1
|
Zhang L, Du Q, Zhang Z, Chen J, Liu Y, Luo X, Wang Z, Wu Z. Being Smarter, Azobenzene-Containing Biomaterial Showing Triple Stimuli-Responsive Phase Change Property to Light, Humidity and Force at Room Temperature. Adv Healthc Mater 2024; 13:e2402081. [PMID: 39363799 DOI: 10.1002/adhm.202402081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Multiple stimuli-responsiveness is an attractive property that is studied in physical chemistry and materials chemistry. While, multiple stimuli-responsive phase change in an isothermal way is rarely addressed for functional materials at room temperature. In this study, one azobenzene-containing surfactant AZO is designed for the fabrication of triple stimuli-responsive phase change biomaterial (Alg-AZO) through the electrostatic complexation with natural alginate. Thanks to the photoisomerization ability, molecular flexibility and hydrophilicity of AZO, together with the tailoring effect of alginate on AZO, Alg-AZO could perform reversible isothermal phase transition between liquid crystalline and isotropic liquid states under the stimuli of either light or humidity at room temperature. Furthermore, the humidity-induced isotropic state can also fast transit to ordered state under shear force, owing to the π-π interactions between planar trans-AZO in Alg-AZO material. With good biocompatibility, self-healing property and in vivo wound healing promoting capacity that is promoted by light, humidity and force, Alg-AZO would be suitable for working as a new smart biomaterial in biological and biomedical areas. This work provides a designing strategy for gaining multiple stimuli-responsive smart materials based on biomacromolecules, and also opening a new opportunity for gaining self-healing biomaterials capable of working in various conditions.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qianyao Du
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ziying Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Wu Y, Dong L, Tang S, Liu X, Han Y, Zhang S, Liu K, Feng W. An Innovative Azobenzene-Based Photothermal Fabric with Excellent Heat Release Performance for Wearable Thermal Management Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404310. [PMID: 39252649 DOI: 10.1002/smll.202404310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Azobenzene (azo)-based photothermal energy storage systems have garnered great interest for their potential in solar energy conversion and storage but suffer from limitations including rely on solvents and specific wavelengths for charging process, short storage lifetime, low heat release temperature during discharging, strong rigidity and poor wearability. To address these issues, an azo-based fabric composed of tetra-ortho-fluorinated photo-liquefiable azobenzene monomer and polyacrylonitrile fabric template is fabricated using electrospinning. This fabric excels in efficient photo-charging (green light) and discharging (blue light) under visible light range, solvent-free operation, long-term energy storage (706 days), and good capacity of releasing high-temperature heat (80-95 °C) at room temperature and cold environments. In addition, the fabric maintains high flexibility without evident loss of energy-storage performance upon 1500 bending cycles, 18-h washing or 6-h soaking. The generated heat from charged fabric is facilitated by the Z-to-E isomerization energy, phase transition latent heat, and the photothermal effect of 420 nm light irradiation. Meanwhile, the temperature of heat release can be personalized for thermal management by adjusting the light intensity. It is applicable for room-temperature thermal therapy and can provide heat to the body in cold environments, that presenting a promising candidate for wearable personal thermal management.
Collapse
Affiliation(s)
- Yudong Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Liqi Dong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Shuxin Tang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Xiao Liu
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Yulin Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Songge Zhang
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Kai Liu
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Wang Y, Sheng L, Xu B, Shi J, Chen Z. Study on Thermophysical Properties and Phase Change Regulation Mechanism of Optically-Controlled Phase Change Materials: Synthesis, Crystal Structure and Molecular Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404184. [PMID: 39128134 DOI: 10.1002/smll.202404184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Optically-controlled phase change materials, which are prepared by introducing molecular photoswitches into traditional phase change materials (PCMs), can convert and store solar energy into photochemical enthalpy and phase change enthalpy. However, the thermophysical properties of optically controlled PCMs, which are crucial in the practical, are rarely paid attention to. 4-(phenyldiazenyl)phenyl decanoate (Azo-A-10) is experimentally prepared as an optically-controlled PCMs, whose energy storage density is 210.0 kJ·kg-1, and the trans single crystal structure is obtained. The density, phase transition temperature, thermal conductivity, and other parameters in trans state are measured experimentally. Furthermore, a microscopic model of Azo-A-10 is established, and the thermophysical properties are analyzed based on molecular dynamics. The results show that the microstructure parameter (order parameters) and thermophysical properties (density, radial distribution function, self-diffusion coefficient, phase change temperature, and thermal conductivity) of partially or completely isomerized Azo-A-10, which are challenging to observe in experiments, can be predicted by molecular dynamics simulation. The optically-controlled phase change mechanism can be clarified according to the differences in microstructure. The optically-controlled switchability of thermophysical properties of an optically-controlled PCM is analyzed. This study provides ideas for the improvement, development, and application of optically-controlled PCMs in the future.
Collapse
Affiliation(s)
- Yi Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lisha Sheng
- College of Energy and Electrical Engineering, Hohai University, Nanjing, 210098, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Juan Shi
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
- Jiangsu Province Key Laboratory of Solar Energy Science and Technology, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
4
|
He Y, Dang T, Leach AG, Zhang ZY, Li T. Photoswitchable Azobispyrazole Crystals Achieving Near-Quantitative Crystalline-State Bidirectional E ⇆ Z Conversions. J Am Chem Soc 2024; 146:29237-29244. [PMID: 39400172 DOI: 10.1021/jacs.4c12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Azo molecules, being extensively studied as photoswitches, have demonstrated versatile photoswitching performance and applications in solution-phase systems. However, the dense molecular packing and insufficient conformational freedom in the solid/crystalline state typically pose a challenge to their E ⇆ Z isomerization. This study presents a breakthrough in solid-state azo chemistry, where the investigated azobispyrazole molecules are capable of achieving high E → Z photoconversion, ranging from 85% to nearly quantitative (96%), and quantitative Z → E photoswitching in their crystalline states. To the best of our knowledge, azobispyrazoles are the first photoswitchable azo crystals that achieve high-yield bidirectional conversions, particularly the challenging thermodynamically stable-to-metastable E → Z transformation. Crystallographic and computational analyses provide in-depth insights into the photoswitching mechanism and propose that locally distributed free spaces and weak intermolecular interactions within the crystal structures are key factors contributing to the crystalline-state conversion. This work opens up new avenues for the development of promising photoswitchable azo crystals and also underscores the potential application of azobispyrazole crystals as light-responsive materials.
Collapse
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Andrew G Leach
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Fei L, Hölzel H, Wang Z, Hillers-Bendtsen AE, Aslam AS, Shamsabadi M, Tan J, Mikkelsen KV, Wang C, Moth-Poulsen K. Two-way photoswitching norbornadiene derivatives for solar energy storage. Chem Sci 2024:d4sc04247f. [PMID: 39421198 PMCID: PMC11474437 DOI: 10.1039/d4sc04247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Molecular photoswitches of norbornadiene (NBD) derivatives have been effectively applied in molecular solar-thermal energy storage (MOST) by photoisomerization of NBD to a quadricyclane (QC) state. However, a challenge of the NBD-based MOST system is the lack of a reversible two-way photoswitching process, limiting conversion from QC to thermal and catalytic methods. Here we design a series of NBD derivatives with a combination of acceptor and donor units to achieve two-way photoswitching, which can optically release energy by back-conversion from QC to NBD. Highly efficient photoconversion yields from NBD to QC and QC to NBD are up to 99% and 82%, respectively. The energy storage density of two-way photoswitching NBD is up to 312 J g-1 and optically controlled two-way photoswitching devices are demonstrated for the first time both in flow and in thin films, which illustrate a promising approach for fast and robust energy release in both solution and solid state.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
| | - Zhihang Wang
- School of Engineering, College of Science and Engineering, University of Derby Markeaton Street Derby DE22 3AW UK
| | | | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Jialing Tan
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Kasper Moth-Poulsen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra 08193 Barcelona Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluís Companys 23 Barcelona Spain
| |
Collapse
|
6
|
Chen J, Zhang G, Wu Z, Wu Q, Chang J, Liang Q, Zhang L, Luo X, Liu Y, Zeng W. Photoresponsive heparin ionic complexes toward controllable therapeutic efficacy of anticoagulation. Int J Biol Macromol 2024; 275:133631. [PMID: 38964688 DOI: 10.1016/j.ijbiomac.2024.133631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Controllable heparin-release is of great importance and necessity for the precise anticoagulant regulation. Efforts have been made on designing heparin-releasing systems, while, it remains a great challenge for gaining the external-stimuli responsive heparin-release in either intravenous or catheter delivery. In this study, an azobenzene-containing ammonium surfactant is designed and synthesized for the fabrication of photoresponsive heparin ionic complexes through the electrostatic complexation with heparin. Under the assistance of photoinduced trans-cis isomerization of azobenzene, the obtained heparin materials perform reversible athermal phase transition between ordered crystalline and isotropic liquid state at room temperature. Compared to the ordered state, the formation of isotropic state can effectively improve the dissolving of heparin from ionic materials in aqueous condition, which realizes the photo-modulation on the concentration of free heparin molecules. With good biocompatibility, such a heparin-releasing system addresses photoresponsive anticoagulation in both in vitro and in vivo biological studies, confirming its great potential clinical values. This work provides a new designing strategy for gaining anticoagulant regulation by light, also opening new opportunities for the development of photoresponsive drugs and biomedical materials based on biomolecules.
Collapse
Affiliation(s)
- Jia Chen
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Guoqiang Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Quanxin Wu
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Jiahao Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Qikai Liang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yun Liu
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| | - Weishen Zeng
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
7
|
Dang T, Zhang ZY, Li T. Visible-Light-Activated Heteroaryl Azoswitches: Toward a More Colorful Future. J Am Chem Soc 2024; 146:19609-19620. [PMID: 38991225 DOI: 10.1021/jacs.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Azobenzenes (Ph-N═N-Ph) are known as the most widely studied molecular photoswitches, and the recent rise of azoheteroarenes (Het-N═N-Ph or Het-N═N-Het) offers great opportunities to advance this already mature field. A common limitation is that azo-switches generally require harmful UV light for activation, which hinders their application across various fields. Despite great efforts in developing visible-light azobenzenes over the past few decades, the potential of visible-light heteroaryl azoswitches remains largely unexplored. This Perspective summarizes the state-of-the-art advancements in visible-light heteroaryl azoswitches, covering molecular design strategies, the structure-property relationship, and potential applications. We highlight the distinctive advantages of azoheteroarenes over azobenzenes in the research and development of visible-light switches. Furthermore, we discuss the opportunities and challenges in this emerging field and propose potential solutions to address crucial issues such as spectral red-shift and thermal half-life. Through this Perspective paper, we aim to provide inspiration for further exploration in this field, in anticipation of the growing prosperity and bright future of visible-light azoheteroarene photoswitches.
Collapse
Affiliation(s)
- Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Dolai A, Bhunia S, Manna K, Bera S, Box SM, Bhattacharya K, Saha R, Sarkar S, Samanta S. Visible-Light-Sensitive Photoliquefiable Arylazoisoxazoles for the Solar Energy Conversion, Storage and Controlled-Release of Heat at Room Temperature or Lower Temperatures. CHEMSUSCHEM 2024; 17:e202301700. [PMID: 38329884 DOI: 10.1002/cssc.202301700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The photoswitchable MOlecular Solar Thermal (MOST) energy storage systems that are capable of exhibiting high energy storage densities are found to suffer from the poor cyclability, the use of less abundant UV light of the solar spectrum, or reduced charging/discharging rates and poor photoconversions in solid states. Herein, we have designed and readily synthesized a novel set of para-thioalkyl substituted arylazoisoxazoles, that undergo high trans-cis and cis-trans photoconversions under visible light, and show fast charging/discharging and impressive cyclability. Remarkably, the presence of C6-or C10-thioalkyl chainin photochromes permitted reversible solid-liquid phase transition with the formation of cis-enriched charged states by 400 nm light irradiation and trans-enriched discharged states by 530 nm light at various temperatures (10-35 °C). The solid-to-liquid phase transition enabled storage of the latent heat in addition to the isomerization energy, resulting in a high net energy storage density of 189-196 J/g, which are substantially higher than that of many recently reported azobenzene-based MOST compounds (100-161 J/g). Using a high-resolution infrared camera, we further demonstrated that a brief irradiation of green light can be employed to readily release the trapped photon energy as heat. Our results suggest that the arylazoisoxazole with C6-thioalkyl chain at para-position can serve as an effective and eco-friendly photoliquefiable MOST material.
Collapse
Affiliation(s)
- Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Kallol Bhattacharya
- Department of Applied Optics & Photonics, University of Calcutta, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Ritabrata Saha
- College of Medicine & Sagore Dutta Hospital, Kamarhati, Kolkata, 700058
| | - Subhasish Sarkar
- College of Medicine & Sagore Dutta Hospital, Kamarhati, Kolkata, 700058
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
9
|
Kumar H, Parthiban G, Velloth A, Saini J, De R, Pal SK, Hazra KS, Venkataramani S. Arylazo-3,5-diphenylpyrazole Derivatives: Molecular Probes Exhibiting Reversible Light-induced Phase Transitions for Energy Storage and Direct Photolithographic Patterning. Chemistry 2024:e202401836. [PMID: 38818932 DOI: 10.1002/chem.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Gayathri Parthiban
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Jyoti Saini
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Kiran Shankar Hazra
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| |
Collapse
|
10
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Sun W, Shangguan Z, Zhang X, Dang T, Zhang ZY, Li T. Solar Efficiency of Azo-Photoswitches for Energy Conversion: A Comprehensive Assessment. CHEMSUSCHEM 2023; 16:e202300582. [PMID: 37278140 DOI: 10.1002/cssc.202300582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Photoswitches can absorb solar photons and store them as chemical energy by photoisomerization, which is regarded as a promising strategy for photochemical solar energy storage. Although many efforts have been devoted to photoswitch discovery, the solar efficiency, a critical fundamental parameter assessing the solar energy conversion ability, has attracted little attention and remains to be studied comprehensively. Here we provide a systematic evaluation of the solar efficiency of typical azo-switches including azobenzenes and azopyrazoles, and gain a comprehensive understanding on its decisive factors. All the efficiencies are found below 1.0 %, far from the proposed limits for molecular solar thermal energy storage systems. Azopyrazoles exhibit remarkably higher solar efficiencies (0.59-0.94 %) than azobenzenes (0.11-0.43 %), benefiting from largely improved quantum yield and photoisomerization yield. Light filters can be used to improve the isomerization yield but inevitably narrow the usable range of solar spectrum, and these two contradictory effects ultimately reduce solar efficiencies. We envision this conflict could be resolved through developing azo-switches that afford high isomerization yields by absorbing wide-spectrum solar energy. We hope this work could promote more efforts to improve the solar efficiency of photoswitches, which is highly relevant to the prospect for future applications.
Collapse
Affiliation(s)
- Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
12
|
Fei L, Zhang ZY, Tan Y, Ye T, Dong D, Yin Y, Li T, Wang C. Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209768. [PMID: 36738144 DOI: 10.1002/adma.202209768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported. The MOST fabric, which can co-harvest solar and thermal energy, achieves efficient photocharging and photo-discharging (>90% photoconversion), a high energy density of 2.5 kJ m-2 , and long-term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy-storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy-storage performance and robustness in PTM.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Ting Ye
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| |
Collapse
|
13
|
Zhang L, Liu H, Du Q, Zhang G, Zhu S, Wu Z, Luo X. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206623. [PMID: 36534833 DOI: 10.1002/smll.202206623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene-based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low-grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g-1 by charging solid sample and 160.50 J g-1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene-based PPCMs with high gravimetric energy density by improving the photon energy storage.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Han Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qianyao Du
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guoqiang Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shanhui Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|