1
|
Suman M, Sharpe JA, Bentham RB, Kotiadis VN, Menegollo M, Pignataro V, Molgó J, Muntoni F, Duchen MR, Pegoraro E, Szabadkai G. Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients. Hum Mol Genet 2019; 27:2367-2382. [PMID: 29701772 PMCID: PMC6005141 DOI: 10.1093/hmg/ddy149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.
Collapse
Affiliation(s)
- Matteo Suman
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.,Neuromuscular Unit, Department of Neuroscience, University of Padova, 35131 Padua, Italy
| | - Jenny A Sharpe
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Robert B Bentham
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Vassilios N Kotiadis
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Michela Menegollo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Viviana Pignataro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Jordi Molgó
- Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette 91191, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette 91198, France
| | - Francesco Muntoni
- University College London, Great Ormond Street Institute of Child Health Dubowitz Neuromuscular Centre and Medical Research Council (MRC) Centre for Neuromuscular Diseases, London WC1N 1EH, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Elena Pegoraro
- Neuromuscular Unit, Department of Neuroscience, University of Padova, 35131 Padua, Italy
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.,Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
2
|
Lampronti I, Dechecchi MC, Rimessi A, Bezzerri V, Nicolis E, Guerrini A, Tacchini M, Tamanini A, Munari S, D'Aversa E, Santangelo A, Lippi G, Sacchetti G, Pinton P, Gambari R, Agostini M, Cabrini G. β-Sitosterol Reduces the Expression of Chemotactic Cytokine Genes in Cystic Fibrosis Bronchial Epithelial Cells. Front Pharmacol 2017; 8:236. [PMID: 28553226 PMCID: PMC5427149 DOI: 10.3389/fphar.2017.00236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/18/2017] [Indexed: 11/15/2022] Open
Abstract
Extracts from Nigella arvensis L. seeds, which are widely used as anti-inflammatory remedies in traditional medicine of Northern Africa, were able to inhibit the expression of the pro-inflammatory neutrophil chemokine Interleukin (IL)-8 in Cystic Fibrosis (CF) bronchial epithelial IB3-1 cells exposed to the Gram-negative bacterium Pseudomonas aeruginosa. The chemical composition of the extracts led to the identification of three major components, β-sitosterol, stigmasterol, and campesterol, which are the most abundant phytosterols, cholesterol-like molecules, usually found in plants. β-sitosterol (BSS) was the only compound that significantly reproduced the inhibition of the P. aeruginosa-dependent expression of IL-8 at nanomolar concentrations. BSS was tested in CF airway epithelial CuFi-1 cells infected with P. aeruginosa. BSS (100 nM), showed a significant and consistent inhibitory activity on expression of the P. aeruginosa-stimulated expression chemokines IL-8, GRO-α GRO-β, which play a pivotal role in the recruitment of neutrophils in CF inflamed lungs. Preliminary mechanistic analysis showed that BSS partially inhibits the P. aeruginosa-dependent activation of Protein Kinase C isoform alpha, which is known to be involved in the transmembrane signaling activating IL-8 gene expression in bronchial epithelial cells. These data indicate BSS as a promising molecule to control excessive lung inflammation in CF patients.
Collapse
Affiliation(s)
- Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| | - Maria C Dechecchi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Alessandro Rimessi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies, Department of Morphology Surgery and Experimental Medicine, University of FerraraFerrara, Italy
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Elena Nicolis
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| | - Alessandra Santangelo
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Giuseppe Lippi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies, Department of Morphology Surgery and Experimental Medicine, University of FerraraFerrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| | - Maddalena Agostini
- Italian National Health Service - USL 20 Regione Veneto and Associazione Culturale PediatriVerona, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of VeronaVerona, Italy
| |
Collapse
|
3
|
Schultz SR, Copeland CS, Foust AJ, Quicke P, Schuck R. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2017; 105:139-157. [PMID: 28757657 PMCID: PMC5526632 DOI: 10.1109/jproc.2016.2577380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.
Collapse
Affiliation(s)
- Simon R Schultz
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Caroline S Copeland
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Amanda J Foust
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Peter Quicke
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Renaud Schuck
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| |
Collapse
|
4
|
Patergnani S, Baldassari F, De Marchi E, Karkucinska-Wieckowska A, Wieckowski MR, Pinton P. Methods to monitor and compare mitochondrial and glycolytic ATP production. Methods Enzymol 2015; 542:313-32. [PMID: 24862273 DOI: 10.1016/b978-0-12-416618-9.00016-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ATP is commonly considered as the main energy unit of the cell and participates in a variety of cellular processes. Thus, intracellular ATP concentrations rapidly vary in response to a wide variety of stimuli, including nutrients, hormones, cytotoxic agents, and hypoxia. Such alterations not necessarily affect cytosolic and mitochondrial ATP to similar extents. From an oncological perspective, this is particularly relevant in the course of tumor progression as well as in the response of cancer cells to therapy. In normal cells, mitochondrial oxidative phosphorylation (OXPHOS) is the predominant source of ATP. Conversely, many cancer cells exhibit an increased flux through glycolysis irrespective of oxygen tension. Assessing the relative contribution of glycolysis and OXPHOS to intracellular ATP production is fundamental not only for obtaining further insights into the peculiarities and complexities of oncometabolism but also for developing therapeutic and diagnostic tools. Several techniques have been developed to measure intracellular ATP levels including enzymatic methods based on hexokinase, glucose-6-phosphate dehydrogenase, and firefly luciferase. Here, we summarize conventional methods for measuring intracellular ATP levels and we provide a detailed protocol based on cytosol- and mitochondrion-targeted variants of firefly luciferase to determine the relative contribution of glycolysis and OXPHOS to ATP synthesis.
Collapse
Affiliation(s)
- Simone Patergnani
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy
| | - Federica Baldassari
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy
| | - Elena De Marchi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy
| | | | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy.
| |
Collapse
|
5
|
Lee GH, Lee HY, Li B, Kim HR, Chae HJ. Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci Rep 2014; 4:5194. [PMID: 24899098 PMCID: PMC4046133 DOI: 10.1038/srep05194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
A recently studied endoplasmic reticulum (ER) stress regulator, Bax inhibitor-1 (BI-1) plays a regulatory role in mitochondrial Ca2+ levels. In this study, we identified ER-resident and mitochondria-associated ER membrane (MAM)-resident populations of BI-1. ER stress increased mitochondrial Ca2+ to a lesser extent in BI-1–overexpressing cells (HT1080/BI-1) than in control cells, most likely as a result of impaired mitochondrial Ca2+ intake ability and lower basal levels of intra-ER Ca2+. Moreover, opening of the Ca2+-induced mitochondrial permeability transition pore (PTP) and cytochrome c release were regulated by BI-1. In HT1080/BI-1, the basal mitochondrial membrane potential was low and also resistant to Ca2+ compared with control cells. The activity of the mitochondrial membrane potential-dependent mitochondrial Ca2+ intake pore, the Ca2+ uniporter, was reduced in the presence of BI-1. This study also showed that instead of Ca2+, other cations including K+ enter the mitochondria of HT1080/BI-1 through mitochondrial Ca2+-dependent ion channels, providing a possible mechanism by which mitochondrial Ca2+ intake is reduced, leading to cell protection. We propose a model in which BI-1–mediated sequential regulation of the mitochondrial Ca2+ uniporter and Ca2+-dependent K+ channel opening inhibits mitochondrial Ca2+ intake, thereby inhibiting PTP function and leading to cell protection.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Bo Li
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
6
|
Hill JM, De Stefani D, Jones AWE, Ruiz A, Rizzuto R, Szabadkai G. Measuring baseline Ca(2+) levels in subcellular compartments using genetically engineered fluorescent indicators. Methods Enzymol 2014; 543:47-72. [PMID: 24924127 DOI: 10.1016/b978-0-12-801329-8.00003-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling. However, it has been challenging to specifically detect highly localized Ca(2+) fluxes such as those bridging these two organelles. To circumvent this issue, various recombinant Ca(2+) indicators that can be targeted to specific subcellular compartments have been developed over the past two decades. While the use of these probes for measuring agonist-induced Ca(2+) signals in various organelles has been extensively described, the assessment of basal Ca(2+) concentrations within specific organelles is often disregarded, in spite of the fact that this parameter is vital for several metabolic functions, including the enzymatic activity of mitochondrial dehydrogenases of the Krebs cycle and protein folding in the endoplasmic reticulum. Here, we provide an overview on genetically engineered, organelle-targeted fluorescent Ca(2+) probes and outline their evolution. Moreover, we describe recently developed protocols to quantify baseline Ca(2+) concentrations in specific subcellular compartments. Among several applications, this method is suitable for assessing how changes in basal Ca(2+) levels affect the metabolic profile of cancer cells.
Collapse
Affiliation(s)
- Julia M Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Diego De Stefani
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Achúcarro Basque Center for Neuroscience-UPV/EHU, Leioa, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, (CIBERNED), Madrid, Spain
| | - Rosario Rizzuto
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom; Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
7
|
Xiong TC, Ronzier E, Sanchez F, Corratgé-Faillie C, Mazars C, Thibaud JB. Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter. FRONTIERS IN PLANT SCIENCE 2014; 5:43. [PMID: 24600459 PMCID: PMC3927637 DOI: 10.3389/fpls.2014.00043] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/29/2014] [Indexed: 05/18/2023]
Abstract
Calcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca(2+) signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca(2+) imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca(2+) sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca(2+)-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca(2+) signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca(2+) dynamics in intact plants. We describe a simple method to image Ca(2+) signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca(2+) signals. It is shown that Ca(2+) signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins.
Collapse
Affiliation(s)
- Tou Cheu Xiong
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, UMR 386Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UMR 5004Montpellier, France
- Biochimie et Physiologie Moléculaire des PlantesSupAgro, Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, UM2Montpellier, France
- *Correspondence: Tou Cheu Xiong, Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, UMR 386/Centre National de la Recherche Scientifique, UMR 5004/Montpellier SupAgro/Université Montpellier 2, Campus INRA-SupAgro, Place Pierre Viala, F34060 Montpellier Cedex 2, France e-mail:
| | - Elsa Ronzier
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, UMR 386Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UMR 5004Montpellier, France
- Biochimie et Physiologie Moléculaire des PlantesSupAgro, Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, UM2Montpellier, France
| | - Frédéric Sanchez
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, UMR 386Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UMR 5004Montpellier, France
- Biochimie et Physiologie Moléculaire des PlantesSupAgro, Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, UM2Montpellier, France
| | - Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, UMR 386Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UMR 5004Montpellier, France
- Biochimie et Physiologie Moléculaire des PlantesSupAgro, Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, UM2Montpellier, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR 5546Castanet-Tolosan, France
| | - Jean-Baptiste Thibaud
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, UMR 386Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UMR 5004Montpellier, France
- Biochimie et Physiologie Moléculaire des PlantesSupAgro, Montpellier, France
- Biochimie et Physiologie Moléculaire des Plantes, UM2Montpellier, France
| |
Collapse
|
8
|
Boesmans W, Cirillo C, Van den Abbeel V, Van den Haute C, Depoortere I, Tack J, Vanden Berghe P. Neurotransmitters involved in fast excitatory neurotransmission directly activate enteric glial cells. Neurogastroenterol Motil 2013; 25:e151-60. [PMID: 23279281 DOI: 10.1111/nmo.12065] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The intimate association between glial cells and neurons within the enteric nervous system has confounded careful examination of the direct responsiveness of enteric glia to different neuroligands. Therefore, we aimed to investigate whether neurotransmitters known to elicit fast excitatory potentials in enteric nerves also activate enteric glia directly. METHODS We studied the effect of acetylcholine (ACh), serotonin (5-HT), and adenosine triphosphate (ATP) on intracellular Ca(2+) signaling using aequorin-expressing and Fluo-4 AM-loaded CRL-2690 rat and human enteric glial cell cultures devoid of neurons. The influence of these neurotransmitters on the proliferation of glia was measured and their effect on the expression of c-Fos as well as glial fibrillary acidic protein (GFAP), Sox10, and S100 was examined by immunohistochemistry and quantitative RT-PCR. KEY RESULTS Apart from ATP, also ACh and 5-HT induced a dose-dependent increase in intracellular Ca(2+) concentration in CRL-2690 cells. Similarly, these neurotransmitters also evoked Ca(2+) transients in human primary enteric glial cells obtained from mucosal biopsies. In contrast with ATP, stimulation with ACh and 5-HT induced early gene expression in CRL-2690 cells. The proliferation of enteric glia and their expression of GFAP, Sox10, and S100 were not affected following stimulation with these neurotransmitters. CONCLUSIONS & INFERENCES We provide evidence that enteric glial cells respond to fast excitatory neurotransmitters by changes in intracellular Ca(2+). On the basis of our experimental in vitro setting, we show that enteric glia are not only directly responsive to purinergic but also to serotonergic and cholinergic signaling mechanisms.
Collapse
Affiliation(s)
- W Boesmans
- Laboratory of Enteric NeuroScience, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Maltecca F, De Stefani D, Cassina L, Consolato F, Wasilewski M, Scorrano L, Rizzuto R, Casari G. Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Hum Mol Genet 2012; 21:3858-70. [PMID: 22678058 PMCID: PMC3412383 DOI: 10.1093/hmg/dds214] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.
Collapse
Affiliation(s)
- Francesca Maltecca
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova-I, Italy
| | - Laura Cassina
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin-I, Italy
| | - Francesco Consolato
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
- PhD school of Neurobiology, University of Insubria, Varese-I, Italy
| | - Michal Wasilewski
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Genève-CH, Switzerland and Dulbecco-Telethon Institute, Padova-I, Italy
| | - Luca Scorrano
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Genève-CH, Switzerland and Dulbecco-Telethon Institute, Padova-I, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova-I, Italy
| | - Giorgio Casari
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
| |
Collapse
|
10
|
|
11
|
Chang NC, Nguyen M, Bourdon J, Risse PA, Martin J, Danialou G, Rizzuto R, Petrof BJ, Shore GC. Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Hum Mol Genet 2012; 21:2277-87. [PMID: 22343142 DOI: 10.1093/hmg/dds048] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nutrient-deprivation autophagy factor-1 (NAF-1) was identified as an endoplasmic reticulum (ER) BCL-2-interacting protein, which functions to mediate the ability of ER BCL-2 to antagonize Beclin 1-dependent autophagy and depress ER calcium stores. In humans, a point mutation in Naf-1 (synonyms: Cisd2, Eris, Miner1 and Noxp70) is responsible for the neurodegenerative disorder Wolfram Syndrome 2. Here, we describe the generation and characterization of the Naf-1 gene deletion in mice. Naf-1 null mice display discernable clinical signs of degeneration at 2-3 months of age, with early evidence of significant defects in the structure and performance of skeletal muscle. Skeletal muscles from Naf-1 knockout mice demonstrate a significant shift towards slow-twitch (type I) fibers and greater resistance to muscle fatigue. Force-generating capacity is dramatically reduced in Naf-1(-/-) muscle. Consistent with its role in ER BCL-2-mediated regulation of autophagy and calcium flux, these physiological deficiencies were accompanied by augmented autophagy and dysregulated calcium homeostasis. In contrast, this also included adaptive enlargement of mitochondria with extensive cristae structures. Thus, NAF-1, a BCL-2-associated autophagy regulator, is required for homeostatic maintenance of skeletal muscle. Our findings uncover a novel pathway that is required for normal muscle maintenance, which may ultimately provide a novel therapeutic target for treating certain muscle pathologies.
Collapse
Affiliation(s)
- Natasha C Chang
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jaffe LF. Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx. Biol Cell 2012; 99:175-84. [PMID: 17302561 DOI: 10.1042/bc20060031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For nearly 30 years, fast calcium waves have been attributed to a regenerative process propagated by CICR (calcium-induced calcium release) from the endoplasmic reticulum. Here, I propose a model containing a new subclass of fast calcium waves which is propagated by CICI (calcium-induced calcium influx) through the plasma membrane. They are called fast CICI waves. These move at the order of 100 to 1000 microm/s (at 20 degrees C), rather than the order of 3 to 30 microm/s found for CICR. Moreover, in this proposed subclass, the calcium influx which drives calcium waves is relayed by stretch-activated calcium channels. This model is based upon reports from approx. 60 various systems. In seven of these reports, calcium waves were imaged, and, in five of these, evidence was presented that these waves were regenerated by CICI. Much of this model involves waves that move along functioning flagella and cilia. In these systems, waves of local calcium influx are thought to cause waves of local contraction by inducing the sliding of dynein or of kinesin past tubulin microtubules. Other cells which are reported to exhibit waves, which move at speeds in the fast CICI range, include ones from a dozen protozoa, three polychaete worms, three molluscs, a bryozoan, two sea urchins, one arthropod, four insects, Amphioxus, frogs, two fish and a vascular plant (Equisetum), together with numerous healthy, as well as cancerous, mammalian cells, including ones from human. In two of these systems, very gentle local mechanical stimulation is reported to initiate waves. In these non-flagellar systems, the calcium influxes are thought to speed the sliding of actinomyosin filaments past each other. Finally, I propose that this mechanochemical model could be tested by seeing if gentle mechanical stimulation induces waves in more of these systems and, more importantly, by imaging the predicted calcium waves in more of them.
Collapse
Affiliation(s)
- Lionel F Jaffe
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
13
|
Kettunen P. Calcium imaging in the zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1039-71. [PMID: 22453983 DOI: 10.1007/978-94-007-2888-2_48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The zebrafish (Danio rerio) has emerged as a new model system during the last three decades. The fact that the zebrafish larva is transparent enables sophisticated in vivo imaging. While being the vertebrate, the reduced complexity of its nervous system and small size make it possible to follow large-scale activity in the whole brain. Its genome is sequenced and many genetic and molecular tools have been developed that simplify the study of gene function. Since the mid 1990s, the embryonic development and neuronal function of the larval, and later, adult zebrafish have been studied using calcium imaging methods. The choice of calcium indicator depends on the desired number of cells to study and cell accessibility. Dextran indicators have been used to label cells in the developing embryo from dye injection into the one-cell stage. Dextrans have also been useful for retrograde labeling of spinal cord neurons and cells in the olfactory system. Acetoxymethyl (AM) esters permit labeling of larger areas of tissue such as the tectum, a region responsible for visual processing. Genetically encoded calcium indicators have been expressed in various tissues by the use of cell-specific promoters. These studies have contributed greatly to our understanding of basic biological principles during development and adulthood, and of the function of disease-related genes in a vertebrate system.
Collapse
Affiliation(s)
- Petronella Kettunen
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
14
|
SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca(2+) buffering. Cell Death Differ 2011; 19:650-60. [PMID: 22015608 DOI: 10.1038/cdd.2011.139] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ca(2+)-mediated mitochondrial permeability transition (mPT) is the final common pathway of stress-induced cell death in many major pathologies, but its regulation in intact cells is poorly understood. Here we report that the mitochondrial carrier SCaMC-1/SLC25A24 mediates ATP-Mg(2-)/Pi(2-) and/or HADP(2-)/Pi(2-) uptake into the mitochondria after an increase in cytosolic [Ca(2+)]. ATP and ADP contribute to Ca(2+) buffering in the mitochondrial matrix, resulting in desensitization of the mPT. Comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed and cancer cells. Knockdown of the transporter led to vast reduction of mitochondrial Ca(2+) buffering capacity and sensitized cells to mPT-mediated necrotic death triggered by oxidative stress and Ca(2+) overload. These findings revealed that SCaMC-1 exerts a negative feedback control between cellular Ca(2+) overload and mPT-dependent cell death, suggesting that the carrier might represent a novel target for cancer therapy.
Collapse
|
15
|
Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2011; 2:247-59. [PMID: 22002082 PMCID: PMC3225741 DOI: 10.4161/bbug.2.5.17844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
16
|
|
17
|
Scott D, Dikici E, Ensor M, Daunert S. Bioluminescence and its impact on bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:297-319. [PMID: 21456969 DOI: 10.1146/annurev-anchem-061010-113855] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is an increasing need for versatile yet sensitive labels, posed by the demands for low detection in bioanalysis. Bioluminescent proteins have many desirable characteristics, including the ability to be detected at extremely low concentrations; no background interference from autofluorescent compounds present in samples; and compatibility with many miniaturized platforms, such as lab-on-a-chip and lab-on-a-CD systems. Bioluminescent proteins have found a plethora of analytical applications in intracellular monitoring, genetic regulation and detection, immuno- and binding assays, and whole-cell biosensors, among others. As new bioluminescent organisms are discovered and new bioluminescence proteins are characterized, use of these proteins will continue to dramatically improve our understanding of molecular and cellular events, as well as their applications for detection of environmental and biomedical samples.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
18
|
The N-terminal domain of y-box binding protein-1 induces cell cycle arrest in g2/m phase by binding to cyclin d1. Int J Cell Biol 2010; 2009:243532. [PMID: 20414334 PMCID: PMC2855077 DOI: 10.1155/2009/243532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/31/2009] [Indexed: 12/11/2022] Open
Abstract
Y-box binding protein YB-1 is a multifunctional protein involved in cell proliferation, regulation of transcription and translation. Our previous study indicated that disruption of one allele of Chk-YB-1b gene in DT-40 cells resulted in major defects in the cell cycle. The abnormalities seen in heterozygous mutants could be attributed to a dominant negative effect exerted by the disrupted YB-1 allele product. To test this hypothesis the N-terminal sequence of the YB-1 was fused with the third helix of antennapedia and the green fluorescent protein. These purified fusion proteins were introduced into rat hepatoma cells and their effect on cell proliferation was studied. Results indicate that the N-terminal 77 amino acid domain of the YB-1 protein induced the cells to arrest in G2/M phase of the cell cycle and undergo apoptosis. Additional deletion analysis indicated that as few as 26 amino acids of the N-terminus of YB-1 can cause these phenotypic changes. We further demonstrated that this N-terminal 77 amino acid domain of YB-1 sequesters cyclin D1 in the cytoplasm of cells at G2/M phase of cell cycle. We conclude that the N-terminal domain of YB-1 plays a major role in cell cycle progression through G2/M phase of cell cycle.
Collapse
|
19
|
The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol 2010; 2010:546163. [PMID: 20300548 PMCID: PMC2838366 DOI: 10.1155/2010/546163] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/15/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023] Open
Abstract
Ca(2+) is an important second messenger participating in many cellular activities; when physicochemical insults deregulate its delicate homeostasis, it acts as an intrinsic stressor, producing/increasing cell damage. Damage elicits both repair and death responses; intriguingly, in those responses Ca(2+) also participates as second messenger. This delineates a dual role for Ca(2+) in cell stress, making difficult to separate the different and multiple mechanisms required for Ca(2+)-mediated control of cell survival and apoptosis. Here we attempt to disentangle the two scenarios, examining on the one side, the events implicated in deregulated Ca(2+) toxicity and the mechanisms through which this elicits reparative or death pathways; on the other, reviewing the role of Ca(2+) as a messenger in the transduction of these same signaling events.
Collapse
|
20
|
Rowe L, Dikici E, Daunert S. Engineering bioluminescent proteins: expanding their analytical potential. Anal Chem 2010; 81:8662-8. [PMID: 19725502 DOI: 10.1021/ac9007286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioluminescent proteins are used in a plethora of analytical methods, from ultrasensitive assay development to the in vivo imaging of cellular processes. This article reviews the most pertinent current bioluminescent-protein-based technologies and suggests the future direction of this vein of research. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).
Collapse
|
21
|
Cainarca S, Fenu S, Ferri C, Nucci C, Arioli P, Menegon A, Piemonti L, Lohmer S, Wrabetz L, Corazza S. A photoprotein in mouse embryonic stem cells measures Ca2+ mobilization in cells and in animals. PLoS One 2010; 5:e8882. [PMID: 20111708 PMCID: PMC2811732 DOI: 10.1371/journal.pone.0008882] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 12/22/2009] [Indexed: 12/18/2022] Open
Abstract
Exogenous expression of pharmacological targets in transformed cell lines has been the traditional platform for high throughput screening of small molecules. However, exogenous expression in these cells is limited by aberrant dosage, or its toxicity, the potential lack of interaction partners, and alterations to physiology due to transformation itself. Instead, primary cells or cells differentiated from precursors are more physiological, but less amenable to exogenous expression of reporter systems. To overcome this challenge, we stably expressed c-Photina, a Ca2+-sensitive photoprotein, driven by a ubiquitous promoter in a mouse embryonic stem (mES) cell line. The same embryonic stem cell line was also used to generate a transgenic mouse that expresses c-Photina in most tissues. We show here that these cells and mice provide an efficient source of primary cells, cells differentiated from mES cells, including cardiomyocytes, neurons, astrocytes, macrophages, endothelial cells, pancreatic islet cells, stably and robustly expressing c-Photina, and may be exploited for miniaturized high throughput screening. Moreover, we provide evidence that the transgenic mice may be suitable for ex-vivo bioimaging studies in both cells and tissues.
Collapse
|
22
|
Close DM, Ripp S, Sayler GS. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. SENSORS (BASEL, SWITZERLAND) 2009; 9:9147-74. [PMID: 22291559 PMCID: PMC3260636 DOI: 10.3390/s91109147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022]
Abstract
Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed.
Collapse
Affiliation(s)
- Dan M. Close
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| | - Steven Ripp
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| | - Gary S. Sayler
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| |
Collapse
|
23
|
Magrané J, Hervias I, Henning MS, Damiano M, Kawamata H, Manfredi G. Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 2009; 18:4552-64. [PMID: 19779023 DOI: 10.1093/hmg/ddp421] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by motor neuron degeneration. Mutations in Cu,Zn-superoxide dismutase (SOD1) are responsible for 20% of familial ALS cases via a toxic gain of function. In mutant SOD1 transgenic mice, mitochondria of spinal motor neurons develop abnormal morphology, bioenergetic defects and degeneration, which are presumably implicated in disease pathogenesis. SOD1 is mostly a cytosolic protein, but a substantial portion is associated with organelles, including mitochondria, where it localizes predominantly in the intermembrane space (IMS). However, whether mitochondrial mutant SOD1 contributes to disease pathogenesis remains to be elucidated. We have generated NSC34 motor neuronal cell lines expressing wild-type or mutant SOD1 containing a cleavable IMS targeting signal to directly investigate the pathogenic role of mutant SOD1 in mitochondria. We show that mitochondrially-targeted SOD1 localizes to the IMS, where it is enzymatically active. We prove that mutant IMS-targeted SOD1 causes neuronal toxicity under metabolic and oxidative stress conditions. Furthermore, we demonstrate for the first time neurite mitochondrial fragmentation and impaired mitochondrial dynamics in motor neurons expressing IMS mutant SOD1. These defects are associated with impaired maintenance of neuritic processes. Our findings demonstrate that mutant SOD1 localized in the IMS is sufficient to determine mitochondrial abnormalities and neuronal toxicity, and contributes to ALS pathogenesis.
Collapse
Affiliation(s)
- Jordi Magrané
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
24
|
Fiermonte G, Paradies E, Todisco S, Marobbio CMT, Palmieri F. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria. J Biol Chem 2009; 284:18152-9. [PMID: 19429682 DOI: 10.1074/jbc.m109.014118] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial carriers are a family of proteins that transport metabolites, nucleotides, and cofactors across the inner mitochondrial membrane thereby connecting cytosolic and matrix functions. The essential cofactor coenzyme A (CoA) is synthesized outside the mitochondrial matrix and therefore must be transported into mitochondria where it is required for a number of fundamental processes. In this work we have functionally identified and characterized SLC25A42, a novel human member of the mitochondrial carrier family. The SLC25A42 gene (Haitina, T., Lindblom, J., Renström, T., and Fredriksson, R., 2006, Genomics 88, 779-790) was overexpressed in Escherichia coli, purified, and reconstituted into phospholipid vesicles. Its transport properties, kinetic parameters, and targeting to mitochondria demonstrate that SLC25A42 protein is a mitochondrial transporter for CoA and adenosine 3',5'-diphosphate. SLC25A42 catalyzed only a counter-exchange transport, exhibited a high transport affinity for CoA, dephospho-CoA, ADP, and adenosine 3',5'-diphosphate, was saturable and inhibited by bongkrekic acid and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A42 is to import CoA into mitochondria in exchange for intramitochondrial (deoxy)adenine nucleotides and adenosine 3',5'-diphosphate. This is the first time that a mitochondrial carrier for CoA and adenosine 3',5'-diphosphate has been characterized biochemically.
Collapse
Affiliation(s)
- Giuseppe Fiermonte
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | | | |
Collapse
|
25
|
Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle. Ann N Y Acad Sci 2009; 1147:264-74. [PMID: 19076448 DOI: 10.1196/annals.1427.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) production is recognized as a major pathogenic event in a number of human diseases, and mitochondrial scavenging of ROS appears a promising therapeutic approach. Recently, two mitochondrial antioxidants have been developed; conjugating alpha-tocopherol and the ubiquinol moiety of coenzyme Q to the lipophilic triphenylphosphonium cation (TPP+), denominated MitoE(2) and MitoQ(10), respectively. We have investigated the effect of these compounds on mitochondrial Ca(2+) homeostasis, which controls processes as diverse as activation of mitochondrial dehydrogenases and pro-apoptotic morphological changes of the organelle. We demonstrate that treatment of HeLa cells with both MitoE(2) and MitoQ(10) induces (albeit with different efficacy) a major enhancement of the increase in matrix Ca(2+) concentration triggered by cell stimulation with the inositol 1,4,5-trisphosphate-generating agonist histamine. The effect is a result of the inhibition of Ca(2+) efflux from the organelle and depends on the TPP+ moiety of these compounds. Overall, the data identify an effect independent of their antioxidant activity, that on the one hand may be useful in addressing disorders in which mitochondrial Ca(2+) handling is impaired (e.g., mitochondrial diseases) and on the other may favor mitochondrial Ca(2+) overload and thus increase cell sensitivity to apoptosis (thus possibly counteracting the benefits of the antioxidant activity).
Collapse
Affiliation(s)
- Sara Leo
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation and Emilia Romagna Laboratory for Genomics and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
26
|
Katritzky AR, Narindoshvili T. Fluorescent amino acids: advances in protein-extrinsic fluorophores. Org Biomol Chem 2009; 7:627-34. [DOI: 10.1039/b818908k] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 2008; 105:20728-33. [PMID: 19098100 DOI: 10.1073/pnas.0808953105] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calcium oscillations suppress mitochondrial movements along the microtubules to support on-demand distribution of mitochondria. To activate this mechanism, Ca(2+) targets a yet unidentified cytoplasmic factor that does not seem to be a microtubular motor or a kinase/phosphatase. Here, we have studied the dependence of mitochondrial dynamics on the Miro GTPases that reside in the mitochondria and contain two EF-hand Ca(2+)-binding domains, in H9c2 cells and primary neurons. At resting cytoplasmic [Ca(2+)] ([Ca(2+)](c)), movements of the mitochondria were enhanced by Miro overexpression irrespective of the presence of the EF-hands. The Ca(2+)-induced arrest of mitochondrial motility was also promoted by Miro overexpression and was suppressed when either the Miro were depleted or their EF-hand was mutated. Miro also enhanced the fusion state of the mitochondria at resting [Ca(2+)](c) but promoted mitochondrial fragmentation at high [Ca(2+)](c). These effects of Miro on mitochondrial morphology seem to involve Drp1 suppression and activation, respectively. In primary neurons, Miro also caused an increase in dendritic mitochondrial mass and enhanced mitochondrial calcium signaling. Thus, Miro proteins serve as a [Ca(2+)](c)-sensitive switch and bifunctional regulator for both the motility and fusion-fission dynamics of the mitochondria.
Collapse
|
28
|
Lasorsa FM, Pinton P, Palmieri L, Scarcia P, Rottensteiner H, Rizzuto R, Palmieri F. Peroxisomes as novel players in cell calcium homeostasis. J Biol Chem 2008; 283:15300-8. [PMID: 18364350 DOI: 10.1074/jbc.m800648200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ concentration in peroxisomal matrix ([Ca2+](perox)) has been monitored dynamically in mammalian cells expressing variants of Ca2+-sensitive aequorin specifically targeted to peroxisomes. Upon stimulation with agonists that induce Ca2+ release from intracellular stores, peroxisomes transiently take up Ca2+ reaching peak values in the lumen as high as 50-100 microm, depending on cell types. Also in resting cells, peroxisomes sustain a Ca2+ gradient, [Ca2+](perox) being approximately 20-fold higher than [Ca2+] in the cytosol ([Ca2+](cyt)). The properties of Ca2+ traffic across the peroxisomal membrane are different from those reported for other subcellular organelles. The sensitivity of peroxisomal Ca2+ uptake to agents dissipating H+ and Na+ gradients unravels the existence of a complex bioenergetic framework including V-ATPase, Ca2+/H+, and Ca2+/Na+ activities whose components are yet to be identified at a molecular level. The different [Ca2+](perox) of resting and stimulated cells suggest that Ca2+ could play an important role in the regulation of peroxisomal metabolism.
Collapse
Affiliation(s)
- Francesco Massimo Lasorsa
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari and CNR Institute of Biomembranes and Bioenergetics, Via Orabona 4, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Rimessi A, Rizzuto R, Pinton P. Differential recruitment of PKC isoforms in HeLa cells during redox stress. Cell Stress Chaperones 2008; 12:291-8. [PMID: 18229448 DOI: 10.1379/csc-211.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The protein kinase C (PKC) family is a major transducer of several intracellular pathways. In confirmation of this important role, PKCs exhibit high molecular heterogeneity, because they occur in at least 10 different isoforms differing in biochemical properties and sensitivity to activators. In this report we focused on the ability of different redox agents to induce modification of intracellular distribution of specific PKC isoforms in HeLa cells. To this end we utilized a panel of green fluorescent protein (GFP) chimeras and a high-speed digital imaging system. We observed a remarkable complexity of PKC signalling patterns occurring during redox stress with marked differences among PKC isoforms also belonging to the same subgroup. Moreover our results suggest that modifications of the intracellular redox state can modulate the responsiveness of specific PKC isoforms and, in turn, change the sensitivity of the different isoforms to cell stimulation.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) University of Ferrara, Italy
| | | | | |
Collapse
|
30
|
Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 2008; 43:184-95. [PMID: 17588656 DOI: 10.1016/j.ceca.2007.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 04/30/2007] [Accepted: 05/08/2007] [Indexed: 11/17/2022]
Abstract
Cadmium, a toxic environmental contaminant, exerts adverse effects on different cellular pathways such as cell proliferation, DNA damage and apoptosis. In particular, the modulation of Ca(2+) homeostasis seems to have an important role during Cd(2+) injury, but the precise assessment of Ca(2+) signalling still remains poorly understood. We used aequorin-based probes specifically directed to intracellular organelles to study Ca(2+) changes during cadmium injury. We observed that cadmium decreased agonist-evoked endoplasmic reticulum (ER) Ca(2+) signals and caused a 40% inhibition of sarcoplasmic-ER calcium ATPases activity. Moreover, time course experiments correlate morphological alterations, processing of xbp-1 mRNA and caspase-12 activation during cadmium administration. Finally, the time response of ER to cadmium injury was compared with that of mitochondria. In conclusion, we highlighted a novel pathway of cadmium-induced cell death triggered by ER stress and involving caspase-12. Mitochondria and ER pathways seemed to share common time courses and a parallel activation of caspase-12 and caspase-9 seemed likely to be involved in acute cadmium toxicity.
Collapse
Affiliation(s)
- Marta Biagioli
- Laboratory of Cellular and Development Biology, Department of Biology, University of Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Szabadkai G, Rizzuto R. Chaperones as Parts of Organelle Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:64-77. [PMID: 17205676 DOI: 10.1007/978-0-387-39975-1_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The efficiency, divergence, and specificity of virtually all intracellular metabolic and signalling pathways largely depend on their compartmentalized organization. A corollary of the requirement of compartmentalization is the dynamic structural partition of the intracellular space by endomembrane systems. A branch of these membranes communicate with the extracellular space through the endo- and exocytotic processes. Others, like the mitochondrial and endoplasmic reticulum networks accomplish a further role, being fundamental for the maintenance of cellular energy balance and for determination of cell fate under stress conditions. Recent structural and functional studies revealed that the interaction of these networks and the connectivity state of mitochondria controls metabolic flow, protein transport, intracellular Ca2+ signalling, and cell death. Moreover, reflecting the fact that the above processes are accomplished in a microdomain between collaborating organelle membranes, the existence of macromolecular complexes at their contact sites have also been revealed. Being not only assistants of nascent protein folding, chaperones are proposed to participate in assembling and maintaining the function of the above complexes. In this chapter we discuss recently found examples of such an assembly of protein interactions driven by chaperone proteins, and their role in regulating physiological and pathological processes.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Via Borsari 46, Ferrara, 44100, Italy.
| | | |
Collapse
|
32
|
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. ACTA ACUST UNITED AC 2007; 175:901-11. [PMID: 17178908 PMCID: PMC2064700 DOI: 10.1083/jcb.200608073] [Citation(s) in RCA: 1064] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca(2+), and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca(2+)-release channel inositol 1,4,5-trisphosphate receptor (IP(3)R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP(3)R on the ER or mitochondrial surface, which directly enhanced Ca(2+) accumulation in mitochondria. Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP(3)R and the mitochondrial Ca(2+) uptake machinery. Because organelle Ca(2+) homeostasis influences fundamentally cellular functions and death signaling, the central location of grp75 may represent an important control point of cell fate and pathogenesis.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation, Emilia Romagna Laboratory for Genomics and Biotechnology, University of Ferrara, Ferrara 44100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rizzotto L, Pinotti M, Pinton P, Rizzuto R, Bernardi F. Intracellular evaluation of ER targeting elucidates a mild form of inherited coagulation deficiency. Mol Med 2007; 12:137-42. [PMID: 17088945 PMCID: PMC1626593 DOI: 10.2119/2005-00040.rizzotto] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 07/22/2006] [Indexed: 11/06/2022] Open
Abstract
Missense mutations reduce protein levels through several molecular mechanisms. Among them, altered targeting to endoplasmic reticulum (ER) and its relationship with clinical phenotypes in patients have been poorly investigated. To address this point, we studied the prepeptide mutations (L-48P, L-42P) associated with mild deficiency of factor VII (FVII), the serine-protease triggering blood coagulation. Mutations were introduced into the native FVII to evaluate secreted and intracellular protein levels, and into a chimeric FVII-GFP to study ER targeting in living cells. In conditioned medium from stably or transiently transfected cells, expression levels of the -48PFVII (9% and 55%, respectively) and particularly those of the -42PFVII (2% and 12%) were decreased compared with those of WtFVII, indicating the causative nature of mutations. Markedly reduced protein levels were observed in cell organelles for -48PFVII (10.5 +/- 4.9 ng/mL; Wt-FVII, 130 +/- 43.4 ng/mL) and -42PFVII (approximately 5 ng/mL), thus suggesting impaired ER targeting. Fluorescence of the -48PFVII-GFP and -42PFVII-GFP was diffuse, covered the nucleus, and declined upon plasma membrane permeabilization with digitonin, which demonstrated mislocalization of variants in the cytosol. Noticeably, the residual fluorescence of -48PFVII-GFP (10%) and -42PFVII-GFP (20%) in organelles was fairly compatible with FVII levels in patients' plasma. The studies with the native and chimeric proteins indicated that both prepeptide mutations were associated with residual expression of normal FVII, which explained the mild form of FVII deficiency in patients. This approach, extendable to other coagulation serine proteases, clearly contributed to elucidate the relationship of genotype with plasma and clinical phenotype.
Collapse
Affiliation(s)
- Lara Rizzotto
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, Ferrara, Italy
| | | | | | | | | |
Collapse
|
34
|
Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jäättelä M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007; 25:193-205. [PMID: 17244528 DOI: 10.1016/j.molcel.2006.12.009] [Citation(s) in RCA: 850] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/02/2006] [Accepted: 12/11/2006] [Indexed: 01/22/2023]
Abstract
Macroautophagy is an evolutionary conserved lysosomal pathway involved in the turnover of cellular macromolecules and organelles. In spite of its essential role in tissue homeostasis, the molecular mechanisms regulating mammalian macroautophagy are poorly understood. Here, we demonstrate that a rise in the free cytosolic calcium ([Ca(2+)](c)) is a potent inducer of macroautophagy. Various Ca(2+) mobilizing agents (vitamin D(3) compounds, ionomycin, ATP, and thapsigargin) inhibit the activity of mammalian target of rapamycin, a negative regulator of macroautophagy, and induce massive accumulation of autophagosomes in a Beclin 1- and Atg7-dependent manner. This process is mediated by Ca(2+)/calmodulin-dependent kinase kinase-beta and AMP-activated protein kinase and inhibited by ectopic Bcl-2 located in the endoplasmatic reticulum (ER), where it lowers the [Ca(2+)](ER) and attenuates agonist-induced Ca(2+) fluxes. Thus, an increase in the [Ca(2+)](c) serves as a potent inducer of macroautophagy and as a target for the antiautophagy action of ER-located Bcl-2.
Collapse
Affiliation(s)
- Maria Høyer-Hansen
- Apoptosis Department and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Mitochondria have long been known to be the powerhouses of the cell but they also contribute to redox and Ca2+ homeostasis, provide intermediary metabolites and store proapoptotic factors. Mitochondria have a unique behavior during development. They are maternally transmitted with little (if any) paternal contribution, and they originate from a restricted founder population, which is amplified during oogenesis. Then, having established the full complement of mitochondria in the fully grown oocyte, there is no further increase of the mitochondrial population during early development. The localization of mitochondria in the egg during maturation and their segregation to blastomeres in the cleaving embryo are strictly regulated. Gradients in the distribution of mitochondria present in the egg have the potential to give rise to blastomeres receiving different numbers of mitochondria. Such maternally inherited differences in mitochondrial distribution are thought to play roles in defining the long-term viability of the blastomere in some cases and embryonic axes and patterning in others. Mitochondria may also regulate development by a number of other means, including modulating Ca2+ signaling, and the production of ATP, reactive oxygen species, and intermediary metabolites. If the participation of mitochondria in the regulation of sperm-triggered Ca2+ oscillations is now well established, the role of other properties of mitochondrial function during development remain largely unexplored probably due to the difficulty of accessing the mitochondrial compartment in an embryo. Maintaining a functional complement of maternally derived mitochondria is vital for the early embryo. Mitochondrial dysfunction may not only compromise developmental processes but also trigger apoptosis in the embryo. This dual role for mitochondria (to maintain life or to commit to cell death) may well represent a quality control system in the early embryo that will determine whether the embryo proceeds further into development or is quickly eliminated.
Collapse
Affiliation(s)
- Rémi Dumollard
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
36
|
Pinton P, Rimessi A, Romagnoli A, Prandini A, Rizzuto R. Biosensors for the detection of calcium and pH. Methods Cell Biol 2007; 80:297-325. [PMID: 17445701 DOI: 10.1016/s0091-679x(06)80015-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, I-44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
37
|
Chami M, Oulès B, Paterlini-Bréchot P. Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1344-62. [PMID: 17059849 DOI: 10.1016/j.bbamcr.2006.09.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 01/25/2023]
Abstract
Since calcium-signaling regulates specific and fundamental cellular processes, it represents the ideal target of viral proteins, in order for the virus to control cellular functions and favour its persistence, multiplication and spread. A detailed analysis of reports focused on the impact of viral proteins on calcium-signaling has shown that virus-related elevations of cytosolic calcium levels allow increased viral protein expression (HIV-1, HSV-1/2), viral replication (HBx, enterovirus 2B, HTLV-1 p12(I), HHV-8, EBV), viral maturation (rotavirus), viral release (enterovirus 2B) and cell immortalization (EBV). Interestingly, virus-induced decreased cytosolic calcium levels have been found to be associated with inhibition of immune cells functions (HIV-1 Tat, HHV-8 K15, EBV LMP2A). Finally, several viral proteins are able to modulate intracellular calcium-signaling to control cell viability (HIV-1 Tat, HTLV-1 p13(II), HCV core, HBx, enterovirus 2B, HHV-8 K7). These data point out calcium-signaling as a key cellular target for viral infection and should stimulate further studies exploring new calcium-related therapeutic strategies.
Collapse
|
38
|
Lee S, Duhé RJ. Kinase activity and subcellular distribution of a chimeric green fluorescent protein-tagged Janus kinase 2. J Biomed Sci 2006; 13:773-86. [PMID: 16972141 DOI: 10.1007/s11373-006-9111-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022] Open
Abstract
Janus kinase 2 (JAK2) is an essential intracellular signal transducer for numerous cytokines and hormones. To examine how JAK2 structural modifications can affect cellular physiology, we created expression vectors for chimeric proteins containing an enhanced green fluorescent protein (EGFP) fused to rat JAK2 (EGFP/rJAK2), and a kinase-inactive variant, EGFP/rJAK2(K882E). The properties of EGFP/rJAK2 were examined following transient transfection of COS-7 cells. EGFP/rJAK2 was expressed throughout the cell, and was found in subcellular membrane, cytosolic and nuclear fractions. Interestingly, EGFP/rJAK2 phosphorylated other proteins in situ without additional cytokine stimulation. Furthermore, despite a much higher level of tyrosine phosphorylation arising from in situ autophosphorylation, the in vitro radiolabelling autokinase activity of EGFP/rJAK2 was significantly less than that of the endogenous JAK2. These results reveal a technical limitation of the application of the "conventional" in vitro radiolabelling autokinase assay to hyperphosphorylated forms of the enzyme and illustrate the potential weaknesses in individual assays commonly used to determine JAK2's enzymatic activity and subcellular distribution. We also suggest that the EGFP/rJAK2 model can be very useful in studying JAK2-related cancers, because its ubiquitous distribution and abnormal constitutive hyperphosphorylation may distinguish it from the cytokine-regulated, membrane-proximal form of JAK2 associated with normal physiology.
Collapse
Affiliation(s)
- Sheeyong Lee
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | | |
Collapse
|
39
|
Abstract
In this issue of Chemistry & Biology, Tsien and colleagues describe a new family of highly sensitive genetically encoded calcium biosensors that are not affected by their local environment and can measure calcium concentration over a wide dynamic range.
Collapse
|
40
|
Pinotti M, Rizzotto L, Pinton P, Ferraresi P, Chuansumrit A, Charoenkwan P, Marchetti G, Rizzuto R, Mariani G, Bernardi F. Intracellular readthrough of nonsense mutations by aminoglycosides in coagulation factor VII. J Thromb Haemost 2006; 4:1308-14. [PMID: 16706976 DOI: 10.1111/j.1538-7836.2006.01915.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nonsense mutations in coagulation factor (F) VII potentially cause a lethal hemorrhagic diathesis. Readthrough of nonsense mutations by aminoglycosides has been studied in a few human disease models with variable results. OBJECTIVES We investigated the K316X and W364X FVII mutations, associated with intracranial hemorrhage, and their correction by aminoglycosides. The rare nonsense mutations in FVII represent favorite models to test this strategy, because even tiny increases in the amount of functional full-length protein in patients could ameliorate hemorrhagic phenotypes. RESULTS A FVII-green fluorescent protein (GFP) chimaera provided us with a fluorescent model of FVII expression in living cells. Appreciable fluorescence in cells transfected with nonsense FVII-GFP mutants was detected upon geneticin treatment, thus demonstrating suppression of premature translation termination. To investigate the rescue of FVII function, nonsense variants of the native FVII without GFP (p316X-FVII and p364X-FVII) were transfected and found to secrete low amounts of FVII (approximately 1% of Wt-FVII activity), thus suggesting a spontaneous stop codon readthrough. Geneticin treatment of cells resulted in a significant and dose-dependent increase of secreted FVII molecules (p316X-FVII, 24 +/- 12 ng mL(-1), 3.6 +/- 0.8% of Wt-FVII activity; p364X-FVII, 26 +/- 10 ng mL(-1), 3.7+/-0.6%) characterized by reduced specific activity, thus indicating the synthesis of dysfunctional proteins. Similar results were observed with gentamicin, a commonly used aminoglycoside of potential interest for patient treatment. CONCLUSIONS Our approach, extendable to other coagulation factors, represents an effective tool for a systematic study of the effects of aminoglycosides and neighboring sequences on nonsense codon readthrough. These results provide the rationale for a mutation-specific therapeutic approach in FVII deficiency.
Collapse
Affiliation(s)
- M Pinotti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schulte A, Lorenzen I, Böttcher M, Plieth C. A novel fluorescent pH probe for expression in plants. PLANT METHODS 2006; 2:7. [PMID: 16600023 PMCID: PMC1475855 DOI: 10.1186/1746-4811-2-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 04/06/2006] [Indexed: 05/08/2023]
Abstract
BACKGROUND The pH is an important parameter controlling many metabolic and signalling pathways in living cells. Recombinant fluorescent pH indicators (pHluorins) have come into vogue for monitoring cellular pH. They are derived from the most popular Aequorea victoria GFP (Av-GFP). Here, we present a novel fluorescent pH reporter protein from the orange seapen Ptilosarcus gurneyi (Pt-GFP) and compare its properties with pHluorins for expression and use in plants. RESULTS pHluorins have a higher pH-sensitivity. However, Pt-GFP has a broader pH-responsiveness, an excellent dynamic ratio range and a better acid stability. We demonstrate how Pt-GFP expressing Arabidopsis thaliana report cytosolic pH-clamp and changes of cytosolic pH in the response to anoxia and salt-stress. CONCLUSION Pt-GFP appears to be the better choice when used for in vivo-recording of cellular pH in plants.
Collapse
Affiliation(s)
- Alexander Schulte
- Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
- Biochemisches Institut, Universität Kiel, Rudolf-Höber-Str. 1, 24098 Kiel, Germany
| | - Inken Lorenzen
- Biochemisches Institut, Universität Kiel, Rudolf-Höber-Str. 1, 24098 Kiel, Germany
| | - Markus Böttcher
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
- Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Christoph Plieth
- Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
42
|
Misaka T, Murate M, Fujimoto K, Kubo Y. The dynamin-related mouse mitochondrial GTPase OPA1 alters the structure of the mitochondrial inner membrane when exogenously introduced into COS-7 cells. Neurosci Res 2006; 55:123-33. [PMID: 16600410 DOI: 10.1016/j.neures.2006.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/09/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Mutations in the dynamin family GTPase OPA1 are reportedly the cause of autosomal dominant optic atrophy, the most frequently occurring form of hereditary optic neuropathy. But although the involvement of structural abnormalities of the enzyme in this neurodegenerative disease is clear, little is known about the cell biological and biochemical functions of OPA1. Therefore, to better understand the pathogenesis of autosomal dominant optic atrophy, we precisely analyzed the effects of exogenously introducing mouse OPA1 (mOPA1) on mitochondrial morphology in COS-7 cells. We found that exogenously introducing wild type mOPA1 caused the mitochondria to become fragmented, and moreover caused the intermembrane space to accumulate on one side of the ring-shaped mitochondrial fragments. Immunoelectron microscopic observation of the mOPA1 transfectants confirmed that the structure of the mitochondrial inner membrane had changed dramatically, accumulating on one side of the mitochondrial structures. When cells were transfected with mOPA1 containing a loss of function mutation (K301A) within the G1 GTP-binding domain, mitochondrial fragmentation still occurred. The markers for intermembrane space and matrix showed the similar morphology, which was distinctly different from the finding obtained with wild type mOPA1 transfectants. Notably, we also observed that the effect of two OPA1 missense mutations (E270K and D273A) associated with autosomal dominant optic atrophy elicit effects similar to those seen with the dominant negative K301A mutant.
Collapse
Affiliation(s)
- Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
43
|
Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L, Vandenheede JR, Heirman I, Grooten J, Agostinis P. Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J 2006; 20:756-8. [PMID: 16455754 DOI: 10.1096/fj.05-4305fje] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both the commitment event and the modality of cell death in photodynamic therapy (PDT) remain poorly defined. We report that PDT with endoplasmic reticulum (ER)-associating hypericin leads to an immediate loss of SERCA2 protein levels, causing disruption of Ca2+ homeostasis and cell death. Protection of SERCA2 protein rescues ER-Ca2+ levels and prevents cell death, suggesting that SERCA2 photodestruction with consequent incapability of the ER to maintain intracellular Ca2+ homeostasis is causal to cell killing. Apoptosis is rapidly initiated after ER-Ca2+ depletion and strictly requires the BAX/BAK gateway at the mitochondria. Bax-/-Bak-/- double-knockout (DKO) cells are protected from apoptosis but undergo autophagy-associated cell death as revealed by electron microscopy and biochemical analysis. Autophagy inhibitors, but not caspase antagonists, significantly reduce death of DKO cells, suggesting that sustained autophagy is lethal. Thus, following ER photodamage and consequent disruption of Ca2+ homeostasis, BAX and BAK proteins model PDT-mediated cell killing, which is executed through apoptosis in their presence or via an autophagic pathway in their absence.
Collapse
Affiliation(s)
- Esther Buytaert
- Department of Molecular and Cell Biology, Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cassidy PJ, Radda GK. Molecular imaging perspectives. J R Soc Interface 2005; 2:133-44. [PMID: 16849174 PMCID: PMC1629073 DOI: 10.1098/rsif.2005.0040] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/21/2005] [Indexed: 12/29/2022] Open
Abstract
Molecular imaging is an emerging technology at the life science/physical science interface which is set to revolutionize our understanding and treatment of disease. The tools of molecular imaging are the imaging modalities and their corresponding contrast agents. These facilitate interaction with a biological target at a molecular level in a number of ways. The diverse nature of molecular imaging requires knowledge from both the life and physical sciences for its successful development and implementation. The aim of this review is to introduce the subject of molecular imaging from both life science and physical science perspectives. However, we will restrict our coverage to the prominent in vivo molecular imaging modalities of magnetic resonance imaging, optical imaging and nuclear imaging. The physical basis of these imaging modalities, the use of contrast agents and the imaging parameters of sensitivity, temporal resolution and spatial resolution are described. Then, the specificity of contrast agents for targeting and sensing molecular events, and some applications of molecular imaging in biology and medicine are given. Finally, the diverse nature of molecular imaging and its reliance on interdisciplinary collaboration is discussed.
Collapse
Affiliation(s)
- Paul J Cassidy
- Oxford Cardiac Metabolism Research Group, University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
45
|
Lau BW, Colella M, Ruder WC, Ranieri M, Curci S, Hofer AM. Deoxycholic acid activates protein kinase C and phospholipase C via increased Ca2+ entry at plasma membrane. Gastroenterology 2005; 128:695-707. [PMID: 15765405 DOI: 10.1053/j.gastro.2004.12.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Secondary bile acids like deoxycholic acid (DCA) are well-established tumor promoters that may exert their pathologic actions by interfering with intracellular signaling cascades. METHODS We evaluated the effects of DCA on Ca2+ signaling in BHK-21 fibroblasts using fura-2 and mag-fura-2 to measure cytoplasmic and intraluminal internal stores [Ca2+], respectively. Furthermore, green fluorescent protein (GFP)-based probes were used to monitor time courses of phospholipase C (PLC) activation (pleckstrin-homology [PH]-PLCdelta-GFP), and translocation of protein kinase C (PKC) and a major PKC substrate, myristolated alanine-rich C-kinase substrate (MARCKS). RESULTS DCA (50-250 micromol/L) caused profound Ca2+ release from intracellular stores of intact or permeabilized cells. Correspondingly, DCA increased cytoplasmic Ca2+ to levels that were approximately 120% of those stimulated by Ca2+-mobilizing agonists in the presence of external Ca2+, and approximately 60% of control in Ca2+-free solutions. DCA also caused dramatic translocation of PH-PLCdelta-GFP, and conventional, Ca2+/diacylglycerol (DAG)-dependent isoforms of PKC (PKC-betaI and PKC-alpha), and MARCKS-GFP, but only in Ca2+-containing solutions. DCA had no effect on localization of a novel (PKCdelta) or an atypical (PKCzeta) PKC isoform. CONCLUSIONS Data are consistent with a model in which DCA directly induces both Ca2+ release from internal stores and persistent Ca2+ entry at the plasma membrane. The resulting microdomains of high Ca2+ levels beneath the plasma membrane appear to directly activate PLC, resulting in modest InsP 3 and DAG production. Furthermore, the increased Ca2+ entry stimulates vigorous recruitment of conventional PKC isoforms to the plasma membrane.
Collapse
Affiliation(s)
- Bonnie W Lau
- Boston VA Healthcare System and the Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA
| | | | | | | | | | | |
Collapse
|
46
|
Reuter CJ, Maupin-Furlow JA. Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. Appl Environ Microbiol 2005; 70:7530-8. [PMID: 15574956 PMCID: PMC535168 DOI: 10.1128/aem.70.12.7530-7538.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are energy-dependent proteases that are central to the quality control and regulated turnover of proteins in eukaryotic cells. Dissection of this proteolytic pathway in archaea, however, has been hampered by the lack of substrates that are easily detected in whole cells. In the present study, we developed a convenient reporter system by functional expression of a green fluorescent protein variant with C-terminal fusions in the haloarchaeon Haloferax volcanii. The levels of this reporter protein correlated with whole-cell fluorescence that was readily detected in culture. Accumulation of the reporter protein was dependent on the sequence of the C-terminal amino acid fusion, as well as the presence of an irreversible, proteasome-specific inhibitor (clasto-lactacystin beta-lactone). This inhibitor was highly specific for H. volcanii 20S proteasomes, with a Ki of approximately 40 nM. In contrast, phenylmethanesulfonyl fluoride did not influence the levels of fluorescent reporter protein or inhibit 20S proteasomes. Together, these findings provide a powerful tool for the elucidation of protein substrate recognition motifs and the identification of new genes which may be involved in the proteasome pathway of archaea.
Collapse
Affiliation(s)
- Christopher J Reuter
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | | |
Collapse
|
47
|
Bianchi K, Rimessi A, Prandini A, Szabadkai G, Rizzuto R. Calcium and mitochondria: mechanisms and functions of a troubled relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:119-31. [PMID: 15590062 DOI: 10.1016/j.bbamcr.2004.09.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 09/15/2004] [Accepted: 09/16/2004] [Indexed: 01/09/2023]
Abstract
Mitochondria promptly respond to Ca(2+)-mediated cell stimulations with a rapid accumulation of the cation into the matrix. In this article, we review (i) the basic principles of mitochondrial Ca(2+) transport, (ii) the physiological/pathological role of mitochondrial Ca(2+) uptake, (iii) the regulatory mechanisms that may operate in vivo, and (iv) the new targeted Ca(2+) probes that allowed the "rediscovery" of these organelles in calcium signalling.
Collapse
Affiliation(s)
- Katiuscia Bianchi
- Department of Experimental and Diagnostic Medicine and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
48
|
Zhang JF, Ma L, Liu X, Lu YT. Using capillary electrophoresis with laser-induced fluorescence to study the interaction of green fluorescent protein-labeled calmodulin with Ca2+- and calmodulin-binding protein. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804:413-20. [PMID: 15081937 DOI: 10.1016/j.jchromb.2004.01.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 01/16/2004] [Accepted: 01/28/2004] [Indexed: 11/26/2022]
Abstract
A separation using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was applied to the study of green fluorescent protein tagged calmoldulin (GFP-CaM) that was expressed from Escherichia coli and purified with Ni(2+)-nitrilotriacetate (Ni-NTA) resin column. It was found that GFP-CaM not only has good fluorescence properties under various conditions similar to GFP, but also retains its calcium-binding ability as the native CaM. GFP-CaM was separated and detected by CE-LIF within 10 min with a limit-of-detection (LOD) of 2 x 10(-10) M for an injection volume of 3 nl, higher than that of common chemical fluorescent-tagged protein method. The results indicated that, as a fluorescence probe, GFP could overcome the drawback of inefficient derivatization of chemical fluorescence probes. The interaction between the GFP-CaM and Ca(2+) was studied in detail using affinity capillary electrophoresis with laser-induced fluorescence and the dissociation constant (K(d)) between GFP-CaM and Ca(2+) was determined to be 1.2 x 10(-5), which is in good agreement with the literature values of untagged CaM (10(-6) to 10(-5)M) obtained by conventional method. As a preliminary application, the interaction between GFP-CaM and OsCBK was also investigated. The method makes it possible to screen the trace amounts of target proteins in crude extracts interacting with CaM under physiological conditions.
Collapse
Affiliation(s)
- Jian-Feng Zhang
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | |
Collapse
|
49
|
Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 2004; 16:59-68. [PMID: 15469822 DOI: 10.1016/j.molcel.2004.09.026] [Citation(s) in RCA: 388] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Revised: 07/21/2004] [Accepted: 08/10/2004] [Indexed: 11/17/2022]
Abstract
By transiently or stably overexpressing the mitochondrial fission factor dynamin-related protein-1 (Drp-1), we evaluated the role of mitochondrial division in organelle Ca2+ homeostasis and apoptotic signaling. Quantitative 3D digital microscopy revealed a split mitochondrial network in Drp-1-overexpressing cells without changes in cell viability. High-speed mitochondrial [Ca2+] ([Ca2+]m) imaging revealed propagating intramitochondrial Ca2+ waves in intact cells, which were blocked in the Drp-1-fragmented network, leaving a fraction of individual mitochondria without substantial [Ca2+]m elevation. Consequently, in Drp-1-expressing cells the apoptotic efficacy of ceramide, which causes a Ca2+-dependent perturbation of mitochondrial structure and function, was drastically reduced. Conversely, the sensitivity to staurosporine-induced apoptosis, previously shown to be directly triggered by Drp-1-dependent recruitment of proapoptotic proteins to mitochondria, was enhanced. These results demonstrate that the regulated process of mitochondrial fusion and fission controls the spatiotemporal properties of mitochondrial Ca2+ responses and, thus, physiological and pathological consequences of cellular Ca2+ signals.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Agrimi G, Di Noia MA, Marobbio CMT, Fiermonte G, Lasorsa FM, Palmieri F. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem J 2004; 379:183-90. [PMID: 14674884 PMCID: PMC1224042 DOI: 10.1042/bj20031664] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/10/2003] [Accepted: 12/16/2003] [Indexed: 11/17/2022]
Abstract
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.
Collapse
Affiliation(s)
- G Agrimi
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|