoglycemic effect, mechanism and application development of natural dietary polysaccharides. Int J Biol Macromol 2023; 253:127267. [PMID: 37820903 DOI: 10.1016/j.ijbiomac.2023.127267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Diabetes mellitus (DM) as one chronic metabolic disease was greatly increased over recent decades. The major agents treating diabetes have noticeable side effects as well as the tolerability problems. The bioactive dietary polysaccharides from abundant natural resources exhibit good hypoglycemic effect with rare adverse effects, which might serve as a candidate to prevent and treat diabetes. However, the correlations between the hypoglycemic mechanism of polysaccharides and their structure were not mentioned in several studies, what's more, most of the current hypoglycemic studies on polysaccharides were based on in vitro and in vivo experiments, and there was a lack of knowledge about the effects in human clinical trials. The aim of this review is to discuss recent literature about the variety of dietary polysaccharides with hypoglycemic activity, as well the mechanism of action and the structure-function relationship are highlighted. Meanwhile, the application of dietary polysaccharides in functional foods and clinical medicine are realized with an in-depth understanding. So as to promote the exploration of dietary polysaccharides in low glycemic healthy foods or clinical medicine to prevent and treat diabetes.
Collapse
Affiliation(s)
- Yu-Hao Dong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhen-Xing Wang
- College of life Science, Southwest Forestry University, Kunming 650224, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Ping-Ping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
7
|
Liang R, Sheng M, Li X, Jin J, Yi Y. Transcriptomic analysis reveals that the anti-PCOS effects of Zishen Qingre Lishi Huayu recipe may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress, and inflammation in granulosa cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116551. [PMID: 37121450 DOI: 10.1016/j.jep.2023.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Qingre Lishi Huayu recipe (ZQLHR) is a Chinese medicine compound composed of nine herbs for the treatment of polycystic ovary syndrome (PCOS). It is used to nourish kidneys, clear heat, reduce dampness and dissipation blood stasis by promoting diuresis and blood circulation, dredging the meridians and harmonizing menstruation in the treatment of PCOS. Several clinical studies have shown that ZQLHR is effective in the treatment of PCOS, but the underlying mechanism remains unclear. AIM OF THE STUDY In this study, we researched on the effects and mechanism of action of ZQLHR during treatment of human granulosa cells (hGCs) obtained from PCOS patients in order to provide a scientific basis for the clinical application of ZQLHR in the treatment of PCOS, emphasize the importance of some genes that have been reported to play a role in the pathogenesis or therapeutic mechanisms of PCOS from the perspective of disease treatment, and identify some new genes and signaling pathways that may play an important role in the treatment of PCOS. MATERIALS AND METHODS KGN cells (a granulosa cell-like tumor cell line) were subjected to a cell counting kit-8 assay to explore the appropriate intervention concentration and duration of ZQLHR. Treated with or without ZQLHR (ZQLHR and control groups), the hGCs obtained from PCOS patients were sequenced using RNA sequencing, and the genes thus detected were further analyzed through Kyoto encyclopedia of genes and genomes enrichment analysis, gene set enrichment analysis, and individuation gene analysis. These genes were also compared with PCOS-related genes in other databases. To further verify the authenticity of the differentially expressed genes between the two groups, the expression of eight randomly selected vital genes and three proteins of interest was verified through real time quantitative polymerase chain reaction and Western blot experiment respectively. RESULTS The best intervention concentration and duration for ZQLHR to promote the proliferation of KGN cells were 0.2% and 48 h respectively in this experiment. Multiple signaling pathways and 55 focus differentially expressed genes, both related to autophagy, steroidogenesis, oxidative stress-related longevity, inflammation, and complications of PCOS, may play an important role in the therapeutic mechanism of action of ZQLHR. The expression of eight genes is consistent with the result of RNA sequencing, and the expression of three proteins of interest is the same as expected. CONCLUSIONS The promotion of hGCs proliferation upon treatment with ZQLHR may be a manifestation of ZQLHR in the treatment of PCOS patients. The positive effects of ZQLHR against PCOS may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress-related longevity, and inflammation in hGCs. Some components of ZQLHR applied for the treatment of PCOS may also be effective for the treatment of some complications of PCOS.
Collapse
Affiliation(s)
- Ruining Liang
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Mengzhen Sheng
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Xin Li
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Jing Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Yao Yi
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
8
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
9
|
Chen J, Lan M, Zhang X, Jiao W, Chen Z, Li L, Li B. Effects of Simulated In Vitro Digestion on the Structural Characteristics, Inhibitory Activity on α-Glucosidase, and Fermentation Behaviours of a Polysaccharide from Anemarrhena asphodeloides Bunge. Nutrients 2023; 15:nu15081965. [PMID: 37111183 PMCID: PMC10145594 DOI: 10.3390/nu15081965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of this study is to investigate the effects of the simulated saliva-gastrointestinal digestion of AABP-2B on its structural features, inhibitory α-glucosidase activity, and human gut microbiota. The salivary-gastrointestinal digestion results show that there is no significant change in the molecular weight of AABP-2B, and no free monosaccharides are released. This indicates that, under a simulated digestive condition, AABP-2B is not degraded and can be further utilized by gut microbiota. AABP-2B still possessed good inhibitory activity on α-glucosidase after salivary-gastrointestinal digestion, which may be attributed to the largely unchanged structural characteristics of AABP-2B after simulated digestion. Furthermore, in vitro fecal fermentation with AABP-2B after salivary-gastrointestinal digestion showed that AABP-2B modulated the gut microbiota structure and increased the relative proportions of Prevotella, Faecalibacterium, and Megasphaera. AABP-2B can also modify the intestinal flora composition by inhibiting pathogen growth. Moreover, the AABP-2B group resulted in a significant increase in short-chain fatty acid (SCFAs) content during fermentation. These findings demonstrate that AABP-2B can be used as a prebiotic or functional food to promote gut health.
Collapse
Affiliation(s)
- Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Meijuan Lan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Wenjuan Jiao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiyi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Li
- Food Chemistry and Technology, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Chen J, Li L, Zhang X, Zhang Y, Zheng Q, Lan M, Li B. Structural characteristics and antioxidant and hypoglycemic activities of a heteropolysaccharide from Anemarrhena asphodeloides Bunge. Int J Biol Macromol 2023; 236:123843. [PMID: 36858093 DOI: 10.1016/j.ijbiomac.2023.123843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
In this study, an acid polysaccharide (AABP-1B) was extracted from the rhizome of Anemarrhena asphodeloides Bunge and purified using 60 % alcohol precipitation and DEAE-52 cellulose. The molecular weight of AABP-1B was 105 kDa, and it consisted of mannose (Man), rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in a ratio of 6.3:1.3:1.1:0.2:0.4:0.7. Methylation and NMR analyses revealed that the backbone of AABP-1 consists of 4)-β-D-Manp-(1 and 4)-2-O-acetyl-β-D-Manp-(1. In addition, the biological activity assays showed that AABP-1B not only displays potential antioxidant activity but also exhibits the α-glucosidase and α-amylase inhibitory effect. Moreover, AABP-1B enhanced glucose consumption and glycogen synthesis in insulin-resistant (IR) HepG2 cells. These results suggest that AABP-1B has potential hypoglycemic activity.
Collapse
Affiliation(s)
- Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yuan Zhang
- Guangdong Provincial Institute of Sports Science, Guangzhou 510640, China
| | - Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Meijuan Lan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Liu C, Cong Z, Wang S, Zhang X, Song H, Xu T, Kong H, Gao P, Liu X. A review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality of Anemarrhena asphodeloides Bunge. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115857. [PMID: 36330891 DOI: 10.1016/j.jep.2022.115857] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizomes of Anemarrhena asphodeloides Bunge., belonging to the family Liliaceae, are named 'Zhi-mu' according to traditional Chinese medicine theory. It is a medicinal plant that has long been used as a tonic agent in various ethnomedicinal systems in East Asia, especially in China, and also for treating arthralgia, hematochezia, tidal fever, night sweats, cough, dry mouth and tongue, hemoptysis, etc. THE ARM OF THE REVIEW: The review aims to provide a systematic overview of botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides and to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A comprehensive literature search was performed on Anemarrhena asphodeloides using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier, SpringerLink, ACS publications, ancient books, Doctoral and master's Theses. Collected data from different sources was comprehensively summarised for botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides. RESULTS A comprehensive analysis of the literature as mentioned above confirmed that the ethnomedical uses of Anemarrhena asphodeloides had a history of thousands of years in eastern Asian countries. Two hundred sixty-nine compounds have been identified from Anemarrhena asphodeloides, including steroidal saponins, flavonoids, phenylpropanoids, alkaloids, steroids, organic acids, polysaccharides, benzophenones and other ingredients. Studies have shown that the extracts and compounds from Anemarrhena asphodeloides have extensive pharmacological activities, such as nervous system activity, antitumour, anti-inflammatory, antidiabetic, antiosteoporotic, antiallergic, antiplatelet aggregation, antimicrobial, antiviral, anti-ageing, hair growth promoting, preventing cell damage, etc. Evaluating the quality and toxicity of Anemarrhena asphodeloides is essential to confirm its safe use in humans. CONCLUSION Anemarrhena asphodeloides is widely used in traditional medicine and have diverse chemical constituents with obvious biological activities. Nevertheless, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity and confirm its safe use.
Collapse
Affiliation(s)
- Congying Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Shengguang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huaying Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianren Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Kong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peng Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaonan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
12
|
Omale S, Amagon KI, Johnson TO, Bremner SK, Gould GW. A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials. PeerJ 2023; 11:e14639. [PMID: 36627919 PMCID: PMC9826616 DOI: 10.7717/peerj.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Diabetes is one of the fastest-growing health emergencies of the 21st century, placing a severe economic burden on many countries. Current management approaches have improved diabetic care, but several limitations still exist, such as decreased efficacy, adverse effects, and the high cost of treatment, particularly for developing nations. There is, therefore, a need for more cost-effective therapies for diabetes management. The evidence-based application of phytochemicals from plants in the management of diseases is gaining traction. Methodology Various plants and plant parts have been investigated as antidiabetic agents. This review sought to collate and discuss published data on the cellular and molecular effects of medicinal plants and phytochemicals on insulin signaling pathways to better understand the current trend in using plant products in the management of diabetes. Furthermore, we explored available information on medicinal plants that consistently produced hypoglycemic effects from isolated cells to animal studies and clinical trials. Results There is substantial literature describing the effects of a range of plant extracts on insulin action and insulin signaling, revealing a depth in knowledge of molecular detail. Our exploration also reveals effective antidiabetic actions in animal studies, and clear translational potential evidenced by clinical trials. Conclusion We suggest that this area of research should be further exploited in the search for novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Simeon Omale
- African Centre for Excellence in Phytomedicine, University of Jos, Jos, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Kennedy I. Amagon
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Titilayo O. Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Shaun Kennedy Bremner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
13
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
14
|
A Water-Soluble Polysaccharide from the Fibrous Root of Anemarrhena asphodeloides Bge. and Its Immune Enhancement Effect in Vivo and in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8723119. [PMID: 36124017 PMCID: PMC9482487 DOI: 10.1155/2022/8723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Background The fibrous roots of Anemarrhena asphodeloides Bge. (FRAAB) are byproducts of the rhizome of Anemarrhena asphodeloides. Some studies have revealed secondary metabolic small molecules in FRAAB, but there are few reports on the polysaccharides of FRAAB (PFRAAB). Aim of the Study. The present study aimed to investigate the preliminary characterization and underlying mechanism of immune stimulation of PFRAAB. Materials and Methods The crude polysaccharide of FRAAB was obtained by hot water extraction and alcohol precipitation, and PFRAAB was purified by a diethylaminoethyl-52 (DEAE-52) cellulose chromatographic column and graphene dialysis membrane. The preliminary characterization of PFRAAB was studied by ultraviolet (UV) scanning and Fourier Transform Infrared Reflection (FTIR). The molecular weight and composition of PFRAAB were analysed by high-performance gel permeation chromatography (HPGPC) and high-performance liquid chromatography (HPLC), respectively. The immune stimulation of PFRAAB was investigated by using cyclophosphamide- (CCP-) treated mice and RAW264.7 cells. Results A water-soluble PFRAAB was obtained with a molecular weight of 115 kDa and was mainly composed of arabinose (ara), galactose (gal), glucose (glc), and mannose (man). Compared with CCP-induced mice, PFRAAB significantly (p < 0.05 or p < 0.01) increased the spleen and thymus index, ameliorated injury to the spleen and thymus, and evaluated immunoglobulin levels. In addition, PFRAAB also increased the secretion of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and IL-6 in RAW264.7 cells and upregulated the expression of toll-like receptor 4 (TLR4), Myd88, nuclear factor kappa-B (NF-κB) P65, p–NF–κB P65, IKB-α, and p-IKB-α. Conclusion PFRAAB possesses immune stimulation activity and can be used as a potential resource for immune-enhancing drugs. Our present study provides a scientific basis for the comprehensive development of Anemarrhena asphodeloides medicinal plant resources.
Collapse
|
15
|
Sun J, Zhong X, Sun D, Cao X, Yao F, Shi L, Liu Y. Structural characterization of polysaccharides recovered from extraction residue of ginseng root saponins and its fruit nutrition preservation performance. Front Nutr 2022; 9:934927. [PMID: 35978961 PMCID: PMC9376600 DOI: 10.3389/fnut.2022.934927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides recovered from extraction residue of ginseng root saponins, i.e., ginsenosides-extracting residue polysaccharides (GRP), were separated into two fractions, GRP-1 and GRP-2. Fourier infrared and nuclear magnetic resonance spectra, as well as high-performance liquid chromatography and gel permeation chromatography measurements, showed GRP-1 was composed of mainly starch-like glucans and GRP-2, relatively a smaller portion, was a mixture of heteropolysaccharides composed of starch-like glucans, rhamnogalacturonan-I pectin, and arabinogalactans, and they had similar molecular weights. These results proved that the structure of GRP was not destroyed and GRP still maintained strong antioxidant activities. In addition, GRP coating on surfaces of fruit slowed their deterioration and maintained their nutritional effects. Correlation and PCA analyses on various quality and antioxidant parameters supported the above findings and a possible mechanism in fruit preservation was then proposed. Knowing the structural features and bioactivities of GRP gives insights into its application. Specifically, GRP served as an environmentally friendly coating that can be used to preserve the nutrients and other quality indicators of strawberries and fresh-cut apples, paving the way for future new approaches to food preservation using polysaccharides or other natural products.
Collapse
Affiliation(s)
- Jing Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Dandan Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Shandong Academy of Chinese Medicine, Jinan, China
| | - Xinxin Cao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fan Yao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lingling Shi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|