1
|
Song J, Jancik-Prochazkova A, Kawakami K, Ariga K. Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science. Chem Sci 2024; 15:18715-18750. [PMID: 39568623 PMCID: PMC11575615 DOI: 10.1039/d4sc05575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Lateral nanoarchitectonics is a method of precisely designing functional materials from atoms, molecules, and nanomaterials (so-called nanounits) in two-dimensional (2D) space using knowledge of nanotechnology. Similar strategies can be seen in biological systems; in particular, biological membranes ingeniously arrange and organise functional units within a single layer of units to create powerful systems for photosynthesis or signal transduction and others. When our major lateral nanoarchitectural approaches such as layer-by-layer (LbL) assembly and Langmuir-Blodgett (LB) films are compared with biological membranes, one finds that lateral nanoarchitectonics has potential to become a powerful tool for designing advanced functional nanoscale systems; however, it is still rather not well-developed with a great deal of unexplored possibilities. Based on such a discussion, this review article examines the current status of lateral nanoarchitectonics from the perspective of in-plane functional structure organisation at different scales. These include the extension of functions at the molecular level by on-surface synthesis, monolayers at the air-water interface, 2D molecular patterning, supramolecular polymers, macroscopic manipulation and functionality of molecular machines, among others. In many systems, we have found that while the targets are very attractive, the research is still in its infancy, and many challenges remain. Therefore, it is important to look at the big picture from different perspectives in such a comprehensive review. This review article will provide such an opportunity and help us set a direction for lateral nanotechnology toward more advanced functional organization.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
| | - Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwa-no-ha Kashiwa 277-8561 Japan
| |
Collapse
|
2
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
3
|
Samayoa-Oviedo HY, Knorke H, Warneke J, Laskin J. Spontaneous ligand loss by soft landed [Ni(bpy) 3] 2+ ions on perfluorinated self-assembled monolayer surfaces. Chem Sci 2024; 15:10770-10783. [PMID: 39027285 PMCID: PMC11253159 DOI: 10.1039/d4sc02527j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Transition metal (TM) complexes are widely used in catalysis, photochemical energy conversion, and sensing. Understanding factors that affect ligand loss from TM complexes at interfaces is important both for generating catalytically-active undercoordinated TM complexes and for controlling the degradation pathways of photosensitizers and photoredox catalysts. Herein, we demonstrate that well-defined TM complexes prepared on surfaces using ion soft landing undergo substantial structural rearrangements resulting in ligand loss and formation of both stable and reactive undercoordinated species. We employ nickel bipyridine (Ni-bpy) cations as a model system and explore their structural reorganization on surfaces using a combination of experimental and computational approaches. The controlled preparation of surface layers by mass-selected deposition of [Ni(bpy)3]2+ cations provides insights into the chemical reactivity of these species on surfaces. Both surface characterization using mass spectrometry and electronic structure calculations using density functional theory (DFT) indicate that [Ni(bpy)3]2+ undergoes a substantial geometry distortion on surfaces in comparison with its gas-phase structure. This distortion reduces the ligand binding energy and facilitates the formation of the undercoordinated [Ni(bpy)2]2+. Additionally, charge reduction by the soft landed [Ni(bpy)3]2+ facilitates ligand loss. We observe that ligand loss is inhibited by co-depositing [Ni(bpy)3]2+ with a stable anion such as closo-dodecaborate dianion, [B12F12]2-. The strong electrostatic interaction between [Ni(bpy)3]2+ and [B12F12]2- diminishes the distortion of the cation due to interactions with the surface. This interaction stabilizes the soft landed cation by reducing the extent of charge reduction and its structural reorganization. Overall, this study shows the intricate interplay of charge state, ion surface interactions, and stabilization by counterions on the structure and reactivity of metal complexes on surfaces. The combined experimental and computational approach used in this study offers detailed insights into factors that affect the integrity and stability of active species relevant to energy production and catalysis.
Collapse
Affiliation(s)
- Hugo Y Samayoa-Oviedo
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA +1-765-494-5434
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
- Leibniz Institut für Oberflächenmodifizierung (IOM) Permoserstraße 15 04318 Leipzig Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA +1-765-494-5434
| |
Collapse
|
4
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Singh Z, Chiong JD, Kamal S, Majewski MB. Effects of increasing ligand conjugation in Cu(I) photosensitizers on NiO semiconductor surfaces. Dalton Trans 2024; 53:6367-6376. [PMID: 38497406 DOI: 10.1039/d3dt03890d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Dye-sensitized photoelectrodes may be used as heterogeneous components for fuel-forming reactions in photoelectrochemical cells. There has been increasing interest in developing Earth-abundant cheaper photosensitizers based on first-row transition metals. We describe here the synthesis, characterization, and study of the ground and excited state properties of three Cu(I) complexes bearing ligands with varying electron-accepting capacities and conjugation that may act as photosensitizers for wide bandgap semiconductors. Femtosecond transient absorption studies indicate that the nature of the final excited state is dictated by the extent of conjugation in the electron-accepting ligand, where shorter conjugation leads to the formation of a singly reduced ligand and longer conjugation leads to the formation of a ligand-centered final excited state. These complexes were surface anchored onto nanostructured NiO on conductive fluorine-doped tin oxide glass to fabricate photocathodes. It was found that even though the ligands with increasing conjugation have an effect on the formation of the final excited state in solution, all complexes exhibit similar photocurrents upon white light illumination, suggesting that charge transfer to NiO happens in advance of the formation of the final excited state.
Collapse
Affiliation(s)
- Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6.
| | - Joseph D Chiong
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6.
| | - Saeid Kamal
- Department of Chemistry and Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6.
| |
Collapse
|
6
|
Prakash O, Lindh L, Gupta AK, Hoang Hai YT, Kaul N, Chábera P, Lindgren F, Ericsson T, Häggström L, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Tailoring the Photophysical Properties of a Homoleptic Iron(II) Tetra N-Heterocyclic Carbene Complex by Attaching an Imidazolium Group to the (C ∧N ∧C) Pincer Ligand─A Comparative Study. Inorg Chem 2024; 63:2909-2918. [PMID: 38301278 PMCID: PMC10865346 DOI: 10.1021/acs.inorgchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Nidhi Kaul
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Fredrik Lindgren
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Tore Ericsson
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Lennart Häggström
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Reiner Lomoth
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| |
Collapse
|
7
|
Rosko MC, Wheeler JP, Alameh R, Faulkner AP, Durand N, Castellano FN. Enhanced Visible Light Absorption in Heteroleptic Cuprous Phenanthrolines. Inorg Chem 2024; 63:1692-1701. [PMID: 38190287 DOI: 10.1021/acs.inorgchem.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work presents a series of Cu(I) heteroleptic 1,10-phenanthroline chromophores featuring enhanced UVA and visible-light-harvesting properties manifested through vectorial control of the copper-to-phenanthroline charge-transfer transitions. The molecules were prepared using the HETPHEN strategy, wherein a sterically congested 2,9-dimesityl-1,10-phenanthrolne (mesPhen) ligand was paired with a second phenanthroline ligand incorporating extended π-systems in their 4,7-positions. The combination of electrochemistry, static and time-resolved electronic spectroscopy, 77 K photoluminescence spectra, and time-dependent density functional theory calculations corroborated all of the experimental findings. The model chromophore, [Cu(mesPhen)(phen)]+ (1), lacking 4,7-substitutions preferentially reduces the mesPhen ligand in the lowest energy metal-to-ligand charge-transfer (MLCT) excited state. The remaining cuprous phenanthrolines (2-4) preferentially reduce their π-conjugated ligands in the low-lying MLCT excited state. The absorption cross sections of 2-4 were enhanced (εMLCTmax = 7430-9980 M-1 cm-1) and significantly broadened across the UVA and visible regions of the spectrum compared to 1 (εMLCTmax = 6494 M-1 cm-1). The excited-state decay mechanism mirrored those of long-lived homoleptic Cu(I) phenanthrolines, yielding three distinguishable time constants in ultrafast transient absorption experiments. These represent pseudo-Jahn-Teller distortion (τ1), singlet-triplet intersystem crossing (τ2), and the relaxed MLCT excited-state lifetime (τ3). Effective light-harvesting from Cu(I)-based chromophores can now be rationalized within the HETPHEN strategy while achieving directionality in their respective MLCT transitions, valuable for integration into more complex donor-acceptor architectures and longer-lived photosensitizers.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Reem Alameh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Adrienne P Faulkner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Nicolas Durand
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
8
|
Fagnani F, Colombo A, Dragonetti C, Roberto D. Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules 2023; 29:6. [PMID: 38202589 PMCID: PMC10779943 DOI: 10.3390/molecules29010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Three decades ago, dye-sensitized solar cells (DSSCs) emerged as a route for harnessing the sun's energy and converting it into electricity. Since then, an impressive amount of work has been devoted to improving the global photovoltaic efficiency of DSSCs, trying to optimize all components of the device. Up to now, the best efficiencies have usually been reached with ruthenium(II) photosensitizers, even if in the last few years many classes of organic compounds have shown record efficiencies. However, the future of DSSCs is stringently connected to the research and development of cheaper materials; in particular, the replacement of rare metals with abundant ones is an important topic in view of the long-term sustainability of DSSCs intended to replace the consolidated fossil-based technology. In this context, copper is a valid candidate, being both an alternative to ruthenium in the fabrication of photosensitizers and a material able to replace the common triiodide/iodide redox couple. Thus, recently, some research papers have confirmed the great potential of copper(I) coordination complexes as a cheap and convenient alternative to ruthenium dyes. Similarly, the use of copper compounds as electron transfer mediators for DSSCs can be an excellent way to solve the problems related to the more common I3-/I- redox couple. The goal of this mini-review is to report on the latest research devoted to the use of versatile copper complexes as photosensitizers and electron shuttles in DSSCs. The coverage, from 2022 up to now, illustrates the most recent studies on dye-sensitized solar cells based on copper complexes as molecular materials.
Collapse
Affiliation(s)
- Francesco Fagnani
- Department of Chemistry, University of Milan, UdR-INSTM of Milan, Via C. Golgi 19, I-20133 Milan, Italy; (A.C.); (C.D.); (D.R.)
| | | | | | | |
Collapse
|
9
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
10
|
Yadagiri B, Kumar Kaliamurthy A, Yoo K, Cheol Kang H, Ryu J, Kwaku Asiam F, Lee J. Molecular Engineering of Photosensitizers for Solid-State Dye-Sensitized Solar Cells: Recent Developments and Perspectives. ChemistryOpen 2023; 12:e202300170. [PMID: 37874016 PMCID: PMC10695739 DOI: 10.1002/open.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Dye-sensitized solar cells (DSSCs) are a feasible alternative to traditional silicon-based solar cells because of their low cost, eco-friendliness, flexibility, and acceptable device efficiency. In recent years, solid-state DSSCs (ss-DSSCs) have garnered much interest as they can overcome the leakage and evaporation issues of liquid electrolyte systems. However, the poor morphology of solid electrolytes and their interface with photoanodes can minimize the device performance. The photosensitizer/dye is a critical component of ss-DSSCs and plays a vital role in the device's overall performance. In this review, we summarize recent developments and performance of photosensitizers, including mono- and co-sensitization of ruthenium, porphyrin, and metal-free organic dyes under 1 sun and ambient/artificial light conditions. We also discuss the various requirements that efficient photosensitizers should satisfy and provide an overview of their historical development over the years.
Collapse
Affiliation(s)
- Bommaramoni Yadagiri
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Ashok Kumar Kaliamurthy
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Kicheon Yoo
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Hyeong Cheol Kang
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Junyeong Ryu
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jae‐Joon Lee
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| |
Collapse
|
11
|
Body N, Bevernaegie R, Lefebvre C, Jabin I, Hermans S, Riant O, Troian-Gautier L. Photo-Catalyzed α-Arylation of Enol Acetate Using Recyclable Silica-Supported Heteroleptic and Homoleptic Copper(I) Photosensitizers. Chemistry 2023; 29:e202301212. [PMID: 37582678 DOI: 10.1002/chem.202301212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Earth-abundant photosensitizers are highly sought after for light-mediated applications, such as photoredox catalysis, depollution and energy conversion schemes. Homoleptic and heteroleptic copper(I) complexes are promising candidates in this field, as copper is abundant and the corresponding complexes are easily obtained in smooth conditions. However, some heteroleptic copper(I) complexes suffer from low (photo)stability that leads to the gradual formation of the corresponding homoleptic complex. Such degradation pathways are detrimental, especially when recyclability is desired. This study reports a novel approach for the heterogenization of homoleptic and heteroleptic Cu complexes on silica nanoparticles. In both cases, the photophysical properties upon surface immobilization were only slightly affected. Excited-state quenching with aryl diazonium derivatives occurred efficiently (108 -1010 M-1 s-1 ) with heterogeneous and homogeneous photosensitizers. Moderate but almost identical yields were obtained for the α-arylation of enol acetate using the homoleptic complex in homogeneous or heterogeneous conditions. Importantly, the silica-supported photocatalysts were recycled with moderate loss in photoactivity over multiple experiments. Transient absorption spectroscopy confirmed that excited-state electron transfer occurred from the homogeneous and heterogeneous homoleptic copper(I) complexes to aryl diazonium derivatives, generating the corresponding copper(II) center that persisted for several hundreds of microseconds, compatible with photoredox catalysis applications.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Robin Bevernaegie
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
13
|
Kulmaczewski R, Halcrow MA. Iron(II) complexes of 2,6-bis(imidazo[1,2- a]pyridin-2-yl)pyridine and related ligands with annelated distal heterocyclic donors. Dalton Trans 2023; 52:14928-14940. [PMID: 37799008 DOI: 10.1039/d3dt02747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Following a published synthesis of 2,6-bis(imidazo[1,2-a]pyridin-2-yl)pyridine (L1), treatment of α,α'-dibromo-2,6-diacetylpyridine with 2 equiv. 2-aminopyrimidine or 2-aminoquinoline in refluxing acetonitrile respectively gives 2,6-bis(imidazo[1,2-a]pyrimidin-2-yl)pyridine (L2) and 2,6-bis(imidazo[1,2-a]quinolin-2-yl)pyridine (L3). Solvated crystals of [Fe(L1)2][BF4]2 (1[BF4]2) and [Fe(L2)2][BF4]2 (2[BF4]2) are mostly high-spin, although one solvate of 1[BF4]2 undergoes thermal spin-crossover on cooling. The iron coordination geometry is consistently distorted in crystals of 2[BF4]2 which may reflect the influence of intramolecular, inter-ligand N⋯π interactions on the molecular conformation. Only 1 : 1 Fe : L3 complexes were observed in solution, or isolated in the solid state; a crystal structure of [FeBr(py)2L3]Br·0.5H2O (py = pyridine) is presented. A solvate crystal structure of high-spin [Fe(L4)2][BF4]2 (L4 = 2,6-di{quinolin-2-yl}pyridine; 4[BF4]2) is also described, which exhibits a highly distorted six-coordinate geometry with a helical ligand conformation. The iron(II) complexes are high-spin in solution at room temperature, but 1[BF4]2 and 2[BF4]2 undergo thermal spin-crossover equilibria on cooling. All the compounds exhibit a ligand-based emission in solution at room temperature. Gas phase DFT calculations mostly reproduce the spin state properties of the complexes, but show small anomalies attributed to intramolecular, inter-ligand dispersion interactions in the sterically crowded molecules.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| |
Collapse
|
14
|
Cerrato V, Volpi G, Priola E, Giordana A, Garino C, Rabezzana R, Diana E. Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5- a]pyridine: Luminescence and Structural Dependence. Molecules 2023; 28:molecules28093703. [PMID: 37175116 PMCID: PMC10179938 DOI: 10.3390/molecules28093703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
New mono-, bis-, and tris-chelate Zn(II) complexes have been synthesized starting from different Zn(II) salts and employing a fluorescent 1,3-substituted-imidazo[1,5-a]pyridine as a chelating ligand. The products have been characterized by single-crystal X-ray diffraction; mass spectrometry; and vibrational spectroscopy. The optical properties have been investigated to compare the performances of mono-, bis-, and tris-chelate forms. The collected data (in the solid state and in solution) elucidate an important modification of the ligand conformation upon metal coordination; which is responsible for a notable increase in the optical performance. An intense modification of the emission quantum yield along the series in the solid state is observed comparing mono-, bis-, and tris-chelate adducts; independently from the anionic ligand introduced by ionic exchange.
Collapse
Affiliation(s)
- Valerio Cerrato
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Emanuele Priola
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Alessia Giordana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Claudio Garino
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Roberto Rabezzana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Eliano Diana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| |
Collapse
|
15
|
Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight. Struct Chem 2023. [DOI: 10.1007/s11224-022-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
16
|
Risi G, Devereux M, Prescimone A, Housecroft CE, Constable EC. Back to the future: asymmetrical DπA 2,2'-bipyridine ligands for homoleptic copper(i)-based dyes in dye-sensitised solar cells. RSC Adv 2023; 13:4122-4137. [PMID: 36744279 PMCID: PMC9890583 DOI: 10.1039/d3ra00437f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Metal complexes used as sensitisers in dye-sensitised solar cells (DSCs) are conventionally constructed using a push-pull strategy with electron-releasing and electron-withdrawing (anchoring) ligands. In a new paradigm we have designed new DπA ligands incorporating diarylaminophenyl donor substituents and phosphonic acid anchoring groups. These new ligands function as organic dyes. For two separate classes of DπA ligands with 2,2'-bipyridine metal-binding domains, the DSCs containing the copper(i) complexes [Cu(DπA)2]+ perform better than the push-pull analogues [Cu(DD)(AA)]+. Furthermore, we have shown for the first time that the complexes [Cu(DπA)2]+ perform better than the organic DπA dye in DSCs. The synthetic studies and the device performances are rationalised with the aid of density functional theory (DFT) and time-dependent DFT (TD-DFT) studies.
Collapse
Affiliation(s)
- Guglielmo Risi
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Mike Devereux
- Department of Chemistry, University of BaselKlingelbergstrasse 80CH-4056 BaselSwitzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Catherine E. Housecroft
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Edwin C. Constable
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
17
|
Appleton JL, Gourlaouen C, Ruppert R. Remote Steric Control of the Tetrahedral Coordination Geometry around Heteroleptic Copper(I) Bis(Diimine) Complexes. Molecules 2023; 28:molecules28030983. [PMID: 36770648 PMCID: PMC9920475 DOI: 10.3390/molecules28030983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
In this study, a series of new heteroleptic copper(I) bis(diimine) complexes are described. Using one highly hindered phenanthroline ligand and a second less-hindered diimine ligand led to unexpected results. Following a two-step one-pot method to obtain heteroleptic copper(I) complexes, an almost perfect tetrahedral coordination geometry around the copper(I) ion was obtained in several cases, despite the fact that at least one ligand was not sterically encumbered near the coordination site (at the position α to the nitrogen atoms of the ligand). This was demonstrated in the solid state by resolution of crystal structures, and these findings, corroborated by calculations, showed that the non-covalent interactions between the two diimine ligands present in these complexes were governing these structural features. The electronic properties of all complexes were also determined and the fluorescence lifetimes of two complexes were compared.
Collapse
|
18
|
Synthesis, Crystal Packing Aspects and Pseudosymmetry in Coordination Compounds with a Phosphorylamide Ligand. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This work reports the synthesis and crystal structure of new closely related coordination compounds, [ML2]·nTHF, where M is Zn or Mn; L is a phosphorylmethylamide derivative of benzothiadiazole; n = 1 (M = Zn) and 1, 2 (M = Mn); and THF is tetrahydrofuran. The zinc compound, 1·THF, crystallizes in a high-symmetry space group, I41/a, that is relatively rare for compounds with organic ligands. The corresponding manganese congener, 2·THF, with a similar crystal packing, features a pseudosymmetrical structure P21/c of the doubled volume of the unit cell as compared to 1·THF. The main difference between the structures lies in a different arrangement of solvate THF molecules, which likely modulates the crystal packing of the complexes. Another manganese solvatomorph, 2·2THF, reveals a fundamentally different crystal packing while exhibiting a similar geometry of the complex. We consider the problem of localization of solvate THF molecules and the types of their disorder by the example of compounds 1–2.
Collapse
|
19
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
20
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Abstract
The production of electricity in a greener and more sustainable way by employing renewable sources is a great challenge in modern times. Photovoltaic systems represent an important possibility because sunlight is the most abundant renewable source. In this review article, recent studies (from 2018 to the present) involving novel iron and copper complexes employed as dyes in Dye-Sensitized Solar Cells (DSSCs) are reported; mono- and bimetallic Fe complexes, Cu-based dyes, and devices presenting both metals are discussed, together with the performances of the DSSCs reported in the papers and the corresponding values of the main parameters employed to characterize such solar cells. The feasibility of DSSCs employing copper and iron dyes, alone or in combination with other earth-abundant metals, is demonstrated. The proper optimization of the sensitizers, together with that of the electrolyte and of the semiconducting layer, will likely lead to the development of highly performing and cheap photovoltaic devices for future applications on a much larger scale.
Collapse
|
23
|
Wang R, Liu H, Zhang Y, Sun K, Bao W. Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203014. [PMID: 35780491 DOI: 10.1002/smll.202203014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
As an emerging solar energy utilization technology, solar redox batteries (SPRBs) combine the superior advantages of photoelectrochemical (PEC) devices and redox batteries and are considered as alternative candidates for large-scale solar energy capture, conversion, and storage. In this review, a systematic summary from three aspects, including: dye sensitizers, PEC properties, and photoelectronic integrated systems, based on the characteristics of rechargeable batteries and the advantages of photovoltaic technology, is presented. The matching problem of high-performance dye sensitizers, strategies to improve the performance of photoelectrode PEC, and the working mechanism and structure design of multienergy photoelectronic integrated devices are mainly introduced and analyzed. In particular, the devices and improvement strategies of high-performance electrode materials are analyzed from the perspective of different photoelectronic integrated devices (liquid-based and solid-state-based). Finally, future perspectives are provided for further improving the performance of SPRBs. This work will open up new prospects for the development of high-efficiency photoelectronic integrated batteries.
Collapse
Affiliation(s)
- Ronghao Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Hongmin Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Yuhao Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Weizhai Bao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| |
Collapse
|