1
|
Wang L, Dai Z, Bi J, Chen Y, Wang Z, Sun Z, Ji Z, Wang H, Zhang Y, Wang L, Mao J, Yang J. Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration. Mater Today Bio 2024; 29:101253. [PMID: 39399244 PMCID: PMC11470592 DOI: 10.1016/j.mtbio.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zihan Dai
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
| | - Ziyu Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Zhongjie Ji
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Yan Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Limei Wang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Junxing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| |
Collapse
|
2
|
Zhang H, Wang Y, Qiang H, Leng D, Yang L, Hu X, Chen F, Zhang T, Gao J, Yu Z. Exploring the frontiers: The potential and challenges of bioactive scaffolds in osteosarcoma treatment and bone regeneration. Mater Today Bio 2024; 29:101276. [PMID: 39444939 PMCID: PMC11497376 DOI: 10.1016/j.mtbio.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The standard treatment for osteosarcoma combines surgery with chemotherapy, yet it is fraught with challenges such as postoperative tumor recurrence and chemotherapy-induced side effects. Additionally, bone defects after surgery often surpass the body's regenerative ability, affecting patient recovery. Bioengineering offers a novel approach through the use of bioactive scaffolds crafted from metals, ceramics, and hydrogels for bone defect repair. However, these scaffolds are typically devoid of antitumor properties, necessitating the integration of therapeutic agents. The development of a multifunctional therapeutic platform incorporating chemotherapeutic drugs, photothermal agents (PTAs), photosensitizers (PIs), sound sensitizers (SSs), magnetic thermotherapeutic agents (MTAs), and naturally occurring antitumor compounds addresses this limitation. This platform is engineered to target osteosarcoma cells while also facilitating bone tissue repair and regeneration. This review synthesizes recent advancements in integrated bioactive scaffolds (IBSs), underscoring their dual role in combating osteosarcoma and enhancing bone regeneration. We also examine the current limitations of IBSs and propose future research trajectories to overcome these hurdles.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Dewen Leng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Luling Yang
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Feiyan Chen
- Department of Orthopedics, Huashan Hospital, Fudan University Shanghai, 201508, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| |
Collapse
|
3
|
Jiang H, Luo Y, Li B, Wu C, Wang D, Xin Y, Xu W, Xiao J. IL-11-Engineered Macrophage Membrane-Coated Reactive Oxygen Species-Responsive Nanoparticles for Targeted Delivery of Doxorubicin to Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39361523 PMCID: PMC11493053 DOI: 10.1021/acsami.4c11516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Osteosarcoma (OS) is a lethal malignant orthotopic bone tumor that primarily affects children and adolescents. Biomimetic nanocarriers have attracted wide attention as a new strategy for delivering chemotherapy agents to the OS. However, challenges such as rapid clearance and limited targeting hinder the effectiveness of OS chemotherapy. In this study, we designed reactive oxygen species (ROS)-responsive nanoparticles (NPs) coated with an interleukin (IL)11-engineered macrophage membrane (MM). The camouflage by MMs prevents clearance of IL-11-engineered MM-coated NPs loaded with doxorubicin (IL-11/MM@NPs/Dox) by the immune system. Moreover, the macrophage membrane combined with surface-expressed IL-11 not only directed IL-11/MM@NPs/Dox to OS tissues but also selectively identified IL-11 receptor alpha (IL-11Rα)-enriched OS cells. Within these cells, elevated levels of ROS triggered the controlled release of Dox from the ROS-responsive NPs. The synergistic modification of targeted ligand conjugation and cell membrane coating on the ROS-responsive NPs enhanced drug availability and reduced toxic side effects, thereby boosting the efficacy of OS chemotherapy. In summary, our findings suggest that IL-11/MM@NPs/Dox represents a promising approach to improving OS chemotherapy efficacy while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Hao Jiang
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| | - Ying Luo
- Changhai
Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Bo Li
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| | - Chunbiao Wu
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| | - Da Wang
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| | - Yingye Xin
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| | - Wei Xu
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| | - Jianru Xiao
- Spine
Tumor Center, Changzheng Hospital, Naval
Medical University, 415
Feng Yang Road, Shanghai 200003, People’s Republic
of China
| |
Collapse
|
4
|
Yu N, Zhou J, Xu H, Wang F, Wang X, Tang L, Li J, Wang X, Lu X. Near-infrared photoactivatable three-in-one nanoagents to aggravate hypoxia and enable amplified photo-chemotherapy. BIOMATERIALS ADVANCES 2024; 163:213962. [PMID: 39032435 DOI: 10.1016/j.bioadv.2024.213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Solid tumors create a hypoxic microenvironment and this character can be utilized for cancer therapy, but the hypoxia levels are insufficient to achieve satisfactory therapeutic benefits. Some tactics have been used to improve hypoxia, which however will cause side effects due to the uncontrolled drug release. We herein report near-infrared (NIR) photoactivatable three-in-one nanoagents (PCT) to aggravate tumor hypoxia and enable amplified photo-combinational chemotherapy. PCT are formed based on a thermal-responsive liposome nanoparticle containing three therapeutic agents: a hypoxia responsive prodrug tirapazamine (TPZ) for chemotherapy, a vascular targeting agent combretastatin A-4 (CA4) for vascular disturbance and a semiconducting polymer for both photodynamic therapy (PDT) and photothermal therapy (PTT). With NIR laser irradiation, PCT generate heat for PTT and destructing thermal-responsive liposomes to achieve activatable releases of TPZ and CA4. Moreover, PCT produce singlet oxygen (1O2) for PDT via consuming tumor oxygen. CA4 can disturb the blood vessels in tumor microenvironment to aggravate the hypoxic microenvironment, which results in the activation of TPZ for amplified chemotherapy. PCT thus enable PTT, PDT and hypoxia-amplified chemotherapy to afford a high therapeutic efficacy to almost absolutely eradicate subcutaneous 4 T1 tumors and effectively inhibit tumor metastases in lung and liver. This work presents an activatable three-in-one therapeutic nanoplatform with remotely controllable and efficient therapeutic actions to treat cancer.
Collapse
Affiliation(s)
- Ningyue Yu
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jianhui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Haiming Xu
- Anorectal surgery Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Liming Tang
- Gastrointestinal Surgery Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaoying Wang
- Office of Hospital Infection and Disease Control and Prevention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
5
|
Lacroce E, Pizzetti F, Urrego NMB, Nunziata G, Masi M, Rossi F. Magnetically Active Bicontinuous Polymer Structures for Multiple Controlled Drug Delivery. Macromol Biosci 2024; 24:e2400084. [PMID: 38733249 DOI: 10.1002/mabi.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The targeted delivery of drugs using wireless navigable magnetic robots allows the delivery of drug molecules to be controlled non only in time but also in space, improving medical outcomes. The main disadvantages behind their use lies in the low amount of drug that can be transported and the single nature of drug that can be loaded (hydrophilic or hydrophobic). These considerations limit their use in co-delivery systems, now recognized to be very promising for many different pathologies. A magnetic bijel-like structure is developed to load and release different types of molecules (hydrophilic and hydrophobic). In this work, the use of ε-caprolactone is explored, which can polymerize, forming hydrophobic domains (oil phase). After mixing with iron oxide nanoparticles (NPs), the water dispersion creates a magnetic biphasic porous structure without phase separation. The resulting device shows good performance both in magnetic actuation and as a drug delivery system.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Nicolás M Barbosa Urrego
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Giuseppe Nunziata
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| |
Collapse
|
6
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Unnikrishnan Meenakshi D, Narde GK, Ahuja A, Al Balushi K, Francis AP, Khan SA. Therapeutic Applications of Nanoformulated Resveratrol and Quercetin Phytochemicals in Colorectal Cancer-An Updated Review. Pharmaceutics 2024; 16:761. [PMID: 38931884 PMCID: PMC11206904 DOI: 10.3390/pharmaceutics16060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Natural compounds such as polyphenols play several positive roles in maintaining the oxidative and inflammatory capacity of cells, which leads to their potential use as anticancer therapeutics. There is promising evidence for the in vitro and in vivo anticancer activity of many polyphenols, including resveratrol and quercetin, specifically in the treatment of colorectal cancer (CRC). There is a clear association between resveratrol and quercetin in interfering with the mechanistic pathways involved in CRC, such as Wnt, P13K/AKT, caspase-3, MAPK, NF-κB, etc. These molecular pathways establish the role of resveratrol and quercetin in controlling cancer cell growth, inducing apoptosis, and inhibiting metastasis. The major bottleneck in the progression of the use of resveratrol and quercetin as anticancer therapeutics is their reduced bioavailability in vivo because of their rapid metabolism in humans. Recent advancements in various nanotechnological formulations are promising for overcoming these bioavailability issues. Various nanoformulations of resveratrol and quercetin have shown an optimistic impact on reducing the solubility and improving the stability of resveratrol and quercetin in vivo. A combinatorial approach using nanoformulations of resveratrol with quercetin could potentially increase the impact of resveratrol in controlling CRC cell proliferation. This review discusses the mechanism of resveratrol and quercetin, the two bioactive polyphenolics, in colon cancer, with an emphasis on various types of nanoformulations of the two molecules targeting colon cancer. It also explores the synergistic effect of combining resveratrol and quercetin in various nanoformulations, targeting colon cancer. This research delves into the enhanced pharmacokinetics and potential chemotherapeutic benefits of these bioactive polyphenolics when used together in innovative ways.
Collapse
Affiliation(s)
| | - Gurpreet Kaur Narde
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Alka Ahuja
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Khalid Al Balushi
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| |
Collapse
|
8
|
Mo Z, Deng Y, Bao Y, Liu J, Jiang Y. Evaluation of cardiotoxicity of anthracycline-containing chemotherapy regimens in patients with bone and soft tissue sarcomas: A study of the FDA adverse event reporting system joint single-center real-world experience. Cancer Med 2023; 12:21709-21724. [PMID: 38054208 PMCID: PMC10757145 DOI: 10.1002/cam4.6730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES To assess the occurrence of cardiotoxicity in patients with tumors receiving anthracycline-based chemotherapy, especially for sarcomas. METHODS This study summarized the types and frequency of adverse events (AEs) for three anthracyclines from the FDA adverse event reporting system (FAERS) database. FAERS data from January 2004 to June 2022 were collected and analyzed. Disproportionality analyses, logistic regression, and descriptive analysis were used to compare the differences in cardiac disorders. A retrospective cohort study was conducted in a single center between December 2008 and May 2022. Our hospital-treated patients with bone and soft tissue sarcomas (BSTSs) with anthracycline-containing chemotherapy were analyzed. Serum markers, echocardiography, and electrocardiography have been used to evaluate cardiotoxic events. RESULTS One hundred thousand and seventy-five AE reports were obtained for doxorubicin (ADM), epirubicin (EPI), and liposome doxorubicin (L-ADM) from the FAERS database. ADM (OR = 3.1, p < 0.001), EPI (OR = 1.5, p < 0.001), and sarcomas (OR = 1.8, p < 0.001) may increase the probability of cardiac disorders. Cardiac failure, cardiotoxicity, and cardiomyopathy were anthracyclines' top 3 frequent AEs. Among patients receiving ADM-containing therapy, those with ADM applied at doses ≥75 mg/m2 /cycle were more likely to develop cardiac disorders than the other subgroups (OR = 3.5, p < 0.001). Patients younger than 18 are more likely to benefit from dexrazoxane prevention of cardiac failure. Six hundred and eighty-three patients with BSTSs receiving anthracycline-based chemotherapy were analyzed in our center. Patients receiving ADM-containing chemotherapy were likelier to experience abnormalities in serum troponin-T and left ventricular ejection fraction (p < 0.05). 2.0% (6/300) of patients receiving ADM-containing chemotherapy required adjustment of the chemotherapy regimen because of cardiotoxicity, whereas none were in the EPI or L-ADM groups. CONCLUSIONS AND RELEVANCE Among patients receiving anthracycline-containing therapy, patients with BSTSs were more likely to develop cardiac disorders than other tumors. In addition, patients with BSTSs receiving ADM chemotherapy had a higher likelihood of cardiotoxic events than those receiving EPI or L-ADM.
Collapse
Affiliation(s)
- Zeming Mo
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yaotiao Deng
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yiwen Bao
- Department of OncologyThe People's Hospital of QiannanDuyunGuizhouChina
| | - Jie Liu
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yu Jiang
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Kuo YC, Yen MH, De S, Rajesh R, Tai CK. Optimized lipopolymers with curcumin to enhance AZD5582 and GDC0152 activity and downregulate inhibitors of apoptosis proteins in glioblastoma multiforme. BIOMATERIALS ADVANCES 2023; 154:213639. [PMID: 37793310 DOI: 10.1016/j.bioadv.2023.213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Inhibition to glioblastoma multiforme (GBM) propagation is a critical challenge in clinical practice because binding of inhibitors of apoptosis proteins (IAPs) to caspase prevents cancer cells from death. In this study, folic acid (FA), lactoferrin (Lf) and rabies virus glycoprotein (RVG) were grafted on lipopolymers (LPs) composed of poly(ε-caprolactone) and Compritol 888 ATO to encapsulate AZD5582 (AZD), GDC0152 (GDC) and curcumin (CURC). The standard deviations of initial particle diameter and particle diameter after storage for 30 days were involved in LP composition optimization. The functionalized LPs were used to permeate the blood-brain barrier (BBB) and constrain IAP quantity in GBM cells. Experimental results revealed that an increase in Span 20 (emulsifier) concentration enlarged the size of LPs, and enhanced the entrapment and releasing efficiency of AZD, DGC and CURC. 1H nuclear magnetic resonance spectra showed that the hydrogen bonds between the LPs and drugs supported the sustained release of AZD, DGC and CURC from the LPs. The LPs modified with the three targeting biomolecules facilitated the penetration of AZD, GDC and CURC across the BBB, and could recognize U87MG cells and human brain cancer stem cells. Immunofluorescence staining, flow cytometry and western blot demonstrated that CURC-incorporated LPs enhanced AZD and GDC activity in suppressing cellular IAP 1 (cIAP1) and X-linked IAP (XIAP) levels, and raising caspase-3 level in GBM. Surface FA, Lf and RVG also promoted the ability of the drug-loaded LPs to avoid carcinoma growth. The current FA-, Lf- and RVG-crosslinked LPs carrying AZD, DGC and CURC can be promising in hindering IAP expressions for GBM management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Meng-Hui Yen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
10
|
Chen W, Li Z, Yu N, Zhang L, Li H, Chen Y, Gong F, Lin W, He X, Wang S, Wu Y, Ji G. Bone-targeting exosome nanoparticles activate Keap1 / Nrf2 / GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells. J Nanobiotechnology 2023; 21:355. [PMID: 37775799 PMCID: PMC10541697 DOI: 10.1186/s12951-023-02129-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND In recent years, the development of BMSCs-derived exosomes (EXO) for the treatment of osteosarcoma (OS) is a safe and promising modality for OS treatment, which can effectively deliver drugs to tumor cells in vivo. However, the differences in the drugs carried, and the binding of EXOs to other organs limit their therapeutic efficacy. Therefore, improving the OS-targeting ability of BMSCs EXOs and developing new drugs is crucial for the clinical application of targeted therapy for OS. RESULTS In this study, we constructed a potential therapeutic nano platform by modifying BMSCs EXOs using the bone-targeting peptide SDSSD and encapsulated capreomycin (CAP) within a shell. These constructed nanoparticles (NPs) showed the ability of homologous targeting and bone-targeting exosomes (BT-EXO) significantly promotes cellular endocytosis in vitro and tumor accumulation in vivo. Furthermore, our results revealed that the constructed NPs induced ferroptosis in OS cells by prompting excessive accumulation of reactive oxygen species (ROS), Fe2+ aggregation, and lipid peroxidation and further identified the potential anticancer molecular mechanism of ferroptosis as transduced by the Keap1/Nrf2/GPX4 signaling pathway. Also, these constructed NP-directed ferroptosis showed significant inhibition of tumor growth in vivo with no significant side effects. CONCLUSION These results suggest that these constructed NPs have superior anticancer activity in mouse models of OS in vitro and in vivo, providing a new and promising strategy for combining ferroptosis-based chemotherapy with targeted therapy for OS.
Collapse
Affiliation(s)
- Wenkai Chen
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zongguang Li
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Naichun Yu
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Linlin Zhang
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongyu Li
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yongjie Chen
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fengqing Gong
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenping Lin
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Xu He
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Siyuan Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Wu
- Department of Pathology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guangrong Ji
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Nafo W. Polymer-based nanosystems and their applications in bone anticancer therapy. Front Chem 2023; 11:1218511. [PMID: 37483271 PMCID: PMC10361662 DOI: 10.3389/fchem.2023.1218511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
The mortality rate of bone cancer has witnessed a substantial reduction in recent years, all thanks to the advent of advanced cancer treatment modalities such as surgical intervention, radiation, and chemotherapy. Nevertheless, these popular modalities come with a set of clinical challenges, including non-specificity, side effects, and drug intolerance. In recent years, polymer-based nanosystems have emerged as a promising solution in bone anti-cancer therapy by virtue of their unique physical and chemical properties. These nanosystems can be tailored for use in different drug release mechanisms for therapeutic implementations. This review delves into the efficacy of these therapy applications in bone cancer (with a focus on one of the most common types of cancers, Osteosarcoma) treatment and their correlation with the properties of polymer-based nanosystems, in addition to their interaction with the tumor microenvironment and the biological milieu.
Collapse
|
12
|
Han GD, Dai J, Hui HX, Zhu J. ALOX5AP suppresses osteosarcoma progression via Wnt/β-catenin/EMT pathway and associates with clinical prognosis and immune infiltration. J Orthop Surg Res 2023; 18:446. [PMID: 37344882 DOI: 10.1186/s13018-023-03919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common malignant neoplasms in children and adolescents. Immune infiltration into the microenvironment of the tumor has a positive correlation with overall survival in patients with OS. The purpose of this study was to search for potential diagnostic markers that are involved in immune cell infiltration for OS. Patients with OS who acquired metastases within 5 years (n = 34) were compared to patients who did not develop metastases within 5 years (n = 19). Differentially expressed genes (DEGs) were tested for in both patient groups. To discover possible biomarkers, the LASSO regression model and the SVM-RFE analysis were both carried out. With the assistance of CIBERSORT, the compositional patterns of the 22 different types of immune cell fraction in OS were estimated. In this research, a total of 33 DEGs were obtained: 33 genes were significantly downregulated. Moreover, we identified six critical genes, including ALOX5AP, HLA-DOA, HLA-DMA, HLA-DRB4, HCLS1 and LOC647450. ROC assays confirmed their diagnostic value with AUC > 0.7. In addition, we found that the six critical genes were associated with immune infiltration. Then, we confirmed the expression of ALOX5AP was distinctly decreased in OS specimens and cell lines. High expression of ALOX5AP predicted an advanced clinical stage and overall survival of OS patients. Functionally, we found that overexpression of ALOX5AP distinctly suppressed the proliferation, migration, invasion and EMT via modulating Wnt/β-catenin signaling. Overall, we found that ALOX5AP overexpression inhibits OS development via regulation of Wnt/β-catenin signaling pathways, suggesting ALOX5AP as a novel molecular biomarker for enhanced therapy of OS.
Collapse
Affiliation(s)
- Guo-Dong Han
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jian Dai
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Hong-Xia Hui
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jing Zhu
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| |
Collapse
|
13
|
He L, Habibovic P, van Rijt S. Selenium-incorporated mesoporous silica nanoparticles for osteosarcoma therapy. Biomater Sci 2023; 11:3828-3839. [PMID: 37074160 PMCID: PMC10227887 DOI: 10.1039/d2bm02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
Selenium (Se) compounds are promising chemotherapeutics due to their ability to inhibit cancer cell activity via the generation of reactive oxygen species (ROS). However, to circumvent adverse effects on bone healthy cells, new methods are needed to allow intracellular Se delivery. Mesoporous silica nanoparticles (MSNs) are promising carriers for therapeutic ion delivery due to their biocompability, rapid uptake via endocytosis, and ability to efficiently incorporate ions within their tunable structure. With the aim of selectively inhibiting cancer cells, here we developed three types of MSNs and investigated their ability to deliver Se. Specifically, MSNs containing SeO32- loaded on the surface and in the pores (MSN-SeL), SeO32- doped in the silica matrix (Se-MSNs) and Se nanoparticles (SeNP) coated with mesoporous silica (SeNP-MSNs), were successfully synthesized. All synthesized nanoparticles were stable in neutral conditions but showed rapid Se release in the presence of glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH). Furthermore, all nanoparticles were cytotoxic towards SaoS-2 cells and showed significantly lower toxicity towards healthy osteoblasts, where Se doped MSNs showed lowest toxicity towards osteoblasts. We further show that the nanoparticles could induce ROS and cell apoptosis. Here we demonstrate MSNs as promising Se delivery carriers for osteosarcoma (OS) therapy.
Collapse
Affiliation(s)
- Lei He
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Zhu WT, Zeng XF, Yang H, Jia ML, Zhang W, Liu W, Liu SY. Resveratrol Loaded by Folate-Modified Liposomes Inhibits Osteosarcoma Growth and Lung Metastasis via Regulating JAK2/STAT3 Pathway. Int J Nanomedicine 2023; 18:2677-2691. [PMID: 37228445 PMCID: PMC10204760 DOI: 10.2147/ijn.s398046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background Osteosarcoma is a malignant bone tumor with a high rate of lung metastasis and mortality. It has been demonstrated that resveratrol can inhibit tumor proliferation and metastasis, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare folate-modified liposomes loaded with resveratrol to investigate its anti-osteosarcoma effect in vitro and in vivo. Methods We prepared and characterized resveratrol liposomes modified with folate (denoted as, FA-Res/Lps). The effects of FA-Res/Lps on human osteosarcoma cell 143B proliferation, apoptosis, and migration were investigated by MTT, cell cloning, wound-healing assay, transwell, and flow cytometry. A xenograft tumor and lung metastasis model of osteosarcoma was constructed to study the therapeutic effects of FA-Res/Lps on the growth and metastasis of osteosarcoma in vivo. Results The FA-Res/Lps were prepared with a particle size of 118.5 ± 0.71 and a small dispersion coefficient of 0.154 ± 0.005. We found that FA-modified liposomes significantly increased resveratrol uptake by osteosarcoma cells 143B in flow cytometric assay, resulting in FA-Res/Lps, which inhibit tumor proliferation, migration and induce apoptosis more effectively than free Res and Res/Lps. The mechanism of action may be associated with the inhibition of JAK2/STAT3 signaling. In vivo imaging demonstrated that FA-modified DiR-modified liposomes significantly increased the distribution of drugs at the tumor site, leading to significant inhibition of osteosarcoma growth and metastasis by FA-Res/Lps. Furthermore, we found that FA-Res/Lps did not cause any adverse effects on mice body weight, liver, or kidney tissues. Conclusion Taken together, the anti-osteosarcoma effect of resveratrol is significantly enhanced when it is loaded into FA-modified liposomes. FA-Res/Lps is a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wen Ting Zhu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People’s Republic of China
| | - Xiang Feng Zeng
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hua Yang
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Meng Lei Jia
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People’s Republic of China
| | - Wei Zhang
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Sheng Yao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
| |
Collapse
|
15
|
Yuan P, Min Y, Zhao Z. Multifunctional nanoparticles for the treatment and diagnosis of osteosarcoma. BIOMATERIALS ADVANCES 2023; 151:213466. [PMID: 37229927 DOI: 10.1016/j.bioadv.2023.213466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor in adolescents. Currently, the commonly used treatment strategies for OS include surgery, chemotherapy and radiotherapy. However, these methods have some problems that cannot be ignored, such as postoperative sequelae and severe side effects. Therefore, in recent years, researchers have been looking for other means to improve the treatment or diagnosis effect of OS and increase the overall survival rate of patients. With the development of nanotechnology, nanoparticles (NPs) have presented excellent properties in improving the therapeutic efficacy of drugs for OS. Nanotechnology makes it possible for NPs to combine various functional molecules and drugs to achieve multiple therapeutic effects. This review presents the important properties of multifunctional NPs for the treatment and diagnosis of OS and focuses on the research progress of common NPs applied for drug or gene delivery, phototherapy and diagnosis of OS, such as carbon-based quantum dots, metal, chitosan and liposome NPs. Finally, the promising prospects and challenges of developing multifunctional NPs with enhanced efficacy are discussed, which lays the foundation and direction for improving the future therapeutic and diagnostic methods of OS.
Collapse
Affiliation(s)
- Ping Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
16
|
Chen C, Wang S, Wang J, Yao F, Tang X, Guo W. Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioeng 2023; 7:011501. [PMID: 36845905 PMCID: PMC9957606 DOI: 10.1063/5.0137026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Despite recent developments worldwide in the therapeutic care of osteosarcoma (OS), the ongoing challenges in overcoming limitations and side effects of chemotherapy drugs warrant new strategies to improve overall patient survival. Spurred by rapid progress in biomedicine, nanobiotechnology, and materials chemistry, chemotherapeutic drug delivery in treatment of OS has become possible in recent years. Here, we review recent advances in the design of drug delivery system, especially for chemotherapeutic drugs in OS, and discuss the relative merits in trials along with future therapeutic options. These advances may pave the way for novel therapies requisite for patients with OS.
Collapse
Affiliation(s)
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China
| | - Juan Wang
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Fangzhou Yao
- Wuzhen Laboratory, Jiaxing, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China,Author to whom correspondence should be addressed:. Tel.: ±86 18406559069
| |
Collapse
|
17
|
Giordano F, Lenna S, Baudo G, Rampado R, Massaro M, De Rosa E, Ewing A, Kurenbekova L, Agostini M, Yustein JT, Taraballi F. Tyrosine kinase inhibitor-loaded biomimetic nanoparticles as a treatment for osteosarcoma. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
AbstractSmall-molecule tyrosine kinase inhibitors (TKIs) represent a potentially powerful approach to the treatment of osteosarcoma (OS). However, dose-limiting toxicity, therapeutic efficacy, and targeting specificity are significant barriers to the use of TKIs in the clinic. Notably among TKIs, ponatinib demonstrated potent anti-tumor activity; however, it received an FDA black box warning for potential side effects. We propose ponatinib-loaded biomimetic nanoparticles (NPs) to repurpose ponatinib as an efficient therapeutic option for OS. In this study, we demonstrate enhanced targeting ability and maintain potent ponatinib nano-therapeutic activity, while also reducing toxicity. In in vitro two- and three-dimensional models, we demonstrate that ponatinib-loaded biomimetic NPs maintain the efficacy of the free drug, while in vivo we show that they can improve tumor targeting, slow tumor growth, and reduce evidence of systemic toxicities. Though there is limited Pon encapsulation within NPs, this platform may improve current therapeutic approaches and reduce dosage-related side effects to achieve better clinical outcomes in OS patients.
Graphical Abstract
Collapse
|
18
|
Tian H, Wu R, Feng N, Zhang J, Zuo J. Recent advances in hydrogels-based osteosarcoma therapy. Front Bioeng Biotechnol 2022; 10:1042625. [PMID: 36312544 PMCID: PMC9597306 DOI: 10.3389/fbioe.2022.1042625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence among adolescents. Traditional tumor eradication avenues for OS such as chemotherapy, surgical therapy and radiation therapy usually have their own drawbacks including recurrence and metastasis. In addition, another serious issue in the treatment of OS is bone repair because the bone after tumor invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or natural platform with a porous three-dimensional structure, can be applied as desirable platforms for OS treatment. They can not only be used as carriers for tumor therapeutic drugs but mimic the extracellular matrix for the growth and differentiation of mesenchymal stem cells (MSCs), thus providing tumor treatment and enhancing bone regeneration at the same time. This review focuses the application of hydrogels in OS suppression and bone regeneration, and give some suggests on future development.
Collapse
Affiliation(s)
- Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrui Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| |
Collapse
|
19
|
Li Q, Feng R, Chang Z, Liu X, Tang H, Bai Q. Hybrid biomimetic assembly enzymes based on ZIF-8 as “intracellular scavenger” mitigating neuronal damage caused by oxidative stress. Front Bioeng Biotechnol 2022; 10:991949. [PMID: 36118586 PMCID: PMC9471668 DOI: 10.3389/fbioe.2022.991949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD) was immobilized in zeolite imidazolate framework-8 (ZIF-8) through biomimetic mineralization method, namely SOD@ZIF-8, which was then used in the treatment of nerve damage by eliminating reactive oxygen species (ROS). A series of chemical characterization and enzymatic activity researches revealed that SOD was successfully embedded into ZIF-8 without apparent influence on the antioxidant activity of SOD. Cell level experiments showed that SOD@ZIF-8 could be effectively endocytosed by cells. The activity of SOD@ZIF-8 in scavenging ROS played a critical role in protecting SHSY-5Y cells from MPP+-induced cell model and relieving cell apoptosis, indicating that SOD@ZIF-8 could effectively rescue ROS-mediated neurological disorders though removing excessive ROS produced in vitro.
Collapse
Affiliation(s)
- Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Feng
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Chang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Liu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| | - Qian Bai
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| |
Collapse
|
20
|
Wang S, Jiang L, Meng S, Liu C, Wang H, Gao Z, Guo J. Hollow mesoporous silica nanoparticles-loaded ion-crosslinked bilayer films with excellent mechanical properties and high bioavailability for buccal delivery. Int J Pharm 2022; 624:122056. [PMID: 35905934 DOI: 10.1016/j.ijpharm.2022.122056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022]
Abstract
Mucoadhesive buccal films (MBFs) become the most promising buccal mucosal delivery system duo to its advantageous properties, including simple preparation technique and better patient compliance. The mechanical properties and mucoadhesion of MBFs are crucial in their successful performance as well as manufacturing and administration. In this study, we prepared hollow mesoporous silica nanoparticles-loaded ion-crosslinked bilayer films (CCS-PVA-TPP-FSM@HMSNs) using carboxymethyl chitosan (CCS) and polyvinyl alcohol (PVA) for buccal delivery of furosemide (FSM). The FSM-loaded hollow mesoporous silica nanoparticles (FSM@HMSNs) were firstly characterized by SEM, TEM, and nitrogen adsorption/desorption. Then, we constructed an ion-crosslinked network using CCS and PVA employed with the solution casting method, and sodium tripolyphosphate (TPP) was used as a hydrogen bond crosslinking agent. The formulation was optimized through Box-Behnken design, where the impact of the proportion of the ingredients on the quality of the films was evaluated entirely. Herein, folding endurance, swelling, tensile strength, and adhesion force were selected as response variables. Morphology, mechanical, spectroscopic, thermal, and safety of CCS-PVA-TPP-FSM@HMSNs films were also investigated. The release and permeability behaviors of CCS-PVA-TPP-FSM@HMSNs films were evaluated by in vitro drug release, across isolated porcine buccal and TR146 cell model. The CCS-PVA-TPP-FSM@HMSNs films showed outstanding mechanical properties, suitable bioadhesion, high drug loading, significant sustained-release properties, and improved permeability. In pharmacokinetic study with golden hamster models, the relative bioavailability was increased by 191.54%, and the absolute bioavailability was 82.20%. In summary, this study provides evidence that this innovative CCS-PVA-TPP-FSM@HMSNs films could be a promising and industrialized buccal drug delivery system.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Jiang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Saige Meng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Departmeng of Pharmacy, No. 73 Group Military Hospital of PLA, Xiamen 361003, Fujian Province, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huanhui Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
21
|
Doxorubicin-Loaded Lipid Nanoparticles Coated with Calcium Phosphate as a Potential Tool in Human and Canine Osteosarcoma Therapy. Pharmaceutics 2022; 14:pharmaceutics14071362. [PMID: 35890258 PMCID: PMC9322757 DOI: 10.3390/pharmaceutics14071362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma (OSA) is the most frequently diagnosed primary malignant bone tumor in humans and dogs. In both species, standard chemotherapy can be limited by multidrug resistance of neoplastic cells, which prevents intracellular accumulation of cytotoxic drugs, resulting in chemotherapy failure. In this study, a lipophilic ester of doxorubicin (C12DOXO) was loaded into nanoparticles (NPs) using the “cold microemulsion dilution” method. The resulting NPs were then coated with calcium phosphate (CaP) in two different ways to have calcium or phosphate ions externally exposed on the surface. These systems were characterized by determining mean diameter, zeta potential, and drug entrapment efficiency; afterward, they were tested on human and canine OSA cells to study the role that the coating might play in increasing both drug uptake into tumor cells and cytotoxicity. Mean diameter of the developed NPs was in the 200–300 nm range, zeta potential depended on the coating type, and C12DOXO entrapment efficiency was in the 60–75% range. Results of studies on human and canine OSA cells were very similar and showed an increase in drug uptake and cytotoxicity for CaP-coated NPs, especially when calcium ions were externally exposed. Therefore, applications in both human and veterinary medicine can be planned in the near future.
Collapse
|
22
|
Complexation of pillar[5]arene-based Schiff bases with methylene blue: Formation of binary complexes with improved anticancer activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Vellingiri S, Rejeeth C, Varukattu NB, Sharma A, Kumar RS, Almansour AI, Arumugam N, Afewerki S, Kannan S. In vivo delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. NEW J CHEM 2022; 46:12488-12499. [DOI: 10.1039/d1nj05867c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Iron nanoparticles are typically made from inorganic precursors, but for the first time, we synthesized-Fe2O3-NCs from goat blood (a bio-precursor) employing the RBC lysis method (a molecular level approach).
Collapse
Affiliation(s)
- Sreevani Vellingiri
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chandrababu Rejeeth
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | - Nipun Babu Varukattu
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Alok Sharma
- Department of Pharmacognosy ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Health Sciences and Technology, Harvard University – Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Soundarapandian Kannan
- Division of cancer nanomedicine, School of life science, Periyar University, Salem 636011, India
| |
Collapse
|
24
|
Santos A, Domingues C, Jarak I, Veiga F, Figueiras A. Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. Eur J Pharm Biopharm 2021; 170:91-111. [PMID: 34896571 DOI: 10.1016/j.ejpb.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
The most common primary malignant tumor of bone in children is osteosarcoma (OS). Nowadays, the prognosis and the introduction of chemotherapy in OS have improved survival rates of patients. Nevertheless, the results are still unsatisfactory, especially, in patients with recurrent disease or metastatic. OS chemotherapy has two main challenges related to treatment toxicity and multiple drug resistance. In this way, nanotechnology has developed nanosystems capable of releasing the drug directly at the OS cells and decreasing the drug's toxicity. Exosomes (Exo), a cell-derived nano-sized and a phospholipid vehicle, have been recognized as important drug delivery systems in several cancers. They are involved in a variety of biological processes and are an important mediator of long-distance intercellular communication. Exo can reduce inflammation and show low toxicity in healthy cells. Furthermore, the incorporation of specific proteins or peptides on the Exo surface improves their targeting capability in several clinical applications. Due to their unique structure and relevant characteristics, Exo is a promising nanocarrier for OS treatment. This review intends to describe the properties that turn Exo into an efficient, as well as safe nanovesicle for drug delivery and treatment of OS.
Collapse
Affiliation(s)
- Ana Santos
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal.
| |
Collapse
|