1
|
Haque N, Chang HC, Chang CC, Davis CS. Visualizing fiber end geometry effects on stress distribution in composites using mechanophores. SOFT MATTER 2025; 21:573-584. [PMID: 39576240 DOI: 10.1039/d4sm00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Localized stress concentrations at fiber ends in short fiber-reinforced polymer composites (SFRCs) significantly affect their mechanical properties. Our research targets these stress concentrations by embedding nitro-spiropyran (SPN) mechanophores into the polymer matrix. SPN mechanophores change color under mechanical stress, allowing us to visualize and quantify stress distributions at the fiber ends. We utilize glass fibers as the reinforcing material and employ confocal fluorescence microscopy to detect color changes in the SPN mechanophores, providing real-time insights into the stress distribution. By combining this mechanophore-based stress sensing with finite element analysis (FEA), we evaluate localized stresses that develop during a single fiber pull-out test near different fiber end geometries-flat, cone, round, and sharp. This method precisely quantifies stress distributions for each fiber end geometry. The mechanophore activation intensity varies with fiber end geometry and pull-out displacement. Our results indicate that round fiber ends exhibit more gradual stress transfer into the matrix, promoting effective stress distribution. Also, different fiber end geometries lead to distinct failure mechanisms. These findings demonstrate that fiber end geometry plays a crucial role in stress distribution management, critical for optimizing composite design and enhancing the reliability of SFRCs in practical applications. By integrating mechanophores for real-time stress visualization, we can accurately map quantified stress distributions that arise during loading and identify failure mechanisms in polymer composites, offering a comprehensive approach to enhancing their durability and performance.
Collapse
Affiliation(s)
- Nazmul Haque
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Hao Chun Chang
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA.
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
2
|
Ju J, Sanoja GE, Cipelletti L, Ciccotti M, Zhu B, Narita T, Yuen Hui C, Creton C. Role of molecular damage in crack initiation mechanisms of tough elastomers. Proc Natl Acad Sci U S A 2024; 121:e2410515121. [PMID: 39475650 PMCID: PMC11551418 DOI: 10.1073/pnas.2410515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024] Open
Abstract
Tough soft materials such as multiple network elastomers (MNE) or filled elastomers are typically stretchable and include significant energy dissipation mechanisms that prevent or delay crack growth. Yet most studies and fracture models focus on steady-state propagation and damage is assumed to be decoupled from the local stress and strain fields near the crack tip. We report an in situ spatial-temporally resolved 3D measurement of molecular damage in mechanophore-labeled MNE just before a crack propagates. This technique, complemented by digital image correlation, allows us to compare the spatial distribution of both damage and deformation in single network (SN) elastomers and in MNE. Compared to SN, MNE have a wide-spread damage in front of the crack and, surprisingly, delocalize strain concentration. A continuum model, where damage distribution is fully coupled to the crack tip fields, is proposed to explain these results. Additional measurements of time-dependent molecular damage during fixed grips relaxation in the presence of a crack reveal that the less localized damage distribution delays fracture initiation. The observations and exploratory modeling reveal the dynamic fracture mechanism of MNE, providing guidance for rational design of high-performance tough elastomers.
Collapse
Affiliation(s)
- Jianzhu Ju
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| | - Gabriel E Sanoja
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78723
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier 34095, France
- Institut Universitaire de France, Paris 75005, France
| | - Matteo Ciccotti
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| | - Bangguo Zhu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Tetsuharu Narita
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| | - Chung Yuen Hui
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Costantino Creton
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| |
Collapse
|
3
|
Lee CH, Jung JK, Kim KS, Kim CJ. Hierarchical channel morphology in O-rings after two cycling exposures to 70 MPa hydrogen gas: a case study of sealing failure. Sci Rep 2024; 14:5319. [PMID: 38438433 PMCID: PMC10912206 DOI: 10.1038/s41598-024-55101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
This study investigates the impact of high-pressure hydrogen gas exposure on the structural and morphological characteristics of O-ring materials. O-ring specimens undergo two cycles of sealing under 70 MPa hydrogen gas, and their resulting variations are examined using advanced characterization techniques, including powder X-ray diffraction (PXRD), small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Our findings reveal that the lattice parameters of the O-ring material show no significant changes when exposed to 70 MPa hydrogen gas. However, in the micrometre range, the formation of a hierarchical channel morphology becomes evident. This morphology is accompanied by the separation of carbon black filler from the rubber matrix, contributing to mechanical weakening of the O-ring. These observations can be attributed to the pressure gradient that develops between the inner and outer radii of the O-ring, resulting from compression forces acting perpendicularly to the radial direction due to clamp locking.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Department of Biochemical Engineering, Chosun University, Chosundae-5-gil, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jae Kap Jung
- Hydrogen Energy Materials Research Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang Jong Kim
- LG Chem Europe GmbH, Adolph-Prior-Straße 16, 65936, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Zhou Y, Centeno SP, Zhang K, Zheng L, Göstl R, Herrmann A. Fracture Detection in Bio-Glues with Fluorescent-Protein-Based Optical Force Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210052. [PMID: 36740969 DOI: 10.1002/adma.202210052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Glues are being used to bond, seal, and repair in industry and biomedicine. The improvement of gluing performance is hence important for the development of new glues with better and balanced property spaces, which in turn necessitates a mechanistic understanding of their mechanical failure. Optical force probes (OFPs) allow the observation of mechanical material damage in polymers from the macro- down to the microscale, yet have never been employed in glues. Here, the development of a series of ratiometric OFPs based on fluorescent-protein-dye and protein-protein conjugates and their incorporation into genetically engineered bio-glues is reported. The OFPs are designed to efficiently modulate Förster resonance energy transfer upon force application thereby reporting on force-induced molecular alterations independent of concentration and fluorescence intensity both spectrally and through their fluorescence lifetime. By fluorescence spectroscopy in solution and in the solid state and by fluorescence lifetime imaging microscopy, stress concentrations are visualized and adhesive and cohesive failure in the fracture zone is differentiated.
Collapse
Affiliation(s)
- Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Silvia P Centeno
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kuan Zhang
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Lifei Zheng
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
5
|
Baumann C, Willis‐Fox N, Campagna D, Rognin E, Marten P, Daly R, Göstl R. Regiochemical effects for the mechanochemical activation of
9‐π‐extended anthracene‐maleimide Diels–Alder
adducts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen Germany
| | - Niamh Willis‐Fox
- Department of Engineering, Institute for Manufacturing University of Cambridge Cambridge UK
| | - Davide Campagna
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen Germany
| | - Etienne Rognin
- Department of Engineering, Institute for Manufacturing University of Cambridge Cambridge UK
| | - Paul Marten
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen Germany
| | - Ronan Daly
- Department of Engineering, Institute for Manufacturing University of Cambridge Cambridge UK
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
| |
Collapse
|
6
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Christian Schumacher
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| |
Collapse
|
7
|
Stratigaki M, Baumann C, Göstl R. Confocal Microscopy Visualizes Particle–Crack Interactions in Epoxy Composites with Optical Force Probe-Cross-Linked Rubber Particles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Stratigaki
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Christoph Baumann
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Robert Göstl
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| |
Collapse
|
8
|
He S, Stratigaki M, Centeno SP, Dreuw A, Göstl R. Tailoring the Properties of Optical Force Probes for Polymer Mechanochemistry. Chemistry 2021; 27:15889-15897. [PMID: 34582082 PMCID: PMC9292383 DOI: 10.1002/chem.202102938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 02/05/2023]
Abstract
The correlation of mechanical properties of polymer materials with those of their molecular constituents is the foundation for their holistic comprehension and eventually for improved material designs and syntheses. Over the last decade, optical force probes (OFPs) were developed, shedding light on various unique mechanical behaviors of materials. The properties of polymers are diverse, ranging from soft hydrogels to ultra-tough composites, from purely elastic rubbers to viscous colloidal solutions, and from transparent glasses to super black dyed coatings. Only very recently, researchers started to develop tailored OFP solutions that account for such material requirements in energy (both light and force), in time, and in their spatially detectable resolution. We here highlight notable recent examples and identify future challenges in this emergent field.
Collapse
Affiliation(s)
- Siyang He
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Maria Stratigaki
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Silvia P. Centeno
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
9
|
Sanoja GE, Morelle XP, Comtet J, Yeh CJ, Ciccotti M, Creton C. Why is mechanical fatigue different from toughness in elastomers? The role of damage by polymer chain scission. SCIENCE ADVANCES 2021; 7:eabg9410. [PMID: 34644114 PMCID: PMC8514099 DOI: 10.1126/sciadv.abg9410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/20/2021] [Indexed: 05/22/2023]
Abstract
Although elastomers often experience 10 to 100 million cycles before failure, there is now a limited understanding of their resistance to fatigue crack propagation. We tagged soft and tough double-network elastomers with mechanofluorescent probes and quantified damage by sacrificial bond scission after crack propagation under cyclic and monotonic loading. Damage along fracture surfaces and its spatial localization depend on the elastomer design, as well as on the applied load (i.e., cyclic or monotonic). The key result is that reversible elasticity and strain hardening at low and intermediate strains dictates fatigue resistance, whereas energy dissipation at high strains controls toughness. This information serves to engineer fatigue-resistant elastomers, understand fracture mechanisms, and reduce the environmental footprint of the polymer industry.
Collapse
Affiliation(s)
- Gabriel E. Sanoja
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS UMR 7615, 75005 Paris, France
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Corresponding author. (G.E.S.); (C.C.)
| | - Xavier P. Morelle
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS UMR 7615, 75005 Paris, France
| | - Jean Comtet
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS UMR 7615, 75005 Paris, France
| | - C. Joshua Yeh
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS UMR 7615, 75005 Paris, France
| | - Matteo Ciccotti
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS UMR 7615, 75005 Paris, France
| | - Costantino Creton
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS UMR 7615, 75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
- Corresponding author. (G.E.S.); (C.C.)
| |
Collapse
|
10
|
Abstract
AbstractOptical force probes (OFPs) are force-responsive molecules that report on mechanically induced transformations by the alteration of their optical properties. Yet, their modular design and incorporation into polymer architectures at desired positions is challenging. Here we report triazole-extended anthracene OFPs that combine two modular ‘click’ reactions in their synthesis potentially allowing their incorporation at desirable positions in complex polymer materials. Importantly, these retain the excellent optical properties of their parent 9-π-extended anthracene OFP counterparts.
Collapse
Affiliation(s)
- Robert Göstl
- DWI – Leibniz Institute for Interactive Materials
| | - Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University
| |
Collapse
|