1
|
Mohammadzadeh Kakhki R, Bolandhemmat H. Synthesis of Ag/CuS doped mineral magnetite nanocomposite with improved photocatalytic activity against tetracycline and diclofenac pollutants. Sci Rep 2024; 14:19009. [PMID: 39152164 PMCID: PMC11329678 DOI: 10.1038/s41598-024-69644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe₃O₄ nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectrophotometry (UV-Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe₃O₄ nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe₃O₄. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min-1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe₃O₄ nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.
Collapse
Affiliation(s)
| | - Hadis Bolandhemmat
- Department of Chemistry, Faculty of Sciences, University of Gonabad, Gonabad, Iran
| |
Collapse
|
2
|
Yan J, Lu J, Sheng Y, Sun Y, Zhang D. Research Progress in the Preparation of Transition Metal Sulfide Materials and Their Supercapacitor Performance. MICROMACHINES 2024; 15:849. [PMID: 39064360 PMCID: PMC11279019 DOI: 10.3390/mi15070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
Transition metal sulfides are widely used in supercapacitor electrode materials and exhibit excellent performance because of their rich variety, low price, and high theoretical specific capacity. At present, the main methods to prepare transition metal sulfides include the hydrothermal method and the electrochemical method. In order to further improve their electrochemical performance, two aspects can be addressed. Firstly, by controllable synthesis of nanomaterials, porous structures and large surface areas can be achieved, thereby improving ion transport efficiency. Secondly, by combining transition metal sulfides with other energy storage materials, such as carbon materials and metal oxides, the synergy between different materials can be fully utilized. However, future research still needs to address some challenges. In order to guide further in-depth research, it is necessary to combine the current research-derived knowledge and propose a direction for future development of transition metal sulfide electrode materials.
Collapse
Affiliation(s)
- Jin Yan
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jiancheng Lu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuxuan Sheng
- School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yin Sun
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Dapeng Zhang
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
3
|
Sarani M, Darroudi M, Naderifar M, Akbarizadeh MR, Nobre MAL, Kruppke B, Khonakdar HA, Jazi ME. Biosynthesis of ZnO, Bi 2O 3 and ZnO-Bi 2O 3 bimetallic nanoparticles and their cytotoxic and antibacterial effects. ChemistryOpen 2024; 13:e202300176. [PMID: 38230849 PMCID: PMC11004456 DOI: 10.1002/open.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.
Collapse
Affiliation(s)
- Mina Sarani
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
| | - Majid Darroudi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Basic Medical SciencesNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahin Naderifar
- Faculty of Nursing and MidwiferyZabol University of Medical SciencesZabolIran
| | - Majid Reza Akbarizadeh
- Department of pediatricAmir Al Momenin HospitalZabol University of Medical SciencesZabolIran
| | - Marcos A. L. Nobre
- São Paulo State University (Unesp)School of Technology and SciencesPresidente PrudenteSP-19060-900Brazil
| | - Benjamin Kruppke
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Mehdi Erfani Jazi
- Department of Chemistry and Center for Photochemical SciencesBowling Green State UniversityBowling GreenOH-43403USA
| |
Collapse
|
4
|
Mohammadian S, Avan A, Khazaei M, Maghami P. The advancing of polymeric core-shell ZnO nanocomposites containing 5-fluorouracil for improving anticancer activity in colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:899-911. [PMID: 37530786 DOI: 10.1007/s00210-023-02643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
The study investigated the use of 5-fluorouracil-loaded ZnO nanocomposites (5-FU/Gd-ZnO NCs) as a potential treatment for cancer. 5-FU is a commonly used drug for cancer treatment but has undesirable side effects. The materials were characterized using various techniques, including PXRD, FTIR, FESEM, TEM, DLS, £-potential, and AFM. The data showed that the nanocomposites had a plate-like agglomeration with particle diameters ranging from 317.6 to 120.1 nm. The IC50 value of 5-FU-ZnO, which inhibits cell growth, was found to be 1.85 ppm. The effects of 5-FU-ZnO on inflammatory markers were also examined. While 5-FU increased the levels of TNF-a and IL-1b, the nanocomposites were able to reduce these levels. Additionally, the 5-FU/Gd-ZnO-NCs group showed an increase in thiol levels and a decrease in catalase and superoxide dismutase levels. Flow cytometry results showed that 5-FU, ZnO-NCs, and 5-FU/Gd-ZnO-NCs did not have any additive or synergistic effects on the suppression or eradication of cancer cells. In vivo, experiments showed that the 5-FU/Gd-ZnO NCs had similar necrotic characteristics and reduced fibrosis and collagen deposition compared to the free medication. The nanocomposites also exhibited higher antioxidative activity and lower inflammatory responses compared to the 5-FU group. It was shown that 5-FU/Gd-ZnO-NCs successfully inhibit cell proliferation. The in vivo results were comparable to those obtained with free 5-FU, suggesting the potential of these nanocomposites as therapeutic agents.
Collapse
Affiliation(s)
- Samaneh Mohammadian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Al-Maydama HM, Jamil YM, Awad MA, Abduljabbar AA. Electrochemical investigations and antimicrobial activity of Au nanoparticles photodeposited on titania nanoparticles. Heliyon 2024; 10:e23722. [PMID: 38205290 PMCID: PMC10776935 DOI: 10.1016/j.heliyon.2023.e23722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Titanium oxide nanopowder (TiO2 NPs) was synthesized via anodization in 0.7 M perchloric acid then annealed in nitrogen at 450 °C for 3 h to prepared the Titanium Oxide Nitrogen annealed nanoparticles (TiO2 NPs-N2) powder as catalytic support. Using a photodeposition process, gold was added with isopropanol as a sacrificial donor and H[AuCl4] acid, producing gold nanoparticles on nitrogen-annealed titanium oxide nanoparticles (Au-NPs on TiO2-NPs-N2). The mass loading of Au NPs was 2.86 × 10-4 (g/cm2). TEM images of Au NPs on TiO2-NPs-N2 suggest circular particles with a tendency to agglomerate. Cyclic voltammetry (CV) was used to investigate the electrocatalytic performance of the Au NPs/TiO2-NPs-N2 catalysts in ferrocyanide, KOH, and H2SO4, and the results were compared to those of a polycrystalline Au electrode that is readily accessible in the market. In KOH, H2SO4, and (2 M KOH + 0.1 M glycerol) solutions, the Au NPs/TiO2-NPs-N2 electrode displayed a startlingly high electrocatalytic performance. Using CV, the electrocatalytic oxygen reduction reaction (ORR) of Au NPs/TiO2-NPs-N2 and Au-NPs against glycerol oxidation in basic media was studied. The results indicated that Au NPs/TiO2-NPs-N2 is a promising support material for improving the electrocatalytic activity for acidic and basic oxidation. The electrode made of Au NPs/TiO2-NTs-N2 has steady electrocatalytic activity and may be reused repeatedly. TiO2 NPs and Au NPs/TiO2NPs-N2 showed satisfactory antibacterial activity against some human pathogenic bacteria using the disc diffusion method.
Collapse
Affiliation(s)
| | | | - Mohammed A.H. Awad
- Chemistry Department, Faculty of Science, Sana'a University, Yemen
- Chemistry Department, Faculty of Applied Sciences, Thamar University, Yemen
| | - Adlia A.M. Abduljabbar
- Chemistry Department, Faculty of Applied Sciences and Humanities, Amran University, Yemen
| |
Collapse
|
6
|
Aida MS, Alonizan N, Zarrad B, Hjiri M. Influence of plant extract on the homogeneous and heterogeneous green chemistry synthesis of nanostructured ZnO. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2179819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- M. S. Aida
- Department of Physics Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - N. Alonizan
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, City Dammam, Kingdom of Saudi Arabia
| | - B. Zarrad
- Department of Physics Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - M. Hjiri
- Department of Physics Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Mahato R, Masiul Islam S, Maurya RK, Kumar S, Purohit G, Singh S. Flexible piezo-resistive strain sensors using all-polydimethylsiloxane based hybrid nanocomposites for wearable electronics. Phys Chem Chem Phys 2023; 26:95-104. [PMID: 38054271 DOI: 10.1039/d3cp04158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report flexible piezo-resistive strain sensors composed of silver nanoparticle (Ag NP), graphene nanoplatelet (GNP), and multi walled carbon nanotube (MWCNT)-based ternary conductive hybrid nanocomposites as an active sensing layer fabricated using a simple solution processing method on flexible polydimethylsiloxane (PDMS) substrates. The electrical characteristics have been studied in PDMS-based flexible devices having three different kinds of structures, namely Ag NPs/MWCNT/PDMS, GNP/PDMS and Ag NPs/GNP/PDMS. The microscopic analysis of the hybrid nanocomposites is undertaken using field emission scanning electron microscopy. The diameter of the CNTs is found to be in the range of 20-40 nm, whereas the length is determined to be 100-800 nm. The average diameter and length of the GNPs are observed to be 30-50 nm and 100-500 nm, respectively. The crystallite size of the silver nanoparticles in the Ag NPs/MWCNT/PDMS and Ag NPs/GNP/PDMS-based nanocomposites is determined to be 22.8 nm and 29.1 nm, respectively. The prepared sample of Ag NPs shows four distinct peaks in the X-ray diffraction pattern, which correspond to the (111), (200), (220), and (311) face-centered cubic (FCC) crystalline planes. Raman spectroscopy is undertaken to study the fundamental physical properties and chemical analysis of the nanocomposites. Ag NPs/GNP/PDMS-based sensors exhibit superior performance in terms of sensitivity, response and recovery time during breathing/unbreathing analysis. The large surface area of the Ag NPs and GNPs promotes uniform distribution of Ag NPs to fill into the porous GNP surface, thereby facilitating high contact area along with better electron transport in the Ag NPs/GNP/PDMS hybrid nanocomposite-based sensors. The gauge factor (GF), response and recovery time of the Ag NPs/GNP/PDMS hybrid nanocomposite-based sensors are determined to be 221, 130 ms and 119 ms, respectively. The ternary conductive nanocomposite-based sensors are free from the drawbacks of binary nanocomposite-based sensors where the high percolation threshold and poor mechanical behaviour lead to the degradation of the device performance.
Collapse
Affiliation(s)
- Rajib Mahato
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
| | - Sk Masiul Islam
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
| | - Ranjan Kumar Maurya
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
| | - Sanjeev Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
- Semiconductor Process Technology Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India
| | - Gaurav Purohit
- Advanced Information Technologies Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India
| | - Sumitra Singh
- Semiconductor Sensors and Microsystems Group, CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani 333031, India
| |
Collapse
|
8
|
Negash A, Mohammed S, Weldekirstos HD, Ambaye AD, Gashu M. Enhanced photocatalytic degradation of methylene blue dye using eco-friendly synthesized rGO@ZnO nanocomposites. Sci Rep 2023; 13:22234. [PMID: 38097751 PMCID: PMC10721910 DOI: 10.1038/s41598-023-48826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Industrial chemical pollutants such as methylene blue (MB) dye are released into the water body and potentially cause harm to the human and aquatic biosphere. Therefore, this study aims to synthesize eco-friendly nanocatalysts, i.e., reduced graphene oxide (rGO), zinc oxide (ZnO), and reduced graphene oxide-zinc oxide (rGO@ZnO) nanocomposites, for efficient photocatalytic degradation of MB dye. A graphite rod was obtained from waste dry cell batteries for the electrochemical exfoliation synthesis of graphene oxide (GO) and rGO. For the eco-friendly synthesis of ZnO and rGO@ZnO nanocatalysts, Croton macrostachyus leaf extract was used as a reducing and capping agent. The synthesized nanocatalysts were characterized using a UV-Vis spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy with energy-dispersive X-ray. The eco-friendly synthesized rGO, ZnO, and rGO@ZnO nanocatalysts were applied for the photocatalytic degradation of MB dye using direct sunlight irradiation. At optimum parameters, photocatalytic degradation of MB dye efficiency reached up to 66%, 96.5%, and 99.0%, respectively. Furthermore, kinetics of the photodegradation reaction based on rGO, ZnO, and rGO@ZnO nanocatalysts follow pseudo-first-order with a rate constant of 2.16 × 10-3 min-1, 4.97 × 10-3 min-1, and 5.03 × 10-3 min-1, respectively. Lastly, this study promotes a low catalyst load (20 mg) for the efficient photodegradation of MB dye.
Collapse
Affiliation(s)
- Asfaw Negash
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia.
| | - Said Mohammed
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | | | - Abera D Ambaye
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
- Materials Science and Engineering Research, Bio and Emerging Technology Institute, P.O. Box 5954, Addis Ababa, Ethiopia
| | - Minbale Gashu
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia.
| |
Collapse
|
9
|
Yavari S, Olaifa K, Shafiee D, Rasuli R, Shafiee M. Molybdenum oxide nanotube caps decorated with ultrafine Ag nanoparticles: Synthesis and antimicrobial activity. Int J Pharm 2023; 647:123528. [PMID: 37863449 DOI: 10.1016/j.ijpharm.2023.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
In the contemporary era, microorganisms, spanning bacteria and viruses, are increasingly acknowledged as emerging contaminants in the environment, presenting significant risks to public health. Nevertheless, conventional methods for disinfecting these microorganisms are often ineffective. Additionally, they come with disadvantages such as high energy usage, negative environmental consequences, increased expenses, and the generation of harmful byproducts. The development of next-generation antifungal and antibacterial agents is dependent on newly synthesized nanomaterials with inherent antimicrobial behavior. In this study, we report an arc-discharge method to synthesize MoOx nanosheets and microbelts, followed by decorating them with ultrafine Ag nanoparticles (NPs). Scanning and transmission electron microscopies show that Ag NPs formation on the Molybdenum oxide nanostructures rolls them into nanotube caps (NTCs), revealing inner and outer diameters of approximately 19.8 nm and 105.5 nm, respectively. Additionally, the Ag NPs are ultrafine, with sizes in the range of 5-8 nm. Results show that the prepared NTCs exhibit dose-dependent sensitivity to both planktonic and biofilm cells of Escherichia coli and Candida albicans. The anti-biofilm activity in terms of biofilm inhibition ranged from 19.7 to 77.2% and 11.3-82.3%, while removal of more than 70% and 90% of preformed biofilms was achieved for E. coli and C. albicans, respectively, showing good potential for antimicrobial coating. Initial MoOx exhibits positive potential, while Ag-decorated Molybdenum oxide NTCs show dual potential effects (positive for Molybdenum oxide NTCs and negative for Ag NPs. Molybdenum oxide NTCs, with their strong positive potential, efficiently attract microbes due to their negatively charged cell surfaces, facilitating the antimicrobial effect of Ag NPs, leading to cell damage and death. These findings suggest that the synthesized NPs could serve as a suitable coating for biomedical applications.
Collapse
Affiliation(s)
- Shabnam Yavari
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran; Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kayode Olaifa
- Department of Biology, Nazarbayev Intellectual School of Biology and Chemistry, Aktau, Kazakhstan; Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Darya Shafiee
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Reza Rasuli
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Mehdi Shafiee
- Energetic Cosmos Laboratory, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
10
|
Goumri-Said S. A Comprehensive Study of Electronic, Optical, and Thermoelectric Characteristics of Cs 2PbI 2Br 2 Inorganic Layered Ruddlesden-Popper Mixed Halide Perovskite through Systematic First-Principles Analysis. ACS OMEGA 2023; 8:38170-38177. [PMID: 37867653 PMCID: PMC10586437 DOI: 10.1021/acsomega.3c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
In this research, we present a comprehensive study on the influence of layer-dependent structural, electronic, and optical properties in the two-dimensional (2D) Ruddlesden-Popper (RP) perovskite Cs2PbI2Br2. Employing first-principles computations within the density functional theory method, including spin orbit coupling contribution, we examine the impact of various factors on the material. Our results demonstrate that the predicted 2D-layered RP perovskite Cs2PbI2Br2 structures exhibit remarkable stability both structurally and energetically, making them promising candidates for experimental realization. Furthermore, we observe that the electronic band gap and optical absorption coefficients of Cs2PbI2Br2 strongly depend on the thickness variation of the layers. Interestingly, Cs2PbI2Br2 exhibits a notable absorption coefficient in the visible region. Using a combination of density functional theory and Boltzmann transport theory, the thermoelectric properties were forecasted. The calculation involved determining the Seebeck coefficient (S) and other associated thermoelectric characteristics, such as electronic and thermal conductivities, as they vary with the chemical potential at room temperature. These findings open up exciting opportunities for the application of this 2D RP perovskite in solar cells and thermoelectric devices, owing to its unique properties.
Collapse
Affiliation(s)
- Souraya Goumri-Said
- Department of Physics, College
of Science and General studies, Alfaisal
University, P.O. Box
5092, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Zhang LY, Han YL, Liu M, Deng SL. Ni-Al layered double hydroxide-coupled layered mesoporous titanium dioxide (Ni-Al LDH/LM-TiO 2) composites with integrated adsorption-photocatalysis performance. RSC Adv 2023; 13:16797-16814. [PMID: 37283865 PMCID: PMC10240257 DOI: 10.1039/d3ra02160b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Nickel aluminum layered double hydroxides (Ni-Al LDHs) and layered mesoporous titanium dioxide (LM-TiO2) were prepared via a simple precipitation process and novel precipitation-peptization method, respectively, and Ni-Al LDH-coupled LM-TiO2 (Ni-Al LDH/LM-TiO2) composites with dual adsorption and photodegradation properties were obtained via the hydrothermal approach. The adsorption and photocatalytic properties were investigated in detail with methyl orange as the target, and the coupling mechanism was systematically studied. The sample with the best performance was recovered after photocatalytic degradation, which was labeled as 11% Ni-Al LDH/LM TiO2(ST), and characterization and stability studies were carried out. The results showed that Ni-Al LDHs showed good adsorption for pollutants. Ni-Al LDH coupling enhanced the absorption of UV and visible light, and the transmission and separation of photogenerated carriers were also significantly promoted, which was conducive to improving the photocatalytic activity. After treatment in the dark for 30 min, the adsorption of methyl orange by 11% Ni-Al LDHs/LM-TiO2 reached 55.18%. Under illumination for 30 min, the decolorization rate of methyl orange solution reached 87.54%, and the composites also showed an excellent recycling performance and stability.
Collapse
Affiliation(s)
- Li-Yuan Zhang
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College Neijiang 641112 China
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province No. 1, Xingqiao Street Neijiang 641112 Sichuan China +86 832 2341577
| | - Yan-Lin Han
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
| | - Min Liu
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College Neijiang 641112 China
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province No. 1, Xingqiao Street Neijiang 641112 Sichuan China +86 832 2341577
| | - Sheng-Lian Deng
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
| |
Collapse
|
12
|
Shirzad Choubari M, Rahmani S, Mazloom J. Boosted electrochemical performance of magnetic caterpillar-like Mg 0.5Ni 0.5Fe 2O 4 nanospinels as a novel pseudocapacitive electrode material. Sci Rep 2023; 13:7822. [PMID: 37188956 DOI: 10.1038/s41598-023-35014-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Ni-incorporated MgFe2O4 (Mg0.5Ni0.5Fe2O4) porous nanofibers were synthesized using the sol-gel electrospinning method. The optical bandgap, magnetic parameters, and electrochemical capacitive behaviors of the prepared sample were compared with pristine electrospun MgFe2O4 and NiFe2O4 based on structural and morphological properties. XRD analysis affirmed the cubic spinel structure of samples and their crystallite size is evaluated to be less than 25 nm using the Williamson-Hall equation. FESEM images demonstrated interesting nanobelts, nanotubes, and caterpillar-like fibers for electrospun MgFe2O4, NiFe2O4, and Mg0.5Ni0.5Fe2O4, respectively. Diffuse reflectance spectroscopy revealed that Mg0.5Ni0.5Fe2O4 porous nanofibers possess the band gap (1.85 eV) between the calculated value for MgFe2O4 nanobelts and NiFe2O4 nanotubes due to alloying effects. The VSM analysis revealed that the saturation magnetization and coercivity of MgFe2O4 nanobelts were enhanced by Ni2+ incorporation. The electrochemical properties of samples coated on nickel foam (NF) were tested by CV, GCD, and EIS analysis in a 3 M KOH electrolyte. The Mg0.5Ni0.5Fe2O4@Ni electrode disclosed the highest specific capacitance of 647 F g-1 at 1 A g-1 owing to the synergistic effects of multiple valence states, exceptional porous morphology, and lowest charge transfer resistance. The Mg0.5Ni0.5Fe2O4 porous fibers showed superior capacitance retention of 91% after 3000 cycles at 10 A g-1 and notable Coulombic efficiency of 97%. Moreover, the Mg0.5Ni0.5Fe2O4//Activated carbon asymmetric supercapacitor divulged a good energy density of 83 W h Kg-1 at a power density of 700 W Kg-1.
Collapse
Affiliation(s)
- Matin Shirzad Choubari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Soghra Rahmani
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran.
| |
Collapse
|
13
|
Kalaycıoğlu Z, Özuğur Uysal B, Pekcan Ö, Erim FB. Efficient Photocatalytic Degradation of Methylene Blue Dye from Aqueous Solution with Cerium Oxide Nanoparticles and Graphene Oxide-Doped Polyacrylamide. ACS OMEGA 2023; 8:13004-13015. [PMID: 37065069 PMCID: PMC10099124 DOI: 10.1021/acsomega.3c00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A cerium oxide nanoparticles (CeO2-NPs)/graphene oxide (GO)/polyacrylamide (PAM) ternary composite was synthesized through free-radical polymerization of acrylamide in the presence of CeO2 nanoparticles and GO in an aqueous system. The synthesized composite material was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy techniques and applied for the photocatalytic degradation of methylene blue (MB) dye from an aqueous solution. Tauc's model for direct transition was used to model for the optical band gap. The key operating parameters such as the amounts of CeO2-NPs and GO, pH, initial MB concentration, type of light irradiation, and contact time have been optimized to achieve the highest MB degradation percentage. The photocatalysis process was pH-dependent, and the optimum pH value was found to be 12.0. Under UV-A light, 90% dye degradation occurred in 90 min. The degradation of MB was also specified in terms of total organic carbon (TOC) and chemical oxygen demand (COD). Free-radical capture experiments were also performed to determine the role of radical species during the photocatalytic oxidation process. The photocatalytic process showed that the equilibrium data is in good agreement with the Langmuir-Hinshelwood kinetic model. A rate constant of 0.0259 min-1 was obtained. The hydrogel was also tested to assess its reusability, which is an important key factor in practical wastewater treatment. The photocatalytic activity only decreased to 75% after nine uses.
Collapse
Affiliation(s)
- Zeynep Kalaycıoğlu
- Department
of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Bengü Özuğur Uysal
- Faculty
of Engineering and Natural Sciences, Kadir
Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Önder Pekcan
- Faculty
of Engineering and Natural Sciences, Kadir
Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - F. Bedia Erim
- Department
of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
14
|
El-Khawaga AM, Elsayed MA, Fahim YA, Shalaby RE. Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst. Sci Rep 2023; 13:5353. [PMID: 37005443 PMCID: PMC10067836 DOI: 10.1038/s41598-023-32323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
In this study, CoFe2O4 nanoparticles were prepared by the co-precipitation method then surface modified with Capsaicin (Capsicum annuum ssp.). The virgin CoFe2O4 NPs and Capsaicin-coated CoFe2O4 NPs (CPCF NPs) were characterized by XRD, FTIR, SEM, and TEM. The antimicrobial potential and photocatalytic degradation efficiencies of the prepared samples via Fuchsine basic (FB) were investigated. The results revealed that CoFe2O4 NPs have spherical shapes and their diameter varied from 18.0 to 30.0 nm with an average particle size of 25.0 nm. Antimicrobial activity was tested on Gram-positive (S. aureusATCC 52923) and Gram-negative (E. coli ATCC 52922) by disk diffusion and broth dilution methods to determine the zone of inhibition (ZOI) and minimum inhibitory concentration (MIC), respectively. UV-assisted photocatalytic degradation of FB was examined. Various parameters affecting the photocatalytic efficiency such as pH, initial concentration of FB, and dose of nanocatalyst were studied. The in-vitro ZOI and MIC results verified that CPCF NPs were more active upon Gram-Positive S. aureus ATCC 52923 (23.0 mm ZOI and 0.625 μg/ml MIC) than Gram-Negative E. coli ATCC 52922 (17.0 mm ZOI and 1.250 μg/ml MIC). Results obtained from the photocatalytic activity indicated that the maximum FB removal achieving 94.6% in equilibrium was observed using 20.0 mg of CPCF NPS at pH 9.0. The synthesized CPCF NPs were effective in the removal of FB and also as potent antimicrobial agent against both Gram-positive and Gram-negative bacteria with potential medical and environmental applications.
Collapse
Affiliation(s)
- Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt.
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Yosri A Fahim
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt
| | - Rasha E Shalaby
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, 43511, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Yassin AY, Abdelghany AM, Salama RS, Tarabiah AE. Structural, Optical and Antibacterial Activity Studies on CMC/PVA Blend Filled with Three Different Types of Green Synthesized ZnO Nanoparticles. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
AbstractIn this work, zinc oxide (ZnO) was produced using extracts of Thymus (Z), Hibiscus rosa-sinensis (K), and Daucus carota (G). Furthermore, sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) were combined with ZnO to form three novel nanocomposites. X-ray diffraction (XRD) was used for the structural analysis, where the semicrystalline nature of the (CMC/PVA)/ZnO nanocomposites was confirmed. The characteristics functional groups that arose inside the prepared samples were identified by Fourier transform infrared spectroscopy (FTIR). Evidence for the successful preparation of the pure ZnO particles and their nanocomposites was carried out using a transmission electron microscope (TEM). The ZnO nanoparticles are mostly spherical, irregularly distributed, and have radii ranging from 10 to 40 nm. Their anti-bacterial activity was studied against B. subtilis, E. coli, and Candida albicans. The inhibition zones of all the prepared samples against E. coli were 0, 19, 31, and 23 mm for PVA/CMC blend, PVA/CMC/ZnO (Z) (PCZ-Z), PVA/CMC/ZnO (K) (PCZ-K), and PVA/CMC/ZnO (G) (PCZ-G), respectively, compared to the streptomycin control Gram-positive standard with inhibition zone (34 mm). On the other hand, the inhibition zones of the prepared samples against B. subtilis were equal to 0, 26, 33, and 28 mm for CMC/PVA, PCZ-Z, PCZ-K, and PCZ-G, respectively. Based on these results, the PCZ-K sample is the most effective at resisting E. coli (91.17%) and B. subtilis (94.28%). These nanocomposites do not have harmful chemicals, making them strong candidates for use in biological applications.
Collapse
|
16
|
Shang J, Zhang W, Dong Z, Fan HJS. Kinetics of Catalytic Oxidation of Methylene Blue with La/Cu Co-Doped in Attapulgite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2087. [PMID: 36903201 PMCID: PMC10003998 DOI: 10.3390/ma16052087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Methylene blue (MB) is a common pollutant in wastewater from the printing and dyeing industries. In this study, attapulgite (ATP) was modified with La3+/Cu2+, using the method of equivolumetric impregnation. The La3+/Cu2+ -ATP nanocomposites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The catalytic properties of the modified ATP and the original ATP were compared. At the same time, the influence of the reaction temperature, concentration of methylene blue and pH on the reaction rate were investigated. The optimal reaction conditions are as follows: MB concentration is 80 mg/L, the dosage of the catalyst is 0.30 g, the dosage of hydrogen peroxide is 2 mL, the pH is 10 and the reaction temperature is 50 °C. Under these conditions, the degradation rate of MB can reach 98%. The recatalysis experiment was carried out reusing the catalyst, and the experimental results showed that the degradation rate could reach 65% after three uses, indicating that the catalyst could be recycled many times and costs could be reduced. Finally, the degradation mechanism of MB was speculated, and the reaction kinetic equation was obtained as follows: -dc/dt = 14,044 exp(-3598.34/T)C(O)0.28.
Collapse
Affiliation(s)
- Jianping Shang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
| | - Wei Zhang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
| | - Zhengliang Dong
- Sichuan Institute of Geological Survey Salt Geology Drilling Team, Chengdu 610059, China
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
| |
Collapse
|
17
|
Falah S, Ghorbani M, Ahmadpour J. Photocatalytic degradation of anionic and cationic dyes over PPy/CuFe2O4 nanocomposite under visible-light and bactericidal action. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
18
|
A novel Ppy/ZnO@Co ternary nanocomposite with enhanced visible light-driven photocatalytic performance. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
19
|
Sheikholia Lavasani F, Khalaj Z, Kabirifard H, Monajjemi M. Fabrication and characterization of the Fe 3O 4@SiO 2-rGO nanocomposite: a catalyst for multi-component reactions. Phys Chem Chem Phys 2023; 25:2821-2829. [PMID: 36606418 DOI: 10.1039/d2cp05354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel nanocomposite is synthesized by covalently modifying reduced graphene oxide (rGO) with Fe3O4@SiO2 nanoparticles. Fe3O4 was synthesized using a co-precipitation method, and SiO2 was then coated onto the Fe3O4via a sol-gel method. Graphene oxide was synthesized using the Hummers' method. Furthermore, a hydrothermal method was applied to create the Fe3O4@SiO2-GO composite, and a simple reduction was used to obtain three-dimensional (3D) Fe3O4@SiO2-rGO core-shell spheres. XRD, FTIR, FE-SEM, VSM, BET, TGA, and Raman analyses were used to characterize the prepared nanocomposites. X-Ray diffraction (XRD) and Raman spectra reveal that the nanostructures consist of highly crystallized cubic Fe3O4, amorphous SiO2, and rGO sheets stacked in a disordered fashion. Field emission scanning electron microscopy (FE-SEM) characterization indicates that the form of the Fe3O4@SiO2 core-shell structures is spherical, with an average size of about 25 nm. Magnetic hysteresis loops reveal the super-paramagnetic behavior of the samples at room temperature. All of the results obtained confirm the synthesis of high-quality nanocomposites, which can be a good candidate for use as a catalyst in multi-component reactions.
Collapse
Affiliation(s)
| | - Zahra Khalaj
- Department of Physics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Hassan Kabirifard
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Monajjemi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Muthukumaran MK, Govindaraj M, Raja BK, J AS. In situ synthesis of polythiophene encapsulated 2D hexagonal boron nitride nanocomposite based electrochemical transducer for detection of 5-fluorouracil with high selectivity. RSC Adv 2023; 13:2780-2794. [PMID: 36756436 PMCID: PMC9850362 DOI: 10.1039/d2ra07147a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
It is difficult for the scientific community to develop a nonenzymatic sensing platform for extremely sensitive and selective detection of specific biomolecules, antibiotics, food adulterants, heavy metals, etc. One of the most significant chemotherapy drugs, 5-fluorouracil (5-Fu), which is used to treat solid malignancies, has a fluorine atom in the fifth position of the uracil molecule. Recognizing the secure and effective dosing of drugs for chemotherapy continues to be a critical concern in cancer disease management. The maintenance of the optimal 5-Fu concentration is dependent on the presence of 5-Fu in biofluids. Herein we reported a conducting polymer encapsulated 2D material, PTh/h-BN for the efficient electrochemical detection of anticancer drug 5-Fu. Furthermore, the synthesized PTh/h-BN nanocomposite was confirmed by the High-Resolution Transmission Electron Microscope (HR-TEM), High-Resolution Scanning Electron Microscope (HR-SEM), X-ray diffraction (XRD), and Fourier-Transform Infrared Spectroscopy (FT-IR). The electrical resistance of PTh/h-BN modified GCE and its sensing performance towards 5-Fu were tested using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) studies respectively. The analytical performance of our proposed catalyst was tested using Differential Pulse Voltammetry (DPV), and the amperometry (i-t curve) method. From the results, our proposed PTh/h-BN nanocomposite-modified GCE shows enhanced sensing performance due to higher redox peak currents, large active surface area, and high electrical conductivity. Moreover, the nanohybrid shows enhanced sensing performances with quick response time, wide linear range, the lowest limit of detection, high sensitivity, and high selectivity in the presence of various interferents. Finally, the practical applicability of the proposed sensor was tested with real-world samples with very good recovery percentages.
Collapse
Affiliation(s)
- Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Arockia Selvi J
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|