1
|
Paris JC, Hei Cheung Y, Zhang T, Chang WC, Liu P, Guo Y. New Frontiers in Nonheme Enzymatic Oxyferryl Species. Chembiochem 2024; 25:e202400307. [PMID: 38900645 DOI: 10.1002/cbic.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S=2 oxyferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S=1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S=2 Fe(IV)-oxo intermediates, the discovery of the first S=1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S=2 and the S=1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S=1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.
Collapse
Affiliation(s)
- Jared C Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA
| | - Tao Zhang
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
Kayrouz CM, Ireland KA, Ying VY, Davis KM, Seyedsayamdost MR. Discovery of the selenium-containing antioxidant ovoselenol derived from convergent evolution. Nat Chem 2024; 16:1868-1875. [PMID: 39143299 DOI: 10.1038/s41557-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of a biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Here we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis using a bioinformatic search strategy that relies on the mapping of composite active site motifs. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a distinct selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Vanessa Y Ying
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Zhang T, Li K, Cheung YH, Grinstaff MW, Liu P. Photo-reduction facilitated stachydrine oxidative N-demethylation reaction: A case study of Rieske non-heme iron oxygenase Stc2 from Sinorhizobium meliloti. Methods Enzymol 2024; 703:263-297. [PMID: 39260999 DOI: 10.1016/bs.mie.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
4
|
Kayrouz CM, Ireland KA, Ying V, Davis KM, Seyedsayamdost MR. Ovoselenol, a Selenium-containing Antioxidant Derived from Convergent Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588772. [PMID: 38645211 PMCID: PMC11030361 DOI: 10.1101/2024.04.10.588772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of the first biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Using a bioinformatic search strategy that relies on mapping of composite active site motifs, we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a novel selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.
Collapse
Affiliation(s)
- Chase M. Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Kendra A. Ireland
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Vanessa Ying
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Katherine M. Davis
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
5
|
Gao Y, Zhu Y, Awakawa T, Abe I. Unusual cysteine modifications in natural product biosynthesis. RSC Chem Biol 2024; 5:293-311. [PMID: 38576726 PMCID: PMC10989515 DOI: 10.1039/d4cb00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
l-Cysteine is a highly reactive amino acid that is modified into a variety of chemical structures, including cysteine sulfinic acid in human metabolic pathways, and sulfur-containing scaffolds of amino acids, alkaloids, and peptides in natural product biosynthesis. Among the modification enzymes responsible for these cysteine-derived compounds, metalloenzymes constitute an important family of enzymes that catalyze a wide variety of reactions. Therefore, understanding their reaction mechanisms is important for the biosynthetic production of cysteine-derived natural products. This review mainly summarizes recent mechanistic investigations of metalloenzymes, with a particular focus on recently discovered mononuclear non-heme iron (NHI) enzymes, dinuclear NHI enzymes, and radical-SAM enzymes involved in unusual cysteine modifications in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaojie Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuhao Zhu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- RIKEN Center for Sustainable Resource Science Wako Saitama 351-0198 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
6
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Wei L, Liu L, Gong W. Structure of mycobacterial ergothioneine-biosynthesis C-S lyase EgtE. J Biol Chem 2024; 300:105539. [PMID: 38072054 PMCID: PMC10805701 DOI: 10.1016/j.jbc.2023.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024] Open
Abstract
L-ergothioneine is widely distributed among various microbes to regulate their physiology and pathogenicity within complex environments. One of the key steps in the ergothioneine-biosynthesis pathway, the C-S bond cleavage reaction, uses the pyridoxal 5'-phosphate dependent C-S lyase to produce the final product L-ergothioneine. Here, we present the crystallographic structure of the ergothioneine-biosynthesis C-S lyase EgtE from Mycobacterium smegmatis (MsEgtE) represents the first published structure of ergothioneine-biosynthesis C-S lyases in bacteria and shows the effects of active site residues on the enzymatic reaction. The MsEgtE and the previously reported ergothioneine-biosynthesis C-S lyase Egt2 from Neurospora crassa (NcEgt2) fold similarly. However, discrepancies arise in terms of substrate recognition, as observed through sequence and structure comparison of MsEgtE and NcEgt2. The structural-based sequence alignment of the ergothioneine-biosynthesis C-S lyase from fungi and bacteria shows clear distinctions among the recognized substrate residues, but Arg348 is critical and an extremely conserved residue for substrate recognition. The α14 helix is exclusively found in the bacteria EgtE, which represent the most significant difference between bacteria EgtE and fungi Egt2, possibly resulting from the convergent evolution of bacteria and fungi.
Collapse
Affiliation(s)
- Lili Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Wang X, Hu S, Wang J, Zhang T, Ye K, Wen A, Zhu G, Vegas A, Zhang L, Yan W, Liu X, Liu P. Biochemical and Structural Characterization of OvoA Th2: A Mononuclear Nonheme Iron Enzyme from Hydrogenimonas thermophila for Ovothiol Biosynthesis. ACS Catal 2023; 13:15417-15426. [PMID: 38058600 PMCID: PMC10696552 DOI: 10.1021/acscatal.3c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Ovothiol A and ergothioneine are thiol-histidine derivatives with sulfur substitutions at the δ-carbon or ε-carbon of the l-histidine imidazole ring, respectively. Both ovothiol A and ergothioneine have protective effects on many aging-related diseases, and the sulfur substitution plays a key role in determining their chemical and biological properties, while factors governing sulfur incorporation regioselectivities in ovothiol and ergothioneine biosynthesis in the corresponding enzymes (OvoA, Egt1, or EgtB) are not yet known. In this study, we have successfully obtained the first OvoA crystal structure, which provides critical information to explain their C-S bond formation regioselectivity. Furthermore, OvoATh2 exhibits several additional activities: (1) ergothioneine sulfoxide synthase activity akin to Egt1 in ergothioneine biosynthesis; (2) cysteine dioxygenase activity using l-cysteine and l-histidine analogues as substrates; (3) cysteine dioxygenase activity upon mutation of an active site tyrosine residue (Y406). The structural insights and diverse chemistries demonstrated by OvoATh2 pave the way for future comprehensive structure-function correlation studies.
Collapse
Affiliation(s)
- Xinye Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sha Hu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jun Wang
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ke Ye
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiwen Wen
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Guoliang Zhu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Arturo Vegas
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lixin Zhang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wupeng Yan
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Xueting Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pinghua Liu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Paris JC, Hu S, Wen A, Weitz AC, Cheng R, Gee LB, Tang Y, Kim H, Vegas A, Chang WC, Elliott SJ, Liu P, Guo Y. An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202309362. [PMID: 37640689 PMCID: PMC10592081 DOI: 10.1002/anie.202309362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.
Collapse
Affiliation(s)
- Jared C Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Sha Hu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Aiwen Wen
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Andrew C Weitz
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Hyomin Kim
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Arturo Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Martins C, Araújo M, Malfanti A, Pacheco C, Smith SJ, Ucakar B, Rahman R, Aylott JW, Préat V, Sarmento B. Stimuli-Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood-to-Brain Trafficking and Tumor Targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300029. [PMID: 36852650 DOI: 10.1002/smll.202300029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
| | - Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Stuart J Smith
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Ruman Rahman
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
11
|
Tsevelkhoroloo M, Dhakshnamoorthy V, Hong YS, Lee CR, Hong SK. Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12552-x. [PMID: 37184654 DOI: 10.1007/s00253-023-12552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Agar is a galactan and a major component of the red algal cell wall. Agar is metabolized only by specific microorganisms. The final step of the β-agarolytic pathway is mediated by α-neoagarooligosaccharide hydrolase (α-NAOSH), which cleaves neoagarobiose to D-galactose and 3,6-anhydro-α-L-galactose. In the present study, two α-NAOSHs, SCO3481 and SCO3479, were identified in Streptomyces coelicolor A3(2). SCO3481 (370 amino acids, 41.12 kDa) and SCO3479 (995 amino acids, 108.8 kDa) catalyzed the hydrolysis of the α-(1,3) glycosidic bonds of neoagarobiose, neoagarotetraose, and neoagarohexaose at the nonreducing ends, releasing 3,6-anhydro-α-L-galactose. Both were intracellular proteins without any signal peptides for secretion. Similar to all α-NAOSHs reported to date, SCO3481 belonged to the glycosyl hydrolase (GH) 117 family and formed dimers. On the other hand, SCO3479 was a large monomeric α-NAOSH belonging to the GH2 family with a β-galactosidase domain. SCO3479 also clearly showed β-galactosidase activity toward lactose and artificial substrates, but SCO3481 did not. The optimum conditions for α-NAOSH were pH 6.0 and 25 °C for SCO3481, and pH 6.0 and 30 °C for SCO3479. Enzymatic activity was enhanced by Co2+ for SCO3481 and Mg2+ for SCO3479. The β-galactosidase activity of SCO3479 was maximum at pH 7.0 and 50 °C and was increased by Mg2+. Many differences were evident in the kinetic parameters of each enzyme. Although SCO3481 is typical of the GH117 family, SCO3479 is a novel α-NAOSH that was first reported in the GH2 family. SCO3479, a unique bifunctional enzyme with α-NAOSH and β-galactosidase activities, has many advantages for industrial applications. KEY POINTS: • SCO3481 is a dimeric α-neoagarooligosaccharide hydrolase belonging to GH117. • SCO3479 is a monomeric α-neoagarooligosaccharide hydrolase belonging to GH2. • SCO3479 is a novel and unique bifunctional enzyme that also acts as a β-galactosidase.
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Vijayalakshmi Dhakshnamoorthy
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-Ro, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
12
|
Knox HL, Allen KN. Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol 2023; 72:102246. [PMID: 36599282 PMCID: PMC10251232 DOI: 10.1016/j.cbpa.2022.102246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA.
| |
Collapse
|
13
|
Nosek D, Mikołajczyk T, Cydzik-Kwiatkowska A. Anode Modification with Fe 2O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2580. [PMID: 36767954 PMCID: PMC9916399 DOI: 10.3390/ijerph20032580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how anode electrode modification with iron affects the microbiome and electricity generation of microbial fuel cells (MFCs) fed with municipal wastewater. Doses of 0.0 (control), 0.05, 0.1, 0.2, and 0.4 g Fe2O3 per the total anode electrode area were tested. Fe2O3 doses from 0.05 to 0.2 g improved electricity generation; with a dose of 0.10 g Fe2O3, the cell power was highest (1.39 mW/m2), and the internal resistance was lowest (184.9 Ω). Although acetate was the main source of organics in the municipal wastewater, propionic and valeric acids predominated in the outflows from all MFCs. In addition, Fe-modification stimulated the growth of the extracellular polymer producers Zoogloea sp. and Acidovorax sp., which favored biofilm formation. Electrogenic Geobacter sp. had the highest percent abundance in the anode of the control MFC, which generated the least electricity. However, with 0.05 and 0.10 g Fe2O3 doses, Pseudomonas sp., Oscillochloris sp., and Rhizobium sp. predominated in the anode microbiomes, and with 0.2 and 0.4 g doses, the electrogens Dechloromonas sp. and Desulfobacter sp. predominated. This is the first study to holistically examine how different amounts of Fe on the anode affect electricity generation, the microbiome, and metabolic products in the outflow of MFCs fed with synthetic municipal wastewater.
Collapse
Affiliation(s)
- Dawid Nosek
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| | - Tomasz Mikołajczyk
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, plac Łódzki 4, 10-721 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| |
Collapse
|
14
|
Wu P, Gu Y, Liao L, Wu Y, Jin J, Wang Z, Zhou J, Shaik S, Wang B. Coordination Switch Drives Selective C−S Bond Formation by the Non‐Heme Sulfoxide Synthases**. Angew Chem Int Ed Engl 2022; 61:e202214235. [DOI: 10.1002/anie.202214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yang Gu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yanfei Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jiaoyu Jin
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhanfeng Wang
- Center for Advanced Materials Research Beijing Normal University Zhuhai 519087 China
| | - Jiahai Zhou
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| |
Collapse
|
15
|
Albert T, Moënne-Loccoz P. Spectroscopic Characterization of a Diferric Mycobacterial Hemerythrin-Like Protein with Unprecedented Reactivity toward Nitric Oxide. J Am Chem Soc 2022; 144:17611-17621. [PMID: 36099449 DOI: 10.1021/jacs.2c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemerythrin-like proteins (HLPs) are broadly distributed across taxonomic groups and appear to play highly diverse functional roles in prokaryotes. Mycobacterial HLPs contribute to the survival of these pathogenic bacteria in mammalian macrophages, but their modes of action remain unclear. A recent crystallographic characterization of Mycobacterium kansasii HLP (Mka-HLP) revealed the unexpected presence of a tyrosine sidechain (Tyr54) near the coordination sphere of one of the two iron centers. Here, we show that Tyr54 is a true ligand to the Fe2(III) ion which, in conjunction with the presence of a μ-oxo group bridging the two iron(III), brings unique reactivity toward nitric oxide (NO). Monitoring the titration of Mka-HLP with NO by Fourier-transform infrared and electron paramagnetic resonance spectroscopies shows that both diferric and diferrous forms of Mka-HLP accumulate an uncoupled high-spin and low-spin {FeNO}7 pair. We assign the reactivity of the diferric protein to an initial radical reaction between NO and the μ-oxo bridge to form nitrite and a mixed-valent diiron center that can react further with NO. Amperometric measurements of NO consumption by Mka-HLP confirm that this reactivity can proceed at low micromolar concentrations of NO, before additional NO consumption, supporting a NO scavenging role for mycobacterial HLPs.
Collapse
Affiliation(s)
- Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
16
|
Abstract
Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme-substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme-substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|