1
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
2
|
Sun J, Li W, Lu Y, Zhou Z, Tian L, Si T, Wang Z, Xu Y, Sun D, Chen CH, Yang M. Size and shape control of microgel-encapsulating tumor spheroid via a user-friendly solenoid valve-based sorter and its application on precise drug testing. Biosens Bioelectron 2024; 264:116614. [PMID: 39126904 DOI: 10.1016/j.bios.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The precision of previous cancer research based on tumor spheroids, especially the microgel-encapsulating tumor spheroids, was limited by the high heterogeneity in the tumor spheroid size and shape. Here, we reported a user-friendly solenoid valve-based sorter to reduce this heterogeneity. The artificial intelligence algorithm was employed to detect and segmentate the tumor spheroids in real-time for the size and shape calculation. A simple off-chip solenoid valve-based sorting actuation module was proposed to sort out target tumor spheroids with the desired size and shape. Utilizing the developed sorter, we successfully uncovered the drug response variations on cisplatin of lung tumor spheroids in the same population but with different sizes and shapes. Moreover, with this sorter, the precision of drug testing on the spheroid population level was improved to a level comparable to the precise but complex single spheroid analysis. The developed sorter also exhibits significant potential for organoid morphology and sorting for precision medicine research.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Li Tian
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Tongxu Si
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zesheng Wang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ying Xu
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Engineering, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chia-Hung Chen
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Engineering, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China.
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
3
|
Kheiri S, Yakavets I, Cruickshank J, Ahmadi F, Berman HK, Cescon DW, Young EWK, Kumacheva E. Microfluidic Platform for Generating and Releasing Patient-Derived Cancer Organoids with Diverse Shapes: Insight into Shape-Dependent Tumor Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410547. [PMID: 39276011 DOI: 10.1002/adma.202410547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/15/2024] [Indexed: 09/16/2024]
Abstract
Multicellular spheroids and patient-derived organoids find many applications in fundamental research, drug discovery, and regenerative medicine. Advances in the understanding and recapitulation of organ functionality and disease development require the generation of complex organoid models, including organoids with diverse morphologies. Microfluidics-based cell culture platforms enable time-efficient confined organoid generation. However, the ability to form organoids with different shapes with a subsequent transfer from microfluidic devices to unconstrained environments for studies of morphology-dependent organoid growth is yet to be demonstrated. Here, a microfluidic platform is introduced that enables high-fidelity formation and addressable release of breast cancer organoids with diverse shapes. Using this platform, the impact of organoid morphology on their growth in unconstrained biomimetic hydrogel is explored. It is shown that proliferative cancer cells tend to localize in high positive curvature organoid regions, causing their faster growth, while the overall growth pattern of organoids with diverse shapes tends to reduce interfacial tension at the organoid-hydrogel interface. In addition to the formation of organoids with diverse morphologies, this platform can be integrated into multi-tissue micro-physiological systems.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Fatemeh Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
4
|
Perfeito FG, Vilabril S, Cerqueira A, Oliveira MB, Mano JF. Spontaneous Formation of Solid Shell Polymeric Multicompartments at All-Aqueous Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402592. [PMID: 39366008 DOI: 10.1002/advs.202402592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Indexed: 10/06/2024]
Abstract
Multicompartmental capsules have demonstrated value in fields ranging from drug release, mimetics of artificial cells, to energy conversion and storage. However, the fabrication of devices with different compartments usually requires the use of toxic solvents, and/or the adaptation of technically demanding methods, including precision microfluidics and multistep processes. The spontaneous formation of multi-core capsules resulting from polyelectrolyte complexation at the interface of a prototypic all-aqueous two-phase system is described here. The variation of polyelectrolyte concentration and complexation time are described as simple working parameters capable of driving the formation of compartments at different yields, as well as tailoring their morphology. The mild processing technology enables the encapsulation of animal cells, which are capable of invading capsule walls for specific processing conditions.
Collapse
Affiliation(s)
- Francisca G Perfeito
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sara Vilabril
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Andreia Cerqueira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Bagheri MJ, Valojerdi MR, Salehnia M. Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system. Cytotechnology 2024; 76:571-584. [PMID: 39188652 PMCID: PMC11344741 DOI: 10.1007/s10616-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 08/28/2024] Open
Abstract
The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P < 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00639-w.
Collapse
Affiliation(s)
- Mohammad Jafar Bagheri
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| |
Collapse
|
7
|
Lee J, Lim CT. 3D cellular self-assembly on optical disc-imprinted nanopatterns. LAB ON A CHIP 2024; 24:4161-4171. [PMID: 39078315 DOI: 10.1039/d4lc00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
8
|
Husch JFA, Araújo-Gomes N, Willemen NGA, Cofiño-Fabrés C, van Creij N, Passier R, Leijten J, van den Beucken JJJP. Upscaling Osteoclast Generation by Enhancing Macrophage Aggregation Using Hollow Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403272. [PMID: 39087382 DOI: 10.1002/smll.202403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Osteoclasts, the bone resorbing cells of hematopoietic origin formed by macrophage fusion, are essential in bone health and disease. However, in vitro research on osteoclasts remains challenging due to heterogeneous cultures that only contain a few multinucleated osteoclasts. Indeed, a strategy to generate homogeneous populations of multinucleated osteoclasts in a scalable manner has remained elusive. Here, the investigation focuses on whether microencapsulation of human macrophages in microfluidically generated hollow, sacrificial tyramine-conjugated dextran (Dex-TA) microgels could facilitate macrophage precursor aggregation and formation of multinucleated osteoclasts. Therefore, human mononuclear cells are isolated from buffy coats and differentiated toward macrophages. Macrophages are encapsulated in microgels using flow focus microfluidics and outside-in enzymatic oxidative phenolic crosslinking, and differentiated toward osteoclasts. Morphology, viability, and osteoclast fusion of microencapsulated cells are assessed. Furthermore, microgels are degraded to allow cell sorting of released cells based on osteoclastic marker expression. The successful encapsulation and osteoclast formation of human macrophages in Dex-TA microgels are reported for the first time using high-throughput droplet microfluidics. Intriguingly, osteoclast formation within these 3D microenvironments occurs at a significantly higher level compared to the conventional 2D culture system. Furthermore, the feasibility of establishing a pure osteoclast culture from cell transfer and release from degradable microgels is demonstrated.
Collapse
Affiliation(s)
- Johanna F A Husch
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nuno Araújo-Gomes
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Niels G A Willemen
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Carla Cofiño-Fabrés
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nils van Creij
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen J J P van den Beucken
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| |
Collapse
|
9
|
Bae SJ, Choi SH, Im DJ. 3D Cell Culture Method in Channel-Free Water-in-Oil Droplets. SMALL METHODS 2024; 8:e2301145. [PMID: 38239079 DOI: 10.1002/smtd.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Indexed: 07/21/2024]
Abstract
A new channel-free water-in-oil (WO) droplet 3D cell culture method is proposed to address the challenges while maintaining the advantages of the conventional 3D cell culture methods. The proposed WO method can fundamentally solve the constraint of spheroids size, a common challenge in conventional 3D culture, by using droplet size controllability. The 3D cell culture performance of the WO method is verified by comparing it with the conventional 3D cell culture methods. A systematic investigation of the culture conditions of the WO method confirms the working range of cell concentration and droplet size, as well as the scalability of spheroid size. Adjusting droplet size and cell concentration enables rapid spheroid formation with large and high cell concentration droplets or fast spheroid growth with small and low cell concentration droplets, providing control over the spheroid size and growth rate according to the purpose. Furthermore, long-term culture is demonstrated for 1 month with the proposed method, showing the largest spheroid culture and demonstrating the possibility that this method can be used not only for spheroid formation but also for organoid studies. Finally, if a WO-based automated 3D cell culture system is developed, it will be a useful tool for organoid research.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Seung Hui Choi
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| |
Collapse
|
10
|
Seydel CM, Gonzaga BMDS, Coelho LL, Garzoni LR. Exploring the Dimensions of Pre-Clinical Research: 3D Cultures as an Investigative Model of Cardiac Fibrosis in Chagas Disease. Biomedicines 2024; 12:1410. [PMID: 39061986 PMCID: PMC11274318 DOI: 10.3390/biomedicines12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 07/28/2024] Open
Abstract
A three-dimensional (3D) cell culture can more precisely mimic tissues architecture and functionality, being a promising alternative model to study disease pathophysiology and drug screening. Chagas disease (CD) is a neglected parasitosis that affects 7 million people worldwide. Trypanosoma cruzi's (T. cruzi) mechanisms of invasion/persistence continue to be elucidated. Benznidazole (BZ) and Nifurtimox (NF) are trypanocidal drugs with few effects on the clinical manifestations of the chronic disease. Chronic Chagas cardiomyopathy (CCC) is the main manifestation of CD due to its frequency and severity. The development of fibrosis and hypertrophy in cardiac tissue can lead to heart failure and sudden death. Thus, there is an urgent need for novel therapeutic options. Our group has more than fifteen years of expertise using 3D primary cardiac cell cultures, being the first to reproduce fibrosis and hypertrophy induced by T. cruzi infection in vitro. These primary cardiac spheroids exhibit morphological and functional characteristics that are similar to heart tissue, making them an interesting model for studying CD cardiac fibrosis. Here, we aim to demonstrate that our primary cardiac spheroids are great preclinical models which can be used to develop new insights into CD cardiac fibrosis, presenting advances already achieved in the field, including disease modeling and drug screening.
Collapse
Affiliation(s)
| | | | | | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (C.M.S.); (B.M.d.S.G.); (L.L.C.)
| |
Collapse
|
11
|
Besanjideh M, Rezaeian M, Shamloo A, Hannani SK. Simple Method for On-Demand Droplet Trapping in a Microfluidic Device Based on the Concept of Hydrodynamic Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9406-9413. [PMID: 38652798 DOI: 10.1021/acs.langmuir.3c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We demonstrate an innovative method to catch the desired droplets from a train of droplets and immobilize them in traps located in an integrated microfluidic device. To this end, water-in-oil droplets are generated in a flow-focusing junction and then guided to a channel connected to chambers designated for on-demand droplet trapping. Each chamber is connected to a side channel through a batch of microposts. The side channels are also connected to the flexible poly(vinyl chloride) tubes, which can be closed by attaching binder clips. The hydrodynamic resistance of the routes in the device can be changed by opening and closing the binder clips. In this way, droplets are easily guided into individual traps based on the user's demand. A set of numerical simulations was also conducted to investigate the authenticity of the employed idea and to find the optimal geometry for implementing our strategy. This simple method can be easily employed for on-demand droplet trapping without using on-chip valves or complex off-chip actuators proposed in previous studies.
Collapse
Affiliation(s)
- Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Masoud Rezaeian
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | | |
Collapse
|
12
|
Xu T, Wu Z, Yao H, Zhang Y, Chen S, Li Y, Meng XL, Zhang Y, Lin JM. Evaluation of aconitine cardiotoxicity with a heart-on-a-particle prepared by a microfluidic device. Chem Commun (Camb) 2024; 60:4898-4901. [PMID: 38629248 DOI: 10.1039/d4cc00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A heart-on-a-particle model based on multicompartmental microgel is proposed to simulate the heart microenvironment and study the cardiotoxicity of drugs. The relevant microgel was fabricated by a biocompatible microfluidic-based approach, where heart function-related HL-1 and HUVEC cells were arranged in separate compartments. Finally, the mechanism of aconitine-induced heart toxicity was elucidated using mass spectrometry and molecular biotechnology.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
14
|
Pan S, Zhang T, Zhang C, Liao N, Zhang M, Zhao T. Fabrication of a high performance flexible capacitive porous GO/PDMS pressure sensor based on droplet microfluidic technology. LAB ON A CHIP 2024; 24:1668-1675. [PMID: 38304936 DOI: 10.1039/d4lc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Porous structures are an effective way to improve the performance of flexible capacitive sensors, but the pore size uniformity of porous structures is not easily controlled by current methods, which may affect the inconsistent performance of different batches of sensors. In this paper, a high performance capacitive flexible porous GO/PDMS pressure sensor was prepared based on droplet microfluidic technology. By testing the performance of the sensor, we found that the sensor with a flow rate ratio of 1 : 3 has relatively good performance, with a degree of hysteresis (DH) of 8.64% and a coefficient of variation (CV) of 5.2%. Therefore, we studied the sensor performance based on this process. The result shows that the sensitivity of the flexible capacitive porous GO/PDMS pressure sensor reached 0.627 kPa-1 at low pressure (0-3 kPa), which is significantly higher than that of the pure PDMS thin film sensor (about 0.031 kPa-1) and the porous PDMS pressure sensor (0.263 kPa-1). At the same time, the sensor has a large range with a fast response time of 240 ms and a relaxation time of 300 ms at 30 kPa and an ultra-low detection limit (70 Pa). It can maintain stable operation under continuous force loading/unloading cycles and can respond well to different pressure step changes, so the sensor can be used to detect the movement process of each finger, knee, foot and other joints of the human body. In conclusion, the droplet microfluidic technology can effectively prepare high-performance capacitive flexible porous GO/PDMS pressure sensors.
Collapse
Affiliation(s)
- ShengYuan Pan
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Tao Zhang
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Cheng Zhang
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.
- Cangnan Research Institute of Wenzhou University, Wenzhou 325800, China
| | - Ningbo Liao
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Miao Zhang
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.
- Cangnan Research Institute of Wenzhou University, Wenzhou 325800, China
| | - Tianchen Zhao
- Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
| |
Collapse
|
15
|
Nan L, Zhang H, Weitz DA, Shum HC. Development and future of droplet microfluidics. LAB ON A CHIP 2024; 24:1135-1153. [PMID: 38165829 DOI: 10.1039/d3lc00729d] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Huidan Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
16
|
Lahree A, Gilbert L. Development of Organoids to Study Infectious Host Interactions. Methods Mol Biol 2024; 2742:151-164. [PMID: 38165622 DOI: 10.1007/978-1-0716-3561-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Emerging organoid research is paving way for studies in infectious diseases. Described here is a technique for the generation of stem-cell derived organoids for human small intestine and lung together with methods to infect such organoids with a mock pathogen (Cryptosporidium parvum). Such systems are amenable to imaging and processing for molecular biological analyses. It is the intent of this chapter to provide a simple, routine organoid procedure so that in vitro studies with Borrelia such as cell invasion and dissemination can be conducted.
Collapse
Affiliation(s)
- Aparajita Lahree
- Max Planck Institute of Molecular Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
17
|
Cartry J, Bedja S, Boilève A, Mathieu JRR, Gontran E, Annereau M, Job B, Mouawia A, Mathias P, De Baère T, Italiano A, Besse B, Sourrouille I, Gelli M, Bani MA, Dartigues P, Hollebecque A, Smolenschi C, Ducreux M, Malka D, Jaulin F. Implementing patient derived organoids in functional precision medicine for patients with advanced colorectal cancer. J Exp Clin Cancer Res 2023; 42:281. [PMID: 37880806 PMCID: PMC10598932 DOI: 10.1186/s13046-023-02853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Patient Derived Organoids (PDOs) emerged as the best technology to develop ex vivo tumor avatars. Whether drug testing on PDOs to identify efficient therapies will bring clinical utility by improving patient survival remains unclear. To test this hypothesis in the frame of clinical trials, PDO technology faces three main challenges to be implemented in routine clinical practices: i) generating PDOs with a limited amount of tumor material; ii) testing a wide panel of anti-cancer drugs; and iii) obtaining results within a time frame compatible with patient disease management. We aimed to address these challenges in a prospective study in patients with colorectal cancer (CRC). METHODS Fresh surgical or core needle biopsies were obtained from patients with CRC. PDOs were established and challenged with a panel of 25 FDA-approved anti-cancer drugs (chemotherapies and targeted therapies) to establish a scoring method ('chemogram') identifying in vitro responders. The results were analyzed at the scale of the cohort and individual patients when the follow-up data were available. RESULTS A total of 25 PDOs were successfully established, harboring 94% concordance with the genomic profile of the tumor they were derived from. The take-on rate for PDOs derived from core needle biopsies was 61.5%. A chemogram was obtained with a 6-week median turnaround time (range, 4-10 weeks). At least one hit (mean 6.16) was identified for 92% of the PDOs. The number of hits was inversely correlated to disease metastatic dissemination and the number of lines of treatment the patient received. The chemograms were compared to clinical data obtained from 8 patients and proved to be predictive of their response with 75% sensitivity and specificity. CONCLUSIONS We show that PDO-based drug tests can be achieved in the frame of routine clinical practice. The chemogram could provide clinicians with a decision-making tool to tailor patient treatment. Thus, PDO-based functional precision oncology should now be tested in interventional trials assessing its clinical utility for patients who do not harbor activable genomic alterations or have developed resistance to standard of care treatments.
Collapse
Affiliation(s)
- Jérôme Cartry
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| | - Sabrina Bedja
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alice Boilève
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Jacques R R Mathieu
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Emilie Gontran
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Maxime Annereau
- Département de Pharmacie Clinique, Gustave Roussy, 94805, Villejuif, France
| | - Bastien Job
- Inserm US23, Plateforme de Bioinformatique, Gustave Roussy, 94805, Villejuif, France
| | - Ali Mouawia
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Pierre Mathias
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Thierry De Baère
- Département de Radiologie Interventionnelle, Gustave Roussy, 94805, Villejuif, France
- UFR Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy, Villejuif, 94805, France
- Gustave Roussy, Unité de Médecine de Précision, 94805, Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Unité de Médecine de Précision, 94805, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | | | - Maximiliano Gelli
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
- Département de Chirurgie Viscérale, Gustave Roussy, 94805, Villejuif, France
| | | | - Peggy Dartigues
- Département de Pathologie, Gustave Roussy, 94805, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy, Villejuif, 94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Cristina Smolenschi
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy, Villejuif, 94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Michel Ducreux
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - David Malka
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- Département d'Oncologie Médicale, Institut Mutualiste Montsouris, Paris, France
| | - Fanny Jaulin
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
- Département de Recherche, Gustave Roussy, 94800, Villejuif, France.
| |
Collapse
|
18
|
Shen Y, Zhang B, Yi Z, Zhang L, Ling J, Wang S, Sun Z, Iqbal MZ, Kong X. Microfluidic fabrication of X-ray-visible sodium hyaluronate microspheres for embolization. RSC Adv 2023; 13:20512-20519. [PMID: 37435366 PMCID: PMC10331790 DOI: 10.1039/d3ra02812g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Catheter embolization is a minimally invasive technique that relies on embolic agents and is now widely used to treat various high-prevalence medical diseases. Embolic agents usually need to be combined with exogenous contrasts to visualize the embolotherapy process. However, the exogenous contrasts are quite simply washed away by blood flow, making it impossible to monitor the embolized location. To solve this problem, a series of sodium hyaluronate (SH) loaded with bismuth sulfide (Bi2S3) nanorods (NRs) microspheres (Bi2S3@SH) were prepared in this study by using 1,4-butaneglycol diglycidyl ether (BDDE) as a crosslinker through single-step microfluidics. Bi2S3@SH-1 microspheres showed the best performance among other prepared microspheres. The fabricated microspheres had uniform size and good dispersibility. Furthermore, the introduction of Bi2S3 NRs synthesized by a hydrothermal method as Computed Tomography (CT) contrast agents improved the mechanical properties of Bi2S3@SH-1 microspheres and endowed the microspheres with excellent X-ray impermeability. The blood compatibility and cytotoxicity test showed that the Bi2S3@SH-1 microspheres had good biocompatibility. In particular, the in vitro simulated embolization experiment results indicate that the Bi2S3@SH-1 microspheres had excellent embolization effect, especially for the small-sized blood vessels of 500-300 and 300 μm. The results showed the prepared Bi2S3@SH-1 microspheres have good biocompatibility and mechanical properties, as well as certain X-ray visibility and excellent embolization effects. We believe that the design and combination of this material has good guiding significance in the field of embolotherapy.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Baoqu Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zihan Yi
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Lan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Jing Ling
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zhichao Sun
- The Department of Medical Imaging, The First Medical College of Zhejiang Chinese Medical University Hangzhou 310053 China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| |
Collapse
|
19
|
Vitalis C, Wenzel T. Leveraging interactions in microfluidic droplets for enhanced biotechnology screens. Curr Opin Biotechnol 2023; 82:102966. [PMID: 37390513 DOI: 10.1016/j.copbio.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Microfluidic droplet screens serve as an innovative platform for high-throughput biotechnology, enabling significant advancements in discovery, product optimization, and analysis. This review sheds light on the emerging trends of interaction assays in microfluidic droplets, underscoring the unique suitability of droplets for these applications. Encompassing a diverse range of biological entities such as antibodies, enzymes, DNA, RNA, various microbial and mammalian cell types, drugs, and other molecules, these assays demonstrate their versatility and scope. Recent methodological breakthroughs have escalated these screens to novel scales of bioanalysis and biotechnological product design. Moreover, we highlight pioneering advancements that extend droplet-based screens into new domains: cargo delivery within human bodies, application of synthetic gene circuits in natural environments, 3D printing, and the development of droplet structures responsive to environmental signals. The potential of this field is profound and only set to increase.
Collapse
Affiliation(s)
- Carolus Vitalis
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile
| | - Tobias Wenzel
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile.
| |
Collapse
|