1
|
Dai S, Wang B, Ye R, Zhang D, Xie Z, Yu N, Cai C, Huang C, Zhao J, Zhang F, Hua Y, Zhao Y, Zhou R, Tian B. Structural Evolution of Bacterial Polyphosphate Degradation Enzyme for Phosphorus Cycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309602. [PMID: 38682481 PMCID: PMC11234463 DOI: 10.1002/advs.202309602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Living organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism. Here, it is found that PPX structure varies in the length of ɑ-helical interdomain linker (ɑ-linker) across various bacteria, which is negatively correlated with their enzymatic activity and thermostability - those with shorter ɑ-linkers demonstrate higher polyP degradation ability. Moreover, the artificial DrPPX mutants with shorter ɑ-linker tend to have more compact pockets for polyP binding and stronger subunit interactions, as well as higher enzymatic efficiency (kcat/Km) than that of DrPPX wild type. In Deinococcus-Thermus, the PPXs from thermophilic species possess a shorter ɑ-linker and retain their catalytic ability at high temperatures (70 °C), which may facilitate the thermophilic species to utilize polyP in high-temperature environments. These findings provide insights into the interdomain linker length-dependent evolution of PPXs, which shed light on enzymatic adaption for phosphorus cycling during natural evolution and rational design of enzyme.
Collapse
Affiliation(s)
- Shang Dai
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Shanghai Institute for Advanced Study of Zhejiang UniversityShanghai201203China
| | - Binqiang Wang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310029China
- Zhejiang Baima Lake Laboratory Co., LtdHangzhou310029China
| | - Rui Ye
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310029China
| | - Dong Zhang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310029China
| | - Zhenming Xie
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Ning Yu
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Chunhui Cai
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Cheng Huang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Jie Zhao
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Furong Zhang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Yuejin Hua
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| | - Ye Zhao
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| | - Ruhong Zhou
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Shanghai Institute for Advanced Study of Zhejiang UniversityShanghai201203China
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| | - Bing Tian
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| |
Collapse
|
2
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
3
|
Mao D, Wu YY, Tu Y. Unexpectedly resisting protein adsorption on self-assembled monolayers terminated with two hydrophilic hydroxyl groups. Phys Chem Chem Phys 2023; 25:21376-21382. [PMID: 37530059 DOI: 10.1039/d3cp02376a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
OH-terminated self-assembled monolayers, as protein-resistant surfaces, have significant potential in biocompatible implant devices, which can avoid or reduce adverse reactions caused by protein adhesion to biomaterial surfaces, such as thrombosis, immune response and inflammation. Here, molecular dynamics simulations were performed to evaluate the degree of protein adsorption on the self-assembled monolayer terminated with two hydrophilic OH groups ((OH)2-SAM) at packing densities (Σ) of 4.5 nm-2 and 6.5 nm-2, respectively. The results show that the structure of the (OH)2-SAM itself, i.e., a nearly perfect hexagonal-ice-like hydrogen bond structure in the OH matrix of the (OH)2-SAM at Σ = 4.5 nm-2 sharply reduces the number of hydrogen bonds (i.e., 0.7 ± 0.27) formed between the hydrophobic (OH)2-SAM surface and protein. While for Σ = 6.5 nm-2, the hydrophilic (OH)2-SAM surface can provide more hydrogen bonding sites to form hydrogen bonds (i.e., 6.2 ± 1.07) with protein. The number of hydrogen bonds formed between the (OH)2-SAM and protein at Σ = 6.5 nm-2 is ∼8 times higher than that at Σ = 4.5 nm-2, reflecting the excellent resistance to protein adsorption exhibited by the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2. Compared with a traditional physical barrier effect formed by a large number of hydrogen bonds between the (OH)2-SAM and water at Σ = 6.5 nm-2, the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2 proposed in this study significantly improves the performance of the (OH)2-SAM resistance to protein adsorption, which provides new insights into the mechanism of resistance to protein adsorption on the (OH)2-SAM.
Collapse
Affiliation(s)
- Dangxin Mao
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yuan-Yan Wu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
4
|
Aparicio-Collado JL, Zheng Q, Molina-Mateo J, Torregrosa Cabanilles C, Vidaurre A, Serrano-Aroca Á, Sabater i Serra R. Engineered Highly Porous Polyvinyl Alcohol Hydrogels with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Graphene Nanosheets for Musculoskeletal Tissue Engineering: Morphology, Water Sorption, Thermal, Mechanical, Electrical Properties, and Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3114. [PMID: 37109950 PMCID: PMC10145967 DOI: 10.3390/ma16083114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 °C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Qiqi Zheng
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - José Molina-Mateo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Constantino Torregrosa Cabanilles
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Ana Vidaurre
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 València, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 València, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 València, Spain
- Department of Electrical Engineering, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
5
|
Yan ZS, Li XL, Ma YQ, Ding HM. Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13972-13982. [PMID: 36318181 PMCID: PMC9662070 DOI: 10.1021/acs.langmuir.2c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Indexed: 05/24/2023]
Abstract
The spread of coronavirus disease 2019 caused by SARS-CoV-2 and its variants has become a global health crisis. Although there were many attempts to use nanomaterials-based devices to fight against SARS-CoV-2, it still remains elusive as to how the nanomaterials interact with SARS-CoV-2 and affect its biofunctions. Here, taking the graphene nanosheet (GN) as the model nanomaterial, we investigate its interaction with the spike protein in both WT and Omicron by molecular simulations. In the closed state, the GN can insert into the region between the receptor binding domain (RBD) and the N-terminal domain (NTD) in both wild type (WT) and Omicron, which keeps the RBD in the down conformation. In the open state, the GN can hamper the binding of up RBD to ACE2 in WT, but it has little impact on up RBD and, even worse, stimulates the down-to-up transition of down RBDs in Omicron. Moreover, the GN can insert in the vicinity of the fusion peptide in both WT and Omicron and prevents the detachment of S1 from the whole spike protein. The present study reveals the effect of the SARS-CoV-2 variant on the nanomaterial-spike protein interaction, which informs prospective efforts to design functional nanomaterials against SARS-CoV-2.
Collapse
Affiliation(s)
- Zeng-Shuai Yan
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-Lei Li
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research,
School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|