1
|
Chen W, Wan S, Lin H, Li S, Deng A, Feng L, Xu Y, Zhang X, Hu Z, Xu F, Yan K. Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria. Polymers (Basel) 2024; 16:3027. [PMID: 39518237 PMCID: PMC11548163 DOI: 10.3390/polym16213027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Polymer-based wastewater disinfection, which is typically performed using chemical oxidation or irradiation, can result in various toxic byproducts and corrosion under harsh environments. This study introduces a robust bio-adsorbent prepared from naturally abundant polydopamine-modified medical stone (MS@PDA) for the high-efficiency removal of bacteria from water. The PDA nanocoating can be easily applied through an in situ self-polymerization process, resulting in a considerably high bacterial adsorption capacity of 6.6 k pcs mm-2 for Staphylococcus aureus. A cyclic flow-through dynamic filtration and a disinfection system was implemented using an MS@PDA porous filter with an average pore size of 21.8 ± 1.4 µm and porosity of ~83%, achieving a 5.2-6.0-fold enhancement in the cumulative removal efficiency for MS@PDA2. The underlying mechanisms were elucidated through the synergistic effects of interfacial bio-adsorption and size-dependent interception. Notably, the bacteria captured on the surface could be killed using the enhanced photothermal effects of the PDA nanocoating and the inherent antimicrobial properties of the mineral stone. Thus, this study not only provides a new type of advanced bio-adsorbent but also provides new perspectives on an efficient and cost-effective approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Wenfeng Chen
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Sha Wan
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Hongxin Lin
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Shimi Li
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Anhua Deng
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Lihui Feng
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Yangfan Xu
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Xu Zhang
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China (X.Z.)
| | - Zhen Hu
- Wuhan Huzhenyu Environmental Technology Company Ltd., Wuhan 430000, China;
| | - Fang Xu
- Wenzhou Haichen Technology Development Company Ltd., Wenzhou 325700, China;
| | - Kun Yan
- Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Gong J, Or CY, Sze ETP, Man-Ngai Chan S, Wu PL, Poon PMY, Law AKY, Ulrychová L, Hodek J, Weber J, Ouyang H, Yang M, Eilts SM, Torremorell M, Knobloch Y, Hogan CJ, Atallah C, Davies J, Winkler J, Gordon R, Zarghanishiraz R, Zabihi M, Christianson C, Taylor D, Rabinowitz A, Baylis J, Brinkerhoff J, Little JP, Li R, Moldenhauer J, Mansour MK. Effect of multifunctional cationic polymer coatings on mitigation of broad microbial pathogens. Microbiol Spectr 2024; 12:e0409723. [PMID: 39101823 PMCID: PMC11370243 DOI: 10.1128/spectrum.04097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Infection control measures to prevent viral and bacterial infection spread are critical to maintaining a healthy environment. Pathogens such as viruses and pyogenic bacteria can cause infectious complications. Viruses such as SARS-CoV-2 are known to spread through the aerosol route and on fomite surfaces, lasting for a prolonged time in the environment. Developing technologies to mitigate the spread of pathogens through airborne routes and on surfaces is critical, especially for patients at high risk for infectious complications. Multifunctional coatings with a broad capacity to bind pathogens that result in inactivation can disrupt infectious spread through aerosol and inanimate surface spread. This study uses C-POLAR, a proprietary cationic, polyamine, organic polymer with a charged, dielectric property coated onto air filtration material and textiles. Using both SARS-CoV-2 live viral particles and bovine coronavirus models, C-POLAR-treated material shows a dramatic 2-log reduction in circulating viral inoculum. This reduction is consistent in a static room model, indicating simple airflow through a static C-POLAR hanging can capture significant airborne particles. Finally, Gram-positive and Gram-negative bacteria are applied to C-POLAR textiles using a viability indicator to demonstrate eradication on fomite surfaces. These data suggest that a cationic polymer surface can capture and eradicate human pathogens, potentially interrupting the infectious spread for a more resilient environment. IMPORTANCE Infection control is critical for maintaining a healthy home, work, and hospital environment. We test a cationic polymer capable of capturing and eradicating viral and bacterial pathogens by applying the polymer to the air filtration material and textiles. The data suggest that the simple addition of cationic material can result in the improvement of an infectious resilient environment against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jianliang Gong
- C-POLAR Technologies Inc., West Vancouver, British Columbia, Canada
| | - Chun-Yin Or
- C-POLAR Technologies Inc., West Vancouver, British Columbia, Canada
| | - Eric Tung-Po Sze
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Pak-Long Wu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Peggy Miu-Yee Poon
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Anthony K. Y. Law
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Lucie Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, Prague, Czechia
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Mechanical Engineering University of Texas-Dallas, Richardson, Texas, USA
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Stephanie M. Eilts
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Yaakov Knobloch
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christine Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliette Davies
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - John Winkler
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ryan Gordon
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Reza Zarghanishiraz
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mojtaba Zabihi
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Cole Christianson
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Deanne Taylor
- School of Nursing, University of British Columbia, Kelowna, British Columbia, Canada
- Interior Health Authority, Kelowna, British Columbia, Canada
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
| | - Alan Rabinowitz
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jared Baylis
- Interior Health Authority, Kelowna, British Columbia, Canada
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Brinkerhoff
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ri Li
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Razaviamri F, Singh S, Manuel J, Zhang Z, Manchester LM, Heldt CL, Lee BP. Utilizing Rapid Hydrogen Peroxide Generation from 6-Hydroxycatechol to Design Moisture-Activated, Self-Disinfecting Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26998-27010. [PMID: 38748642 DOI: 10.1021/acsami.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A coating that can be activated by moisture found in respiratory droplets could be a convenient and effective way to control the spread of airborne pathogens and reduce fomite transmission. Here, the ability of a novel 6-hydroxycatechol-containing polymer to function as a self-disinfecting coating on the surface of polypropylene (PP) fabric was explored. Catechol is the main adhesive molecule found in mussel adhesive proteins. Molecular oxygen found in an aqueous solution can oxidize catechol and generate a known disinfectant, hydrogen peroxide (H2O2), as a byproduct. However, given the limited amount of moisture found in respiratory droplets, there is a need to enhance the rate of catechol autoxidation to generate antipathogenic levels of H2O2. 6-Hydroxycatechol contains an electron donating hydroxyl group on the 6-position of the benzene ring, which makes catechol more susceptible to autoxidation. 6-Hydroxycatechol-coated PP generated over 3000 μM of H2O2 within 1 h when hydrated with a small amount of aqueous solution (100 μL of PBS). The generated H2O2 was three orders of magnitude higher when compared to the amount generated by unmodified catechol. 6-Hydroxycatechol-containing coating demonstrated a more effective antimicrobial effect against both Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria when compared to unmodified catechol. Similarly, the self-disinfecting coating reduced the infectivity of both bovine viral diarrhea virus and human coronavirus 229E by as much as a 2.5 log reduction value (a 99.7% reduction in viral load). Coatings containing unmodified catechol did not generate sufficient H2O2 to demonstrate significant virucidal effects. 6-Hydroxycatechol-containing coating can potentially function as a self-disinfecting coating that can be activated by the moisture present in respiratory droplets to generate H2O2 for disinfecting a broad range of pathogens.
Collapse
Affiliation(s)
- Fatemeh Razaviamri
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sneha Singh
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Lynn M Manchester
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
4
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
5
|
Hossain M, Karmakar K, Sarkar P, Chattaraj T, Rao KDM. Self-Sanitization in a Silk Nanofibrous Network for Biodegradable PM 0.3 Filters with In Situ Joule Heating. ACS OMEGA 2024; 9:9137-9146. [PMID: 38434843 PMCID: PMC10905722 DOI: 10.1021/acsomega.3c08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
In the contemporary way of life, face masks are crucial in managing disease transmission and battling air pollution. However, two key challenges, self-sanitization and biodegradation of face masks, need immediate attention, prompting the development of innovative solutions for the future. In this study, we present a novel approach that combines controlled acid hydrolysis and mechanical chopping to synthesize a silk nanofibrous network (SNN) seamlessly integrated with a wearable stainless steel mesh, resulting in the fabrication of self-sanitizable face masks. The distinct architecture of face masks showcases remarkable filtration efficiencies of 91.4, 95.4, and 98.3% for PM0.3, PM0.5, and PM1.0, respectively, while maintaining a comfortable level of breathability (ΔP = 92 Pa). Additionally, the face mask shows that a remarkable thermal resistance of 472 °C cm2 W-1 generates heat spontaneously at low voltage, deactivating Escherichia coli bacteria on the SNN, enabling self-sanitization. The SNN exhibited complete disintegration within the environment in just 10 days, highlighting the remarkable biodegradability of the face mask. The unique advantage of self-sanitization and biodegradation in a face mask filter is simultaneously achieved for the first time, which will open avenues to accomplish environmentally benign next-generation face masks.
Collapse
Affiliation(s)
| | | | - Prakash Sarkar
- School of Applied & Interdisciplinary
Sciences, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| | - Tiyasi Chattaraj
- School of Applied & Interdisciplinary
Sciences, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| | - K. D. M. Rao
- School of Applied & Interdisciplinary
Sciences, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Luceri A, Francese R, Perero S, Lembo D, Ferraris M, Balagna C. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3955-3965. [PMID: 38195426 DOI: 10.1021/acsami.3c13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The indoor air quality should be better controlled and improved to avoid numerous health issues. Even if different devices are developed for air filtration, the proliferation of microorganisms under certain conditions must be controlled. For this purpose, a silver nanocluster/silica composite coating was deposited via a cosputtering technique onto fiber glass and polymeric based substrates. The aim of this work is focused on the evaluation of the antibacterial and antiviral effects of the developed coating. The preliminary results of the compositional and morphological tests showed an evenly distributed coating on filters surfaces. Several antibacterial tests were performed, confirming strong effect both in qualitative and quantitative methods, against S. epidermidis and E. coli. To understand if the coating can stop the proliferation of bacteria colonies spread on it, simulation of everyday usage of filters was performed, nebulizing bacteria solution with high colonies concentration and evaluating the inhibition of bacteria growth. Additionally, a deep understanding of the virucidal action and mechanism of Ag nanoclusters of the coating was performed. The effect of the coating both in aqueous medium and in dry methods was evaluated, in comparison with analysis on ions release. The virucidal performances are assessed against the human coronavirus OC43 strain (HCoV-OC43).
Collapse
Affiliation(s)
- Angelica Luceri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Sergio Perero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Monica Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Cristina Balagna
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
7
|
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2360-2376. [PMID: 38063966 DOI: 10.1007/s11356-023-31202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 μm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Ali Gheibi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran
| | - Reza Faridi Majidi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Coleman CM, Wang B, Wang Y, Tapia-Brito E, Chen Z, Riffat J, Riffat S, Tarlinton R, Ghaemmaghami A. Antiviral activity of salt-coated materials against SARS-CoV-2. Access Microbiol 2023; 5:000492.v5. [PMID: 37841099 PMCID: PMC10569654 DOI: 10.1099/acmi.0.000492.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
The SARS-CoV-2 pandemic demonstrated the importance of human coronaviruses and the need to develop materials to prevent the spread of emergent respiratory viruses. Coating of surfaces with antiviral materials is a major interest in controlling spread of viruses, especially in high-risk or high-traffic areas. A number of different coatings for surfaces have been proposed, each with their own advantages and disadvantages. Here we show that simple salt coating on a range of surfaces, including a novel biomass aerogel can reduce the infectivity of SARS-CoV-2 placed onto the surface. This suggests that a simple to apply coating could be applied to a range of materials and have an antiviral effect against SARS-CoV-2, as well as other potential emerging viruses.
Collapse
Affiliation(s)
- Christopher M. Coleman
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - Belinda Wang
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Yixin Wang
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Emmanuel Tapia-Brito
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Ziwei Chen
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - James Riffat
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Saffa Riffat
- Department of Architecture and the Built Environment, University of Nottingham, Nottingham, UK
| | - Rachael Tarlinton
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
9
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
10
|
Ivanoska-Dacikj A, Oguz-Gouillart Y, Hossain G, Kaplan M, Sivri Ç, Ros-Lis JV, Mikucioniene D, Munir MU, Kizildag N, Unal S, Safarik I, Akgül E, Yıldırım N, Bedeloğlu AÇ, Ünsal ÖF, Herwig G, Rossi RM, Wick P, Clement P, Sarac AS. Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Basel) 2023; 11:1115. [PMID: 37107948 PMCID: PMC10137734 DOI: 10.3390/healthcare11081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
Collapse
Affiliation(s)
- Aleksandra Ivanoska-Dacikj
- Research Centre for Environment and Materials, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Yesim Oguz-Gouillart
- Department of Building and Urban Environment, Innovative Textile Material, JUNIA, 59000 Lille, France
| | - Gaffar Hossain
- V-Trion GmbH Textile Research, Millennium Park 15, 6890 Lustenau, Austria
| | - Müslüm Kaplan
- Department of Textile Engineering, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Çağlar Sivri
- Management Engineering Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, İstanbul 34349, Turkey
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM), Unidad Mixta Universitat Politecnica de Valencia, Universitat de Valencia, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Muhammad Usman Munir
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Nuray Kizildag
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
| | - Serkan Unal
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
- Faculty of Engineering and Natural Sciences, Material Science and Nanoengineering, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Esra Akgül
- Department of Industrial Design Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Nida Yıldırım
- Trabzon Vocational School, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ayşe Çelik Bedeloğlu
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Ömer Faruk Ünsal
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - A. Sezai Sarac
- Department of Chemistry, Polymer Science and Technology, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
11
|
Wang CG, Surat'man NEB, Mah JJQ, Qu C, Li Z. Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. J Mater Chem B 2022; 10:9349-9368. [PMID: 36373687 DOI: 10.1039/d2tb01555b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undesirable adhesion of microbes such as bacteria, fungi and viruses onto surfaces affects many industries such as marine, food, textile, and healthcare. In particular in healthcare and food packaging, the effects of unwanted microbial contamination can be life-threatening. With the current global COVID-19 pandemic, interest in the development of surfaces with superior anti-viral and anti-bacterial activities has multiplied. Polymers carrying anti-microbial properties are extensively used to functionalize material surfaces to inactivate infection-causing and biocide-resistant microbes including COVID-19. This review aims to introduce the fabrication of polymer-based antimicrobial surfaces through physical and chemical modifications, followed by the discussion of the inactivation mechanisms of conventional biocidal agents and new-generation antimicrobial macromolecules in polymer-modified antimicrobial surfaces. The advanced applications of polymer-based antimicrobial surfaces on personal protective equipment against COVID-19, food packaging materials, biomedical devices, marine vessels and textiles are also summarized to express the research trend in academia and industry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Justin Jian Qiang Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Chenyang Qu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore. .,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
12
|
Ahmed Shehab M, Szőri-Dorogházi E, Szabó S, Valsesia A, Chauhan T, Koós T, Muránszky G, Szabó T, Hernadi K, Németh Z. Virus and bacterial removal ability of TiO2 nanowire-based self-supported hybrid membranes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|