1
|
Li H, Cai Q, Du J, Jie G, Jie G. Triple quenching effect of nanozyme catalyzed precipitation combined with enzyme-free amplification for photoelectrochemical biosensing of circulating tumor DNA. Biosens Bioelectron 2024; 263:116611. [PMID: 39079207 DOI: 10.1016/j.bios.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
In this work, a new photoelectrochemical (PEC) biosensor based on triple quenching effect of nanozyme catalyzed precipitation to PEC signal of MgIn2S4 was constructed for ultrasensitive detection of circulating tumor DNA (ctDNA). Enzyme-free amplification technology was used to convert target ctDNA into a large number of product chains (PC) to improve the detection sensitivity. Co3O4 nanozyme with excellent peroxidase (POD)-like activity was introduced to the surface of MgIn2S4 by PC. Co3O4 could oxidize chromogenic agent 3-Amino-9-ethylcarbazole (AEC) to produce red insoluble precipitation in the presence of H2O2, resulting in the PEC signal "off" of MgIn2S4 to achieve ultrasensitive detection of ctDNA. In particular, Co3O4 nanozyme showed three synergistic quenching effects on PEC signal of MgIn2S4, which contributed greatly to improving the detection sensitivity. Firstly, the light absorption range of Co3O4 could reach 1000 nm, and compete with MgIn2S4 for light absorption. Secondly, the produced red precipitation belonged to the insulating material and had large electrochemical impedance, which hindered the transmission of photogenerated carriers. Thirdly, the precipitation also prevented the electron donor ascorbic acid (AA) from transferring electrons to MgIn2S4. This biosensor provided a promising sensitive PEC detection technology for ctDNA, and further broadened the application of nanozymes in the field of PEC analysis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jinyao Du
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guitao Jie
- Haemal Internal Medicine, Linyi Central Hospital, Yishui County, Linyi, Shandong, 276400, PR China
| |
Collapse
|
2
|
Zhao J, Kong D, Zhang G, Zhang S, Wu Y, Dai C, Chen Y, Yang Y, Liu Y, Wei D. An Efficient CRISPR/Cas Cooperative Shearing Platform for Clinical Diagnostics Applications. Angew Chem Int Ed Engl 2024:e202411705. [PMID: 39394860 DOI: 10.1002/anie.202411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The CRISPR/Cas system is a powerful genome editing tool and possesses widespread applications in molecular diagnostics, therapeutics and genetic engineering. But easy folding of the target sequences causes remarkable deterioration of the recognition and shear efficiency in the case of single Cas-CRISPR RNA (crRNA) duplex. Here, we develop a CRISPR/Cas cooperative shearing (CRISPR-CS) system. Compared with traditional CRISPR/Cas system, two CRISPR/Cas-crRNA duplexes simultaneously recognize different sites in the target sequence, increasing recognition possibility and shearing efficiency. Cooperative shearing cuts more methylene blue-ssDNA reporters on the electrode, enabling unamplified nucleic acid electrochemical assay in less than 5 minutes with a detection limit of 9.5×10-20 M, 2 to 9 orders of magnitude lower than those of other electrochemical assays. The CRISPR-CS platform detects monkeypox, human papilloma virus and amyotrophic lateral sclerosis with an accuracy up to 98.1 %, demonstrating the potential application of the efficient cooperative shearing.
Collapse
Affiliation(s)
- Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Guanghui Zhang
- Shenzhen Hengsheng Hospital, Department of Laboratory Medicine, Shenzhen, Guangdong, 518102, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Zeng Y, Wang X, Zhu N, Yu Y, Wang X, Kang K, Wu Y, Yi Q. Magnetic lanthanide sensor with self-ratiometric time-resolved luminescence for accurate detection of epithelial cancerous exosomes. J Mater Chem B 2024; 12:7203-7214. [PMID: 38952178 DOI: 10.1039/d4tb00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Fluorescence-based LB (liquid biopsy) offers a rapid means of detecting cancer non-invasively. However, the widespread issue of sample loss during purification steps will diminish the accuracy of detection results. Therefore, in this study, we introduce a magnetic lanthanide sensor (MLS) designed for sensitive detection of the characteristic protein, epithelial cell adhesion molecule (EpCAM), on epithelial tumor exosomes. By leveraging the inherent multi-peak emission and time-resolved properties of the sole-component lanthanide element, combined with the self-ratiometric strategy, MLS can overcome limitations imposed by manual operation and/or sample complexity, thereby providing more stable and reliable output results. Specifically, terbium-doped NaYF4 nanoparticles (NaYF4:Tb) and deformable aptamers terminated with BHQ1 were sequentially introduced onto superparamagnetic silica-decorated Fe3O4 nanoparticles. Prior to target binding, emission from NaYF4:Tb at 543 nm was partially quenched due to the fluorescence resonance energy transfer (FRET) from NaYF4:Tb to BHQ1. Upon target binding, changes in the secondary structure of aptamers led to the fluorescence intensity increasing since the deconfinement of distance-dependent FRET effect. The characteristic emission of NaYF4:Tb at 543 nm was then utilized as the detection signal (I1), while the less changed emission at 583 nm served as the reference signal (I2), further reporting the self-ratiometric values of I1 and I2 (I1/I2) to illustrate the epithelial cancerous features of exosomes while ignoring possible sample loss. Consequently, over a wide range of exosome concentrations (2.28 × 102-2.28 × 108 particles per mL), the I1/I2 ratio exhibited a linear increase with exosome concentration [Y(I1/I2) = 0.166 lg (Nexosomes) + 3.0269, R2 = 0.9915], achieving a theoretical detection limit as low as 24 particles per mL. Additionally, MLS effectively distinguished epithelial cancer samples from healthy samples, showcasing significant potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yating Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xuekang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xingyou Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Cheng K, Wan S, Yang JW, Chen SY, Wang HL, Xu CH, Qiao SH, Li XR, Li Y. Applications of Biosensors in Bladder Cancer. Crit Rev Anal Chem 2024:1-20. [PMID: 38978228 DOI: 10.1080/10408347.2024.2373923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Hai-Long Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Chang-Hong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Hang Qiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Yang Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| |
Collapse
|
5
|
Tan K, Chen L, Cao D, Xiao W, Lv Q, Zou L. Two-layer cascaded catalytic hairpin assemblies based on locked nucleic acids for one-step and highly sensitive ctDNA detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3515-3521. [PMID: 38774994 DOI: 10.1039/d4ay00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Enzyme-free signal amplification of catalytic hairpin assembly (CHA) has enabled sensitive detection of circulating tumor DNA (ctDNA) in early clinical diagnosis. Conventional CHA strategies are restrained by the limited amplification efficiency of the single-stage system, and signal leakage from "breathing" influence and nuclease degradation. Here, we introduced two-layer cascaded locked nucleic acid (LNA)-assisted CHA circuits with the intelligent incorporation of LNA in the hairpins and reporter for the highly sensitive one-step detection of scarce ctDNA. The target-triggered upstream CHA reaction continuously generates hybrid products to catalyze the downstream CHA reaction for transducing the primary sensing event, and the released target and the produced hybrid product trigger the next catalytic reaction round at the same time and finally cascade to amplify the target ctDNA fluorescence output signal. Meanwhile, the stronger binding affinity of the LNA-DNA duplex endows the two-layer LNA-assisted CHA system with thermodynamic stability and nuclease resistance, and thus our designed system exhibits an excellent detection performance for target ctDNA in the range from 2 pM to 5 nM with a low detection limit of 0.6 pM. Significantly, the two-layer LNA-assisted CHA circuits have been successfully implemented for the feasible analysis of clinical samples. This two-layer cascaded LNA-assisted CHA strategy provides a promising high sensitivity tool for one-step detection of scarce ctDNA from complex clinical samples and would facilitate the reconfiguration of DNA circuit-based DNA nanotechnology for the precise analysis of other biomarkers in clinical research fields.
Collapse
Affiliation(s)
- Kaiyue Tan
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Longsheng Chen
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-Care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou, 510500, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-Care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou, 510500, China
| | - Qian Lv
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| | - Lili Zou
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510316, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510316, China
| |
Collapse
|
6
|
Park BC, Soh JO, Choi HJ, Park HS, Lee SM, Fu HE, Kim MS, Ko MJ, Koo TM, Lee JY, Kim YK, Lee JH. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS NANO 2024; 18:12781-12794. [PMID: 38733343 DOI: 10.1021/acsnano.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.
Collapse
Affiliation(s)
- Bum Chul Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Jeong Ook Soh
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Biomedical Research Institute (HBRI), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
7
|
Luo X, Li J, Huang G, Xie F, He Z, Zeng X, Tian H, Liu Y, Fu W, Yang X. Metal-Graphene Hybrid Terahertz Metasurfaces for Circulating Tumor DNA Detection Based on Dual Signal Amplification. ACS Sens 2024; 9:2122-2133. [PMID: 38602840 DOI: 10.1021/acssensors.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.
Collapse
Affiliation(s)
- Xizi Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jining Li
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaojun Zeng
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yu Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
8
|
Ma Z, Xu J, Hou W, Lei Z, Li T, Shen W, Yu H, Liu C, Zhang J, Tang S. Detection of Single Nucleotide Polymorphisms of Circulating Tumor DNA by Strand Displacement Amplification Coupled with Liquid Chromatography. Anal Chem 2024; 96:5195-5204. [PMID: 38520334 DOI: 10.1021/acs.analchem.3c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The detection of multiple single nucleotide polymorphisms (SNPs) of circulating tumor DNA (ctDNA) is still a great challenge. In this study, we designed enzyme-assisted nucleic acid strand displacement amplification combined with high-performance liquid chromatography (HPLC) for the simultaneous detection of three ctDNA SNPs. First, the trace ctDNA could be hybridized to the specially designed template strand, which initiated the strand displacement nucleic acid amplification process under the synergistic action of DNA polymerase and restriction endonuclease. Then, the targets would be replaced with G-quadruplex fluorescent probes with different tail lengths. Finally, the HPLC-fluorescence assay enabled the separation and quantification of multiple signals. Notably, this method can simultaneously detect both the wild type (WT) and mutant type (MT) of multiple ctDNA SNPs. Within a linear range of 0.1 fM-0.1 nM, the detection limits of BRAF V600E-WT, EGFR T790M-WT, and KRAS 134A-WT and BRAF V600E-MT, EGFR T790M-MT, and KRAS 134A-MT were 29, 31, and 11 aM and 22, 29, and 33 aM, respectively. By using this method, the mutation rates of multiple ctDNA SNPs in blood samples from patients with lung or breast cancer can be obtained in a simple way, providing a convenient and highly sensitive analytical assay for the early screening and monitoring of lung cancer.
Collapse
Affiliation(s)
- Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Junjie Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Weilin Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Zi Lei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Tingting Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang 212000, Jiangsu, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Fu L, Karimi-Maleh H. Leveraging electrochemical sensors to improve efficiency of cancer detection. World J Clin Oncol 2024; 15:360-366. [PMID: 38576591 PMCID: PMC10989266 DOI: 10.5306/wjco.v15.i3.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Electrochemical biosensors have emerged as a promising technology for cancer detection due to their high sensitivity, rapid response, low cost, and capability for non-invasive detection. Recent advances in nanomaterials like nanoparticles, graphene, and nanowires have enhanced sensor performance to allow for cancer biomarker detection, like circulating tumor cells, nucleic acids, proteins and metabolites, at ultra-low concentrations. However, several challenges need to be addressed before electrochemical biosensors can be clinically implemented. These include improving sensor selectivity in complex biological media, device miniaturization for implantable applications, integration with data analytics, handling biomarker variability, and navigating regulatory approval. This editorial critically examines the prospects of electrochemical biosensors for efficient, low-cost and minimally invasive cancer screening. We discuss recent developments in nanotechnology, microfabrication, electronics integration, multiplexing, and machine learning that can help realize the potential of these sensors. However, significant interdisciplinary efforts among researchers, clinicians, regulators and the healthcare industry are still needed to tackle limitations in selectivity, size constraints, data interpretation, biomarker validation, toxicity and commercial translation. With committed resources and pragmatic strategies, electrochemical biosensors could enable routine early cancer detection and dramatically reduce the global cancer burden.
Collapse
Affiliation(s)
- Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
- School of Engineering, Lebanese American University, Byblos 1102 2801, Lebanon
| |
Collapse
|
10
|
Wang Z, Liu M, Lin H, Zhu G, Dong Z, Wu N, Fan Y, Xu G, Chang L, Wang Y. An Ion Concentration Polarization Microplatform for Efficient Enrichment and Analysis of ctDNA. ACS NANO 2024; 18:2872-2884. [PMID: 38236597 DOI: 10.1021/acsnano.3c07137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Strategies for rapid, effective nucleic acid processing hold tremendous significance to the clinical analysis of circulating tumor DNA (ctDNA), a family of important markers indicating tumorigenesis and metastasis. However, traditional techniques remain challenging to achieve efficient DNA enrichment, further bringing about complicated operation and limited detection sensitivity. Here, we developed an ion concentration polarization microplatform that enabled highly rapid, efficient enrichment and purification of ctDNA from a variety of clinical samples, including serum, urine, and feces. The platform demonstrated efficiently separating and enriching ctDNA within 30 s, with a 100-fold improvement over traditional methods. Integrating an on-chip isothermal amplification module, the platform further achieved 100-fold enhanced sensitivity in ctDNA detection, which significantly eliminated false-negative results in the serum or urine samples due to the low abundance of ctDNA. Such a simple-designed platform offers a user-friendly yet powerful diagnosis technique with a wide applicability, ranging from early tumor diagnosis to infection screening.
Collapse
Affiliation(s)
- Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ming Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Guiying Zhu
- School of Biomedical Engineering/Med-X, Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X, Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Sci-Tech InnoCenter for Infection & Immunity, Shanghai, 200000, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
11
|
Wang K, Lin X, Zhang M, Yang M, Shi X, Xie M, Luo Y. ACEK Biosensor for the Minute-Scale Quantification of Breast Cancer ctDNA. SENSORS (BASEL, SWITZERLAND) 2024; 24:547. [PMID: 38257640 PMCID: PMC10818266 DOI: 10.3390/s24020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Circulating tumor DNA (ctDNA) appears as a valuable liquid biopsy biomarker in the early diagnosis, treatment, and prognosis of cancer. Here, a biosensing method derived from the AC electrokinetics (ACEK) effect was constructed in this study for the simple, efficient, and rapid method of detection of ctDNA. In the proof-of-concept experiment, ctDNA from the PIK3CA E542K mutant in breast cancer was quantified by detecting a normalized capacitance change rate using a forked-finger gold electrode as the sensing electrode in combination with the ACEK effect. We compared two formats for the construction of the approach by employing varied immobilization strategies; one is to immobilize the DNA capture probe on the electrode surface by Au-S bonding, while the other immobilizes the probe on a self-assembled membrane on the electrode surface by amide bonding. Both formats demonstrated ultrafast detection speed by completing the ctDNA quantification within 1 min and a linear range of 10 fM-10 pM was observed. Meanwhile, the immobilization via the self-assembled membrane yielded improved stability, sensitivity, and specificity than its Au-S bonding counterpart. A detection limit of 1.94 fM was eventually achieved using the optimized approach. This research provides a label-free and minute-scale universal method for the detection of various malignant tumors. The ctDNA biosensors based on the ACEK effect improved according to the probe type or electrode structure and have potential applications in tumor drug efficacy prediction, drug resistance monitoring, screening of high-risk groups, differential diagnosis, monitoring of tiny residual lesions, and prognosis determination.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Maoxiao Zhang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Mengjie Yang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Xiang Shi
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
12
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
13
|
Bellassai N, D'Agata R, Spoto G. Plasmonic aptasensor with antifouling dual-functional surface layer for lysozyme detection in food. Anal Chim Acta 2023; 1283:341979. [PMID: 37977796 DOI: 10.1016/j.aca.2023.341979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Antifouling coatings are critically necessary for optical biosensors for various analytical application sectors, from medical diagnostics to foodborne pathogen detection. They help avoid non-specific protein/cell attachment on the active biosensor surface and catch the analytes directly in the complex media. Advances in antifouling plasmonic surfaces have been mainly focused on detecting clinical biomarkers in real biofluids, whereas developing antifouling coatings for direct analysis of analytes in complex media has been scarcely investigated for food quality control and safety. Herein, we propose a new low-fouling poly-l-lysine (PLL)-based surface layer for directly detecting an allergen protein, lysozyme, in the food matrix using surface plasmon resonance. The PLL-based polymer contains densely immobilized anionic oligopeptide side chains to create an electric charge-balanced layer able to repel the non-specific adsorption of undesired molecules on the biosensor surface. It also includes sparsely attached aptamer probes for capturing lysozyme directly in food sources with no pre-analytical sample treatment. We optimized the surface layer fabrication condition and tested the dual-functional surface to evaluate its ability to detect the target protein selectively. The developed analytical approach allowed for achieving a limit of detection of 0.04 μg mL-1 (2.95 nM) and a limit of quantification of 0.13 μg mL-1 (8.95 nM). Lysozyme was successfully quantified in milk samples using the plasmonic dual-functional aptasensor without sample pre-treatment or target isolation, illustrating the device's utility.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
14
|
Oliveira LS, Avelino KYPS, Oliveira SRDE, Lucena-Silva N, de Oliveira HP, Andrade CAS, Oliveira MDL. Flexible genosensors based on polypyrrole and graphene quantum dots for PML/RARα fusion gene detection: A study of acute promyelocytic leukemia in children. J Pharm Biomed Anal 2023; 235:115606. [PMID: 37544275 DOI: 10.1016/j.jpba.2023.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.
Collapse
Affiliation(s)
- Léony S Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Karen Y P S Avelino
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Sevy R D E Oliveira
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Norma Lucena-Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), 50670-420 Recife, PE, Brazil; Laboratório de Biologia Molecular, Departamento de Oncologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), 50070-550 Recife, PE, Brazil
| | - Helinando P de Oliveira
- Institute Pesquisa em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
15
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
16
|
Campuzano S, Pingarrón JM. Electrochemical Affinity Biosensors: Pervasive Devices with Exciting Alliances and Horizons Ahead. ACS Sens 2023; 8:3276-3293. [PMID: 37534629 PMCID: PMC10521145 DOI: 10.1021/acssensors.3c01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical affinity biosensors are evolving at breakneck speed, strengthening and colonizing more and more niches and drawing unimaginable roadmaps that increasingly make them protagonists of our daily lives. They achieve this by combining their intrinsic attributes with those acquired by leveraging the significant advances that occurred in (nano)materials technology, bio(nano)materials and nature-inspired receptors, gene editing and amplification technologies, and signal detection and processing techniques. The aim of this Perspective is to provide, with the support of recent representative and illustrative literature, an updated and critical view of the repertoire of opportunities, innovations, and applications offered by electrochemical affinity biosensors fueled by the key alliances indicated. In addition, the imminent challenges that these biodevices must face and the new directions in which they are envisioned as key players are discussed.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
17
|
Tan K, Chen L, Cao D, Xiao W, Lv Q, Zou L. A rapid and highly sensitive ctDNA detection platform based on locked nucleic acid-assisted catalytic hairpin assembly circuits. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4548-4554. [PMID: 37642516 DOI: 10.1039/d3ay01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
As a promising biomarker of liquid biopsy, circulating tumor DNA (ctDNA) plays a paramount role in the early diagnosis of noninvasive cancer. The isothermal catalytic hairpin assembly (CHA) strategy has great potential for in vitro detection of ctDNA in low abundance. However, a traditional CHA strategy for ctDNA detection at the earlier stages of cancer remains extremely challenging, as annoying signal leakage from the 'breathing' phenomenon and nuclease degradation occur. Herein, we report a locked nucleic acid (LNA)-incorporated CHA circuit for the rapid and sensitive detection of target ctDNA. The target ctDNA intelligently catalyzed LNA-modified hairpins H1 and H2via a range of toehold-mediated strand displacement processes, leading to the continuous generation of an H1-H2 hybrid for the amplified fluorescence signal. In comparison to conventional CHA circuits, the stronger binding affinity of LNA-DNA bases greatly inhibited the breathing effect, which endowed it with greater thermodynamic stability and resistance to nuclease degradation in the LNA-assisted CHA system, thus achieving a high signal gain. The developed CHA circuit demonstrated excellent performance during target ctDNA detection, with a linear range from 10 pM to 5 nM, and its target detection limit was reached at 3.3 pM. Moreover, this LNA-assisted CHA system was successfully applied to the analysis of target ctDNA in clinical serum samples of breast cancer patients. This updated CHA system provides a general and robust platform for the sensitive detection of biomarkers of interest, thus facilitating the accurate identification and diagnosis of cancers.
Collapse
Affiliation(s)
- Kaiyue Tan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Longsheng Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China
| | - Qian Lv
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Lili Zou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| |
Collapse
|
18
|
Wu X, Ju T, Li Z, Li J, Zhai X, Han K. Target-independent hybridization chain reaction-fluorescence resonance energy transfer for sensitive assay of ctDNA based on Cas12a. Anal Chim Acta 2023; 1261:341170. [PMID: 37147050 DOI: 10.1016/j.aca.2023.341170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 05/07/2023]
Abstract
Circulating tumor DNA (ctDNA) is a noninvasive biomarker which offer valuable information for cancer diagnosis and prognosis. In this study, a target-independent fluorescent signal system, Hybridization chain reaction-Fluorescence resonance energy transfer (HCR-FRET) system, is designed and optimized. Combined with CRISPR/Cas12a system, a fluorescent biosensing protocol was developed for sensing assay of T790 M. When the target is absent, the initiator remains intact, opens the fuel hairpins and triggers the following HCR-FRET. At presence of the target, the Cas12a/crRNA binary complex specifically recognizes the target, and the Cas12a trans-cleavage activity is activated. As a result, the initiator is cleaved and subsequent HCR responses and FRET processes are attenuated. This method showed detection range from 1 pM to 400 pM with a detection limit of 316 fM. The target independent property of the HCR-FRET system endows this protocol a promising potential to transplant to the assay of other DNA target in parallel.
Collapse
Affiliation(s)
- Xuelan Wu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Ting Ju
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Zeyang Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Jingwen Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Xingwei Zhai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Kun Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China.
| |
Collapse
|
19
|
Zhong Y, Hu XG, Liu AL, Lei Y. Ultrasensitive amperometric determination of hand, foot and mouth disease based on gold nanoflower modified microelectrode. Anal Chim Acta 2023; 1252:341034. [PMID: 36935134 DOI: 10.1016/j.aca.2023.341034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Given the widespread use of point-of-care testing for diagnosis of disease, micro-scale electrochemical deoxyribonucleic acid (DNA) biosensors have become a promising area of research owing to its fast mass transfer, high current density and rapid response. In this study, a gold nanoparticles modified gold microelectrode (AuNPs/Au-Me) was constructed to determine the hand, foot and mouth disease (HFMD)-related gene. The noble metal nanoparticles modification yielded ca. 7.4-fold increase in electroactive surface area of microelectrode, and the signal for HFMD-related gene was largely magnified. Under optimal conditions, the biosensor exhibited salient selectivity and sensitivity with a low detection limit of 0.3 fM (S/N = 3), which is sufficient for clinical diagnosis of HFMD. Additionally, the developed AuNPs/Au-Me was successfully applied to determining the polymerase chain reaction (PCR) amplified products of target gene. Thus, the electrochemical DNA biosensor possesses great potential in early-stage diagnosis and long-term monitoring of various disease.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xiang-Guang Hu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
20
|
Cui YB, Yan H, Sun Z, Ling Y, Luo HQ, Li NB. A photoelectrochemical biosensor based on ZnIn2S4@AuNPs coupled with circular bipedal DNA walker for signal-on detection of circulating tumor DNA. Biosens Bioelectron 2023; 231:115295. [PMID: 37058959 DOI: 10.1016/j.bios.2023.115295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
The circulating tumor DNA (ctDNA) is a crucial cancer marker, its sensitive monitoring is useful for early diagnose and therapy of tumor-related diseases. Herein, a bipedal DNA walker with multiple recognition sites is designed through the transition of dumbbell-shaped DNA nanostructure to realize the dual amplification of the signal and achieve ultrasensitive photoelectrochemical (PEC) detection of ctDNA. Initially, the ZnIn2S4@AuNPs is obtained by combining the drop coating method with electrodeposition method. When the target is present, the dumbbell-shaped DNA structure transforms into an annular bipedal DNA walker that can walk unrestrictedly on the modified electrode. After the cleavage endonuclease (Nb.BbvCI) was added to the sensing system, the ferrocene (Fc) on the substrate is released from the electrode surface, and the transfer efficiency of photogenerated electron-hole pairs is extremely improved, enabling the "signal on" testing of ctDNA. The detection limit of the prepared PEC sensor is 0.31 fM, and the recovery of actual samples varied between 96.8 and 103.6% with an average relative standard deviation of about 8%. Meaningfully, the prepared PEC biosensor with an innovative bipedal DNA walker has potential application value for ultrasensitive detection of other nucleic acid-related biomarker.
Collapse
|
21
|
Natalia A, Zhang L, Sundah NR, Zhang Y, Shao H. Analytical device miniaturization for the detection of circulating biomarkers. NATURE REVIEWS BIOENGINEERING 2023; 1:1-18. [PMID: 37359772 PMCID: PMC10064972 DOI: 10.1038/s44222-023-00050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Diverse (sub)cellular materials are secreted by cells into the systemic circulation at different stages of disease progression. These circulating biomarkers include whole cells, such as circulating tumour cells, subcellular extracellular vesicles and cell-free factors such as DNA, RNA and proteins. The biophysical and biomolecular state of circulating biomarkers carry a rich repertoire of molecular information that can be captured in the form of liquid biopsies for disease detection and monitoring. In this Review, we discuss miniaturized platforms that allow the minimally invasive and rapid detection and analysis of circulating biomarkers, accounting for their differences in size, concentration and molecular composition. We examine differently scaled materials and devices that can enrich, measure and analyse specific circulating biomarkers, outlining their distinct detection challenges. Finally, we highlight emerging opportunities in biomarker and device integration and provide key future milestones for their clinical translation.
Collapse
Affiliation(s)
- Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Soh JO, Park BC, Park HS, Kim MS, Fu HE, Kim YK, Lee JH. Multifunctional Nanoparticle Platform for Surface Accumulative Nucleic Acid Amplification and Rapid Electrochemical Detection: An Application to Pathogenic Coronavirus. ACS Sens 2023; 8:839-847. [PMID: 36707063 PMCID: PMC9897046 DOI: 10.1021/acssensors.2c02512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023]
Abstract
Of various molecular diagnostic assays, the real-time reverse transcription polymerase chain reaction is considered the gold standard for infection diagnosis, despite critical drawbacks that limit rapid detection and accessibility. To confront these issues, several nanoparticle-based molecular detection methods have been developed to a great extent, but still possess several challenges. In this study, a novel nucleic acid amplification method termed nanoparticle-based surface localized amplification (nSLAM) is paired with electrochemical detection (ECD) to develop a nucleic acid biosensor platform that overcomes these limitations. The system uses primer-functionalized Fe3O4-Au core-shell nanoparticles for nucleic acid amplification, which promotes the production of amplicons that accumulate on the nanoparticle surfaces, inducing significantly amplified currents during ECD that identify the presence of target genetic material. The platform, applying to the COVID-19 model, demonstrates an exceptional sensitivity of ∼1 copy/μL for 35 cycles of amplification, enabling the reduction of amplification cycles to 4 cycles (∼7 min runtime) using 1 fM complementary DNA. The nSLAM acts as an accelerator that actively promotes and participates in the nucleic acid amplification process through direct polymerization and binding of amplicons on the nanoparticle surfaces. This ultrasensitive fast-response system is a promising method for detecting emerging pathogens like the coronavirus and can be extended to detect a wider variety of biomolecules.
Collapse
Affiliation(s)
- Jeong Ook Soh
- Department of Bionano Engineering,
Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
- Center for Bionano Intelligence Education and
Research, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
| | - Bum Chul Park
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
- Brain Korea Center for Smart Materials and Devices,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
- Brain Korea Center for Smart Materials and Devices,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841,
Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering,
Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
- Center for Bionano Intelligence Education and
Research, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan15588, Republic of Korea
| |
Collapse
|
23
|
Wu NJW, Aquilina M, Qian BZ, Loos R, Gonzalez-Garcia I, Santini CC, Dunn KE. The Application of Nanotechnology for Quantification of Circulating Tumour DNA in Liquid Biopsies: A Systematic Review. IEEE Rev Biomed Eng 2023; 16:499-513. [PMID: 35302938 DOI: 10.1109/rbme.2022.3159389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Technologies for quantifying circulating tumour DNA (ctDNA) in liquid biopsies could enable real-time measurements of cancer progression, profoundly impacting patient care. Sequencing methods can be too complex and time-consuming for regular point-of-care monitoring, but nanotechnology offers an alternative, harnessing the unique properties of objects tens to hundreds of nanometres in size. This systematic review was performed to identify all examples of nanotechnology-based ctDNA detection and assess their potential for clinical use. Google Scholar, PubMed, Web of Science, Google Patents, Espacenet and Embase/MEDLINE were searched up to 23rd March 2021. The review identified nanotechnology-based methods for ctDNA detection for which quantitative measures (e.g., limit of detection, LOD) were reported and biologically relevant samples were used. The pre-defined inclusion criteria were met by 66 records. LODs ranged from 10 zM to 50nM. 25 records presented an LOD of 10fM or below. Nanotechnology-based approaches could provide the basis for the next wave of advances in ctDNA diagnostics, enabling analysis at the point-of-care, but none are currently used clinically. Further work is needed in development and validation; trade-offs are expected between different performance measures e.g., number of sequences detected and time to result.
Collapse
|
24
|
Wen X, Pu H, Liu Q, Guo Z, Luo D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers (Basel) 2022; 14:6025. [PMID: 36551512 PMCID: PMC9775401 DOI: 10.3390/cancers14246025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in the world and seriously affects the quality of life of patients. The diagnostic techniques for tumors mainly include tumor biomarker detection, instrumental examination, and tissue biopsy. In recent years, liquid technology represented by circulating tumor DNA (ctDNA) has gradually replaced traditional technology with its advantages of being non-invasive and accurate, its high specificity, and its high sensitivity. ctDNA may carry throughout the circulatory system through tumor cell necrosis, apoptosis, circulating exosome secretion, etc., carrying the characteristic changes in tumors, such as mutation, methylation, microsatellite instability, gene rearrangement, etc. In this paper, ctDNA mutation and methylation, as the objects to describe the preparation process before ctDNA analysis, and the detection methods of two gene-level changes, including a series of enrichment detection techniques derived from PCR, sequencing-based detection techniques, and comprehensive detection techniques, are combined with new materials. In addition, the role of ctDNA in various stages of cancer development is summarized, such as early screening, diagnosis, molecular typing, prognosis prediction, recurrence monitoring, and drug guidance. In summary, ctDNA is an ideal biomarker involved in the whole process of tumor development.
Collapse
Affiliation(s)
- Xiaosha Wen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Huijie Pu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Quan Liu
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dixian Luo
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
25
|
Hoque S, Gonçales VR, Bakthavathsalam P, Tilley RD, Gooding JJ. A calibration-free approach to detecting microRNA with DNA-modified gold coated magnetic nanoparticles as dispersible electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4861-4866. [PMID: 36408664 DOI: 10.1039/d2ay01782b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gold coated magnetic nanoparticles (Au@MNPs), modified with DNA sequences give dispersible electrodes that can detect ultralow amounts of microRNAs and other nucleic acids but, as with most other sensors, they require calibration. Herein we show how to adapt a calibration free approach for electrochemical aptamer-based sensors on bulk electrodes to microRNA (miR-21) detection with methylene blue terminated DNA modified Au@MNPs. The electrochemical square wave voltammetry signal from the DNA-Au@MNPs when collected at a bulk electrode under magnetic control, decreases upon capture of miR-21. We show that the square wave voltammogram has concentration dependent and independent frequencies that can be used to give a calibration free signal.
Collapse
Affiliation(s)
- Sharmin Hoque
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Vinicius R Gonçales
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
26
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
27
|
Kurup C, Mohd-Naim NF, Keasberry NA, Zakaria SNA, Bansal V, Ahmed MU. Label-Free Electrochemiluminescence Nano-aptasensor for the Ultrasensitive Detection of ApoA1 in Human Serum. ACS OMEGA 2022; 7:38709-38716. [PMID: 36340071 PMCID: PMC9631400 DOI: 10.1021/acsomega.2c04300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 05/11/2023]
Abstract
A molybdenum sulfide/zirconium oxide/Nafion (MoS2/ZrO2/Naf) based electrochemiluminescence (ECL) aptasensor for the selective and ultrasensitive detection of ApoA1 is proposed, with Ru(bpy)3 2+ as the luminophore. The chitosan (CS) modification on the nanocomposite layer allowed glutaraldehyde (GLUT) cross-linking, resulting in the immobilization of ApoA1 aptamers. Scanning electron microscopy, tunneling electron microscopy, and energy dispersive X-ray spectroscopy were used to characterize the nanocomposite, while electrochemiluminescence (ECL), cyclic voltammetry, and electrochemical impedance spectroscopy were used to analyze the aptasensor assembly. The nanocomposite was used as an electrode modifier, which increased the intensity of the ECL signal. Due to the anionic environment produced on the sensor surface following the specific interaction of the ApoA1 biomarker with the sensor, more Ru(bpy)3 2+ were able to be electrostatically attached to the aptamer-ApoA1 complex, resulting in enhanced ECL signal. The ECL aptasensor demonstrated outstanding sensitivity for ApoA1 under optimal experimental conditions, with a detection limit of 53 fg/mL and a wide linear dynamic range of 0.1-1000 pg/mL. The potential practical applicability of this aptasensor was validated by analyzing ApoA1 in human serum samples, with recovery rates of 94-108% (n = 3). The proposed assay was found to be substantially better compared to the commercially available enzyme-linked immunosorbent assay method, as reflected from over 1500 times improvement in the detection limit for ApoA1.
Collapse
Affiliation(s)
- Chitra
P. Kurup
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Noor F. Mohd-Naim
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
- PAPRSB
Institute of Health Sciences, Universiti
Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Natasha A. Keasberry
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Siti N. A. Zakaria
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Vipul Bansal
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory
(NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria3000, Australia
| | - Minhaz U. Ahmed
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
- ;
| |
Collapse
|
28
|
Duong HTK, Abdibastami A, Gloag L, Barrera L, Gooding JJ, Tilley RD. A guide to the design of magnetic particle imaging tracers for biomedical applications. NANOSCALE 2022; 14:13890-13914. [PMID: 36004758 DOI: 10.1039/d2nr01897g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
Collapse
Affiliation(s)
- H T Kim Duong
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | | | - Lucy Gloag
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - Liam Barrera
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
29
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
30
|
Numan A, Singh PS, Alam A, Khalid M, Li L, Singh S. Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents. ACS OMEGA 2022; 7:27079-27089. [PMID: 35967060 PMCID: PMC9366967 DOI: 10.1021/acsomega.2c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Efficient and simple detection of chemical warfare agents (CWAs) is an essential step in minimizing the potentially lethal consequences of chemical weapons. CWAs are a family of organic chemicals that are used as chemical weapons because of their enormous severity and lethal effects when faced with unforeseen challenges. To stop the spread of CWAs, it is critical to develop a platform that detects them in a sensitive, timely, selective, and minimally invasive manner. Rapid advances in the demand for on-site sensors, metal nanoparticles, and biomarker identification for CWAs have made it possible to use fluorescence as a precise real-time and point-of-care (POCT) testing technique. For POCT-based applications, the new capabilities of micro- and nanomotors offer enormous prospects. In recent decades, significant progress has been made in the design of fluorescent sensors and the further development of noble metal nanoparticles for the detection of organophosphorus CWAs, as described in this review. Through this work, recent attempts to fabricate sensors that can detect organophosphorus CWAs through changes in their fluorescence properties have been summarized. Finally, an integrated outlook on how noble metal nanoparticles could be used to develop smart sensors for organophosphorus CWAs that communicate with and control electronic devices to monitor and improve the health of individuals.
Collapse
Affiliation(s)
- Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Prabh Simran Singh
- Department
of Pharmaceutical Chemistry, Khalsa College
of Pharmacy, Amritsar 143001, Punjab, India
| | - Aftab Alam
- College
of Pharmacy, Prince Sattam Bin Abdulaziz
University, Al-Kharj 16278, Kingdom of Saudi Arabia
| | - Mohammad Khalid
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Lijie Li
- College
of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Sima Singh
- IES
Institute of Pharmacy, IES University, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| |
Collapse
|
31
|
Chen D, Wu Y, Tilley RD, Gooding JJ. Rapid and ultrasensitive electrochemical detection of DNA methylation for ovarian cancer diagnosis. Biosens Bioelectron 2022; 206:114126. [PMID: 35240438 DOI: 10.1016/j.bios.2022.114126] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023]
Abstract
Alterations in DNA methylation, a stable epigenetic marker, are important components in the development of cancer. It is vital to develop diagnostic systems with the ability to rapidly quantify DNA methylation with high sensitivity and selectivity. However, the analysis of DNA methylation must address two main challenges: (i) ultralow abundance and (ii) differentiating methylated cytosine from normal cytosine on target DNA sequence in the presence of an overwhelming background of circulating cell-free DNA. Here we report the development of an ultrasensitive and highly-selective electrochemical biosensor for the rapid detection of DNA methylation in blood. The sensing of DNA methylation involves the hybridization on a network of probe DNA modified gold-coated magnetic nanoparticles (DNA-Au@MNPs) complementary to target DNA, and subsequently enzymatic cleavage to differentiate methylated DNA strands from corresponding unmethylated DNA strands. The biosensor presents a dynamic range from 2 aM to 20 nM for 110 nucleotide DNA sequences containing a single-site methylation with the lowest detected concentration of 2 aM. This DNA-Au@MNPs based sensor provides a promising method to achieve 35 min response time and minimally invasive diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Dongfei Chen
- School of Chemistry, Australian Centre for NanoMedicine, and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
32
|
Wang D, Zhou H, Shi Y, Sun W. A FEN 1-assisted swing arm DNA walker for electrochemical detection of ctDNA by target recycling cascade amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1922-1927. [PMID: 35527509 DOI: 10.1039/d2ay00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flap endonuclease 1 (FEN 1)-assisted swing arm DNA walker was constructed to achieve the signal amplification detection of ctDNA. The MB-labeled hairpin DNA was designed as the track and a long swing-arm DNA strand as the capture probe. The introduction of ctDNA unlocked a helper hairpin DNA, which could be captured to form the DNA duplex walker with the capture probe, and also activated the catalyst hairpin assembly. The DNA duplex walker opened the hairpin track and formed a three-base overlapping DNA structure, which was recognized and cleaved by FEN 1. Driven by the FEN 1 and the high reaction temperature, the DNA walker was initiated to hybridize with the track DNA and release multiple MB-labeled flaps for signal amplification. Owing to the excellent amplification capacity of the target recycling-induced DNA walker and programmed catalysis hairpin assembly, the one-step biosensor showed a linear detection range from 1 fM to 100 pM with a detection limit of 0.33 fM. Moreover, the sensitive detection of ctDNA in serum samples was verified, suggesting its potential application in liquid biopsy for clinical diagnosis.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Huan Zhou
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Yundong Shi
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Wanjun Sun
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| |
Collapse
|
33
|
Zhu Q, Yang Y, Gao H, Xu LP, Wang S. Bioinspired superwettable electrodes towards electrochemical biosensing. Chem Sci 2022; 13:5069-5084. [PMID: 35655548 PMCID: PMC9093108 DOI: 10.1039/d2sc00614f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Superwettable materials have attracted much attention due to their fascinating properties and great promise in several fields. Recently, superwettable materials have injected new vitality into electrochemical biosensors. Superwettable electrodes exhibit unique advantages, including large electrochemical active areas, electrochemical dynamics acceleration, and optimized management of mass transfer. In this review, the electrochemical reaction process at electrode/electrolyte interfaces and some fundamental understanding of superwettable materials are discussed. Then progress in different electrodes has been summarized, including superhydrophilic, superhydrophobic, superaerophilic, superaerophobic, and superwettable micropatterned electrodes, electrodes with switchable wettabilities, and electrodes with Janus wettabilities. Moreover, we also discussed the development of superwettable materials for wearable electrochemical sensors. Finally, our perspective for future research is presented.
Collapse
Affiliation(s)
- Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
34
|
Jia Y, Zhang N, Du Y, Ren X, Ma H, Wu D, Fan D, Wei Q, Ju H. Nanoarrays-propped in situ photoelectrochemical system for microRNA detection. Biosens Bioelectron 2022; 210:114291. [PMID: 35460967 DOI: 10.1016/j.bios.2022.114291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
The exploitation of accurate and robust photoelectrochemical (PEC) approaches in whole biosensing community counts on the smooth electrons transport and delicate biological design. An aptasensor using depositional rutile titanium dioxide/bismuth vanadate nanoarrays (TiO2/BiVO4 NAs) as photoanode generator and strand-displacement model as nucleic acid frame was developed for microRNA-155 (miRNA-155) detection root in original idea. Photoanode was fabricated via a three-step overlayer deposition procedure including hydrothermal method, electrodeposition and ion beam sputtering. With a sufficient dense of oriented arrays, it provided a solid substrate and fast electronic kinetics reaction during host-guest recognition. In situ yielding electron donors were integrated into the PEC system to provide the most accurate quantitative analysis. The nanoarrays-triggered PEC platform opens another potential perspective in biosensing.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yu Du
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
35
|
Che C, Xue R, Li N, Gupta P, Wang X, Zhao B, Singamaneni S, Nie S, Cunningham BT. Accelerated Digital Biodetection Using Magneto-plasmonic Nanoparticle-Coupled Photonic Resonator Absorption Microscopy. ACS NANO 2022; 16:2345-2354. [PMID: 35040633 DOI: 10.1021/acsnano.1c08569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rapid, ultrasensitive, and selective quantification of circulating microRNA (miRNA) biomarkers in body fluids is increasingly deployed in early cancer diagnosis, prognosis, and therapy monitoring. While nanoparticle tags enable detection of nucleic acid or protein biomarkers with digital resolution and subfemtomolar detection limits without enzymatic amplification, the response time of these assays is typically dominated by diffusion-limited transport of the analytes or nanotags to the biosensor surface. Here, we present a magnetic activate capture and digital counting (mAC+DC) approach that utilizes magneto-plasmonic nanoparticles (MPNPs) to accelerate single-molecule sensing, demonstrated by miRNA detection via toehold-mediated strand displacement. Spiky Fe3O4@Au MPNPs with immobilized target-specific probes are "activated" by binding with miRNA targets, followed by magnetically driven transport through the bulk fluid toward nanoparticle capture probes on a photonic crystal (PC). By spectrally matching the localized surface plasmon resonance of the MPNPs to the PC-guided resonance, each captured MPNP locally quenches the PC reflection efficiency, thus enabling captured MPNPs to be individually visualized with high contrast for counting. We demonstrate quantification of the miR-375 cancer biomarker directly from unprocessed human serum with a 1 min response time, a detection limit of 61.9 aM, a broad dynamic range (100 aM to 10 pM), and a single-base mismatch selectivity. The approach is well-suited for minimally invasive biomarker quantification, enabling potential applications in point-of-care testing with short sample-to-answer time.
Collapse
Affiliation(s)
- Congnyu Che
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Ruiyang Xue
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Nantao Li
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, Missouri 63031, United States
| | - Xiaojing Wang
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Bin Zhao
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, Missouri 63031, United States
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Brian T Cunningham
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Chai H, Tang Y, Guo Z, Miao P. Ratiometric Electrochemical Switch for Circulating Tumor DNA through Recycling Activation of Blocked DNAzymes. Anal Chem 2022; 94:2779-2784. [PMID: 35107269 DOI: 10.1021/acs.analchem.1c04037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circulating tumor DNA (ctDNA) serves as a powerful noninvasive and viable biomarker for the diagnosis of cancers. The abundance of ctDNA in patients with advanced stages is significantly higher than that in patients with early stages. Herein, a ratiometric electrochemical biosensor for the detection of ctDNA is developed by smart design of DNA probes and recycles of DNAzyme activation. The conformational variation of DNA structures leads to the changes of two types of electrochemical species. This enzyme-free sensing strategy promotes excellent amplification efficiency upon target recognition. The obtained results assure good analytical performances and a limit of detection as low as 25 aM is achieved. Additionally, this method exhibits outstanding selectivity and great application prospects in biological sample analysis.
Collapse
Affiliation(s)
- Hua Chai
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Ji Hua Laboratory, Foshan 528200, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
37
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Yuan R, Tang W, Zhang H, You W, Hu X, Zhang H, Chen L, Nian W, Ding S, Luo Y. Palindromic-assisted self-annealing transcription amplification for reliable genotyping of epidermal growth factor receptor exon mutations. Biosens Bioelectron 2021; 194:113633. [PMID: 34543825 DOI: 10.1016/j.bios.2021.113633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Reliable discrimination of specific epidermal growth factor receptor (EGFR) gene mutations plays a critical role in guiding lung cancer therapeutics. Until now, convenient and accurate recognition of the specific deletion of EGFR exons has remained particularly challenging. Herein, we propose a palindromic-assisted self-annealing transcription amplification (PASTA) strategy for the reliable detection of circulating EGFR exon mutations. We designed a palindromic DNA hairpin nanorobot consisting of a palindromic tail, a T7 promoter, a target recognition region, and a transcription template. The nanorobot enabled prompt self-assembly into a target-hairpin/hairpin-target dimer in the presence of single-stranded DNA target and further triggered in vitro transcription. In a proof-of-concept experiment for detecting circulating 15n-del EGFR mutation, a detection limit of 0.8 fM and a linear detection range of 1 fM to 100 pM was achieved, and an accuracy of 100% was reached in clinical validation by analyzing 20 samples from clinical lung cancer patients. Empowered by the intrinsic sensitivity and selectivity, the proposed PASTA approach will lead to the development of a universal platform for reliable molecular subtyping.
Collapse
Affiliation(s)
- Rui Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wenxin You
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Ling Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
39
|
Yang X, Liao M, Zhang H, Gong J, Yang F, Xu M, Tremblay PL, Zhang T. An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. iScience 2021; 24:103019. [PMID: 34522862 PMCID: PMC8426273 DOI: 10.1016/j.isci.2021.103019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
A liquid biopsy is a noninvasive approach for detecting double-stranded circulating tumor DNA (ctDNA) of 90-320 nucleotides in blood plasma from patients with cancer. Most techniques employed for ctDNA detection are time consuming and require expensive DNA purification kits. Electrochemiluminescence resonance energy transfer (ECL-RET) biosensors exhibit high sensitivity, a wide response range, and are promising for straightforward sensing applications. Until now, ECL-RET biosensors have been designed for sensing short single-stranded oligonucleotides of less than 45 nucleotides. In this work, an ECL-RET biosensor comprising graphitic carbon nitride quantum dots was assessed for the amplification-free detection in the blood plasma of DNA molecules coding for the EGFR L858R mutation, which is associated with non-small-cell lung cancer. Following a low-cost pre-treatment, the highly specific ECL-RET biosensor quantified double-stranded EGFR L858R DNA of 159 nucleotides diluted into the blood within a linear range of 0.01 fM to 1 pM, demonstrating its potential for noninvasive biopsies.
Collapse
Affiliation(s)
- Xidong Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - JinBo Gong
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Fan Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
40
|
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021; 22:9118. [PMID: 34502028 PMCID: PMC8431379 DOI: 10.3390/ijms22179118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (W.X.); (Z.T.); (B.Z.); (W.Z.); (C.L.)
| |
Collapse
|
41
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
42
|
Bellassai N, D’Agata R, Marti A, Rozzi A, Volpi S, Allegretti M, Corradini R, Giacomini P, Huskens J, Spoto G. Detection of Tumor DNA in Human Plasma with a Functional PLL-Based Surface Layer and Plasmonic Biosensing. ACS Sens 2021; 6:2307-2319. [PMID: 34032412 PMCID: PMC8294610 DOI: 10.1021/acssensors.1c00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Standard protocols for the analysis of circulating tumor DNA (ctDNA) include the isolation of DNA from the patient's plasma and its amplification and analysis in buffered solutions. The application of such protocols is hampered by several factors, including the complexity and time-constrained preanalytical procedures, risks for sample contamination, extended analysis time, and assay costs. A recently introduced nanoparticle-enhanced surface plasmon resonance imaging-based assay has been shown to simplify procedures for the direct detection of tumor DNA in the patient's plasma, greatly simplifying the cumbersome preanalytical phase. To further simplify the protocol, a new dual-functional low-fouling poly-l-lysine (PLL)-based surface layer has been introduced that is described herein. The new PLL-based layer includes a densely immobilized CEEEEE oligopeptide to create a charge-balanced system preventing the nonspecific adsorption of plasma components on the sensor surface. The layer also comprises sparsely attached peptide nucleic acid probes complementary to the sequence of circulating DNA, e.g., the analyte that has to be captured in the plasma from cancer patients. We thoroughly investigated the contribution of each component of the dual-functional polymer to the antifouling properties of the surface layer. The low-fouling property of the new surface layer allowed us to detect wild-type and KRAS p.G12D-mutated DNA in human plasma at the attomolar level (∼2.5 aM) and KRAS p.G13D-mutated tumor DNA in liquid biopsy from a cancer patient with almost no preanalytical treatment of the patient's plasma, no need to isolate DNA from plasma, and without PCR amplification of the target sequence.
Collapse
Affiliation(s)
- Noemi Bellassai
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
| | - Roberta D’Agata
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| | - Almudena Marti
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science & Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Stefano Volpi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Matteo Allegretti
- Oncogenomics
and Epigenetics, IRCCS Regina Elena National
Cancer Institute, Via
Elio Chianesi, 53, 00144 Rome, Italy
| | - Roberto Corradini
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124 Parma, Italy
| | - Patrizio Giacomini
- Oncogenomics
and Epigenetics, IRCCS Regina Elena National
Cancer Institute, Via
Elio Chianesi, 53, 00144 Rome, Italy
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science & Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Giuseppe Spoto
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122 Catania, Italy
- INBB,
Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
43
|
Barani M, Rahdar A, Sargazi S, Amiri MS, Sharma PK, Bhalla N. Nanotechnology for inflammatory bowel disease management: Detection, imaging and treatment. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|