1
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
2
|
Okada BY, Kuroiwa S, Noi A, Tanaka A, Nishikawa J, Kondo Y, Ishitsuka Y, Irie T, Higaki K, Matsuo M, Ichikawa A. Effects of 6-O-α-maltosyl-β cyclodextrin on lipid metabolism in Npc1-deficient Chinese hamster ovary cells. Mol Genet Metab 2022; 137:239-248. [PMID: 36182715 DOI: 10.1016/j.ymgme.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
Niemann-Pick disease Type C (NPC) is a lysosomal storage disorder caused by mutation of the NPC1/NPC2 genes, which ultimately results in the accumulation of unesterified cholesterol (UEC) in lysosomes, thereby inducing symptoms such as progressive neurodegeneration and hepatosplenomegaly. This study determines the effects of 6-O-α-maltosyl-β cyclodextrin (Mal-βCD) on lipid levels and synthesis in Npc1-deficient (Npc1-KO cells) and vehicle CHO cells. Compared to vehicle cells, Npc1-KO cells exhibited high level of UEC, and low levels of esterified cholesterols (ECs) and long-chain fatty acids (LCFAs). The difference in lipid levels between Npc1-KO and CHO cells was largely ameliorated by Mal-βCD administration. Moreover, the effects of Mal-βCD were reproduced in the lysosomes prepared from Npc1-KO cells. Stable isotope tracer analysis with extracellular addition of D4-deuterated palmitic acid (D4-PA) to Npc1-KO cells increased the synthesis of D4-deuterated LCFAs (D4-LCFAs) and D4-deuterated ECs (D4-ECs) in a Mal-βCD-dependent manner. Simultaneous addition of D6-deuterated UEC (D6-UEC) and D4-PA promoted the Mal-βCD-dependent synthesis of D6-/D4-ECs, consisting of D6-UEC and D4-PA, D4-deuterated stearic acid, or D4-deuterated myristic acid, in Npc1-KO cells. These results suggest that Mal-βCD helps to maintain normal lipid metabolism by restoring balance among UEC, ECs, and LCFAs through acting on behalf of NPC1 in Npc1-KO cells and may therefore be useful in designing effective therapies for NPC.
Collapse
Affiliation(s)
- By Yasuyo Okada
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan.
| | - Sayako Kuroiwa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Noi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Tanaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Junichi Nishikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Atsushi Ichikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Bio-Education Laboratory, Tawara Building #702, 1-21-33 Higashinakajima, Osaka 533-0033, Japan.
| |
Collapse
|
3
|
Feng X, Yang F, Rabenstein M, Wang Z, Frech MJ, Wree A, Bräuer AU, Witt M, Gläser A, Hermann A, Rolfs A, Luo J. Stimulation of mGluR1/5 Improves Defective Internalization of AMPA Receptors in NPC1 Mutant Mouse. Cereb Cortex 2021; 30:1465-1480. [PMID: 31599924 DOI: 10.1093/cercor/bhz179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is characterized by neurodegeneration caused by cholesterol accumulation in the late endosome/lysosome. In this study, a defective basal and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated internalization of GluR2-containing AMPA receptors in NPC1-/- cortical neurons was detected. Our results show that the amount of cholesterol and group I metabotropic glutamate receptors (mGluR1/5) in lipid rafts of NPC1-/- cortical tissue and neurons are decreased and their downstream signals of p-ERK are defective, which are restored by a rebalance of cholesterol homeostasis through β-cyclodextrin (β-CD) treatment. Application of 3,5-dihydroxyphenylglycine (DHPG)-a mGluR1/5 agonist-and β-CD markedly increases the internalization of AMPA receptors and decreases over-influx of calcium in NPC1-/- neurons, respectively. Furthermore, the defective phosphorylated GluR2 and protein kinase C signals are ameliorated by the treatment with DHPG and β-CD, respectively, suggesting an involvement of them in internalization dysfunction. Taken together, our data imply that abnormal internalization of AMPA receptors is a critical mechanism for neuronal dysfunction and the correction of dysfunctional mGluR1/5 is a potential therapeutic strategy for NPC1 disease.
Collapse
Affiliation(s)
- Xiao Feng
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Fan Yang
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Michael Rabenstein
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Zhen Wang
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Andreas Wree
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anja U Bräuer
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg 26129, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Martin Witt
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anne Gläser
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock 18147, Germany
| | | | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| |
Collapse
|
4
|
Völkner C, Liedtke M, Hermann A, Frech MJ. Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Niemann-Pick Type C1. Int J Mol Sci 2021; 22:E710. [PMID: 33445799 PMCID: PMC7828283 DOI: 10.3390/ijms22020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
The lysosomal storage disorders Niemann-Pick disease Type C1 (NPC1) and Type C2 (NPC2) are rare diseases caused by mutations in the NPC1 or NPC2 gene. Both NPC1 and NPC2 are proteins responsible for the exit of cholesterol from late endosomes and lysosomes (LE/LY). Consequently, mutations in one of the two proteins lead to the accumulation of unesterified cholesterol and glycosphingolipids in LE/LY, displaying a disease hallmark. A total of 95% of cases are due to a deficiency of NPC1 and only 5% are caused by NPC2 deficiency. Clinical manifestations include neurological symptoms and systemic symptoms, such as hepatosplenomegaly and pulmonary manifestations, the latter being particularly pronounced in NPC2 patients. NPC1 and NPC2 are rare diseases with the described neurovisceral clinical picture, but studies with human primary patient-derived neurons and hepatocytes are hardly feasible. Obviously, induced pluripotent stem cells (iPSCs) and their derivatives are an excellent alternative for indispensable studies with these affected cell types to study the multisystemic disease NPC1. Here, we present a review focusing on studies that have used iPSCs for disease modeling and drug discovery in NPC1 and draw a comparison to commonly used NPC1 models.
Collapse
Affiliation(s)
- Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
| | - Maik Liedtke
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| |
Collapse
|
5
|
Colaco A, Fernández-Suárez ME, Shepherd D, Gal L, Bibi C, Chuartzman S, Diot A, Morten K, Eden E, Porter FD, Poulton J, Platt N, Schuldiner M, Platt FM. Unbiased yeast screens identify cellular pathways affected in Niemann-Pick disease type C. Life Sci Alliance 2020; 3:e201800253. [PMID: 32487688 PMCID: PMC7283134 DOI: 10.26508/lsa.201800253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is a rare lysosomal storage disease caused by mutations in either the NPC1 or NPC2 genes. Mutations in the NPC1 gene lead to the majority of clinical cases (95%); however, the function of NPC1 remains unknown. To gain further insights into the biology of NPC1, we took advantage of the homology between the human NPC1 protein and its yeast orthologue, Niemann-Pick C-related protein 1 (Ncr1). We recreated the NCR1 mutant in yeast and performed screens to identify compensatory or redundant pathways that may be involved in NPC pathology, as well as proteins that were mislocalized in NCR1-deficient yeast. We also identified binding partners of the yeast Ncr1 orthologue. These screens identified several processes and pathways that may contribute to NPC pathogenesis. These included alterations in mitochondrial function, cytoskeleton organization, metal ion homeostasis, lipid trafficking, calcium signalling, and nutrient sensing. The mitochondrial and cytoskeletal abnormalities were validated in patient cells carrying mutations in NPC1, confirming their dysfunction in NPC disease.
Collapse
Affiliation(s)
| | | | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Bibi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alan Diot
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, UK
| | - Karl Morten
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, UK
| | - Emily Eden
- Institute of Ophthalmology-Cell Biology, University College London, London, UK
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Abstract
An experiment of divergent selection for intramuscular fat was carried out at Universitat Politècnica de València. The high response of selection in intramuscular fat content, after nine generations of selection, and a multidimensional scaling analysis showed a high degree of genomic differentiation between the two divergent populations. Therefore, local genomic differences could link genomic regions, encompassing selective sweeps, to the trait used as selection criterion. In this sense, the aim of this study was to identify genomic regions related to intramuscular fat through three methods for detection of selection signatures and to generate a list of candidate genes. The methods implemented in this study were Wright's fixation index, cross population composite likelihood ratio and cross population - extended haplotype homozygosity. Genomic data came from the 9th generation of the two populations divergently selected, 237 from Low line and 240 from High line. A high single nucleotide polymorphism (SNP) density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), was used for genotyping samples. Several genomic regions distributed along rabbit chromosomes (OCU) were identified as signatures of selection (SNPs having a value above cut-off of 1%) within each method. In contrast, 8 genomic regions, harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7, OCU16 and OCU17), were identified by at least 2 methods and none by the 3 methods. In general, our results suggest that intramuscular fat selection influenced multiple genomic regions which can be a consequence of either only selection effect or the combined effect of selection and genetic drift. In addition, 73 genes were retrieved from the 8 selection signatures. After functional and enrichment analyses, the main genes into the selection signatures linked to energy, fatty acids, carbohydrates and lipid metabolic processes were ACER2, PLIN2, DENND4C, RPS6, RRAGA (OCU1), ST8SIA6, VIM (OCU16), RORA, GANC and PLA2G4B (OCU17). This genomic scan is the first study using rabbits from a divergent selection experiment. Our results pointed out a large polygenic component of the intramuscular fat content. Besides, promising positional candidate genes would be analysed in further studies in order to bear out their contributions to this trait and their feasible implications for rabbit breeding programmes.
Collapse
|
7
|
Pathmasiri KC, Pergande MR, Tobias F, Rebiai R, Rosenhouse-Dantsker A, Bongarzone ER, Cologna SM. Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice. J Lipid Res 2020; 61:1004-1013. [PMID: 32371566 DOI: 10.1194/jlr.ra119000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized a consensus spectra analysis of MS imaging data sets and orthogonal LC/MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including PI, PIP, and PIP2, in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2α in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model, as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Fernando Tobias
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Rima Rebiai
- Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | | | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL. mailto:
| |
Collapse
|
8
|
Alteration of GABAergic Input Precedes Neurodegeneration of Cerebellar Purkinje Cells of NPC1-Deficient Mice. Int J Mol Sci 2019; 20:ijms20246288. [PMID: 31847086 PMCID: PMC6940741 DOI: 10.3390/ijms20246288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022] Open
Abstract
Niemann-Pick Disease Type C1 (NPC1) is a rare hereditary neurodegenerative disease belonging to the family of lysosomal storage disorders. NPC1-patients suffer from, amongst other symptoms, ataxia, based on the dysfunction and loss of cerebellar Purkinje cells. Alterations in synaptic transmission are believed to contribute to a pathological mechanism leading to the progressive loss of Purkinje cells observed in NPC1-deficient mice. With regard to inhibitory synaptic transmission, alterations of GABAergic synapses are described but functional data are missing. For this reason, we have examined here the inhibitory GABAergic synaptic transmission of Purkinje cells of NPC1-deficient mice (NPC1−/−). Patch clamp recordings of inhibitory post-synaptic currents (IPSCs) of Purkinje cells revealed an increased frequency of GABAergic IPSCs in NPC1−/− mice. In addition, Purkinje cells of NPC1−/− mice were less amenable for modulation of synaptic transmission via the activation of excitatory NMDA-receptors (NMDA-Rs). Western blot testing disclosed a reduced protein level of phosphorylated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) subunit GluA2 in the cerebella of NPC1−/− mice, indicating a disturbance in the internalization of GluA2-containing AMPA-Rs. Since this is triggered by the activation of NMDA-Rs, we conclude that a disturbance in the synaptic turnover of AMPA-Rs underlies the defective inhibitory GABAergic synaptic transmission. While these alterations precede obvious signs of neurodegeneration of Purkinje cells, we propose a contribution of synaptic malfunction to the initiation of the loss of Purkinje cells in NPC1. Thus, a prevention of the disturbance of synaptic transmission in early stages of the disease might display a target with which to avert progressive neurodegeneration in NPC1.
Collapse
|
9
|
Wheeler S, Sillence DJ. Niemann-Pick type C disease: cellular pathology and pharmacotherapy. J Neurochem 2019; 153:674-692. [PMID: 31608980 DOI: 10.1111/jnc.14895] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| |
Collapse
|
10
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
11
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Håversen L, Sundelin JP, Mardinoglu A, Rutberg M, Ståhlman M, Wilhelmsson U, Hultén LM, Pekny M, Fogelstrand P, Bentzon JF, Levin M, Borén J. Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Sci Rep 2018; 8:16973. [PMID: 30451917 PMCID: PMC6242955 DOI: 10.1038/s41598-018-34659-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim-/-) and wild-type (Vim+/+) mice. Atherosclerosis was induced in Ldlr-/- mice transplanted with Vim-/- and Vim+/+ bone marrow, and in Vim-/- and Vim+/+ mice injected with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12-15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim-/- macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim-/- macrophages. Vim-/- macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-κB, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim-/- mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim-/- mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis.
Collapse
Affiliation(s)
- Liliana Håversen
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeanna Perman Sundelin
- Strategic planning and operations, Cardiovascular and metabolic diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, SE1 9RT, United Kingdom
| | - Mikael Rutberg
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience/Center for Brain Repair, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Milos Pekny
- Department of Clinical Neuroscience/Center for Brain Repair, University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, and Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Malin Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
13
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
14
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
15
|
Cardoso R, Wang J, Müller J, Rupp S, Leitão A, Hemphill A. Modulation of cis- and trans- Golgi and the Rab9A-GTPase during infection by Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum. Exp Parasitol 2018; 187:75-85. [PMID: 29499180 DOI: 10.1016/j.exppara.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/08/2018] [Accepted: 02/26/2018] [Indexed: 01/08/2023]
Abstract
Like most intracellular pathogens, the apicomplexan parasites Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum scavenge metabolites from their host cells. Recruitment of the Golgi complex to the vicinity of the parasitophorous vacuole (PV) is likely to aid in this process. In this work, we comparatively assessed B. besnoiti, T. gondii and N. caninum infected human retinal pigmented epithelial (hTERT-RPE-1) cells at 24 h post-infection and used antibodies to confirm Golgi ribbon compaction in B. besnoiti, and Golgi ribbon dispersion in T. gondii, while no alteration in Golgi morphology was seen in N. caninum infected cells. In either case, the Golgi stacks of infected cells contained both cis- (GM130) and trans- (TGN46) Golgi proteins. The localization of Rab9A, an important regulator of endosomal trafficking, was also studied. GFP-tagged Rab9A was recruited to the vicinity of the PV of all three parasites. Toxoplasma-infected cells exhibited increased expression of Rab9A in comparison to non-infected cells. However, Rab9A expression levels remained unaltered upon infection with N. caninum and B. besnoiti tachyzoites. In contrast to Rab9A, a GFP-tagged dominant negative mutant form of Rab9A (Rab9A DN), was not recruited to the PV, and the expression of Rab9A DN did not affect host cell invasion nor replication by all three parasites. Thus, B. besnoiti, T. gondii and N. caninum show similarities but also differences in how they affect constituents of the endosomal/secretory pathways.
Collapse
Affiliation(s)
- Rita Cardoso
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| | - Junhua Wang
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| | - Sebastian Rupp
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, 3012, Switzerland
| | - Alexandre Leitão
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| |
Collapse
|
16
|
Impact of Reduced Cerebellar EAAT Expression on Purkinje Cell Firing Pattern of NPC1-deficient Mice. Sci Rep 2018; 8:3318. [PMID: 29463856 PMCID: PMC5820268 DOI: 10.1038/s41598-018-21805-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick disease Type C1 (NPC1) is a rare hereditary neurodegenerative disease. NPC1-patients suffer, amongst others, from ataxia, based on a loss of cerebellar Purkinje cells (PCs). Impaired expression/function of excitatory amino acid transporters (EAATs) are suspected of contributing to PC-degeneration in hereditary spinocerebellar ataxias (SCAs). Thus, we studied EAAT-expression and its impact to PC-activity in NPC1−/–mice. Western blot revealed reduced EAAT1, EAAT2, EAAT4, and βIII-spectrin levels in NPC1−/–mice. EAATs play a crucial role in synaptic transmission, thus we were interested in the impact of the reduced EAAT-expression on the function of PCs. Patch-clamp recordings of PCs showed no differences in the firing patterns of NPC1+/+and NPC1−/–mice using a low internal chloride concentration. Because EAAT4 also comprises a chloride permeable ion pore, we perturbed the chloride homeostasis using a high internal chloride concentration. We observed differences in the firing patterns of NPC1+/+and NPC1−/–mice, suggesting an impact of the altered EAAT4-expression. Additionally, the EAAT-antagonist DL-TBOA acts differently in NPC1+/+and NPC1−/–mice. Our data support the line of evidence that an altered EAAT-expression/function is involved in neurodegeneration of PCs observed in SCAs. Thus, we suggest that similar pathogenic mechanisms contribute the loss of PCs in NPC1.
Collapse
|
17
|
Peter F, Rost S, Rolfs A, Frech MJ. Activation of PKC triggers rescue of NPC1 patient specific iPSC derived glial cells from gliosis. Orphanet J Rare Dis 2017; 12:145. [PMID: 28841900 PMCID: PMC5574080 DOI: 10.1186/s13023-017-0697-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. The pathological mechanisms, underlying NPC1 are not yet completely understood. Especially the contribution of glial cells and gliosis to the progression of NPC1, are controversially discussed. As an analysis of affected cells is unfeasible in NPC1-patients, we recently developed an in vitro model system, based on cells derived from NPC1-patient specific iPSCs. Here, we asked if this model system recapitulates gliosis, observed in non-human model systems and NPC1 patient post mortem biopsies. We determined the amount of reactive astrocytes and the regulation of the intermediate filaments GFAP and vimentin, all indicating gliosis. Furthermore, we were interested in the assembly and phosphorylation of these intermediate filaments and finally the impact of the activation of protein kinase C (PKC), which is described to ameliorate the pathogenic phenotype of NPC1-deficient fibroblasts, including hypo-phosphorylation of vimentin and cholesterol accumulation. METHODS We analysed glial cells derived from NPC1 patient specific induced pluripotent stem cells, carrying different NPC1 mutations. The amount of reactive astrocytes was determined by means of immuncytochemical stainings and FACS-analysis. Semi-quantitative western blot was used to determine the amount of phosphorylated GFAP and vimentin. Cholesterol accumulation was analysed by Filipin staining and quantified by Amplex Red Assay. U18666A was used to induce NPC1 phenotype in unaffected cells of the control cell line. Phorbol 12-myristate 13-acetate (PMA) was used to activate PKC. RESULTS Immunocytochemical detection of GFAP, vimentin and Ki67 revealed that NPC1 mutant glial cells undergo gliosis. We found hypo-phosphorylation of the intermediate filaments GFAP and vimentin and alterations in the assembly of these intermediate filaments in NPC1 mutant cells. The application of U18666A induced not only NPC1 phenotypical accumulation of cholesterol, but characteristics of gliosis in glial cells derived from unaffected control cells. The application of phorbol 12-myristate 13-acetate, an activator of protein kinase C resulted in a significantly reduced number of reactive astrocytes and further characteristics of gliosis in NPC1-deficient cells. Furthermore, it triggered a restoration of cholesterol amounts to level of control cells. CONCLUSION Our data demonstrate that glial cells derived from NPC1-patient specific iPSCs undergo gliosis. The application of U18666A induced comparable characteristics in un-affected control cells, suggesting that gliosis is triggered by hampered function of NPC1 protein. The activation of protein kinase C induced an amelioration of gliosis, as well as a reduction of cholesterol amount. These results provide further support for the line of evidence that gliosis might not be only a secondary reaction to the loss of neurons, but might be a direct consequence of a reduced PKC activity due to the phenotypical cholesterol accumulation observed in NPC1. In addition, our data support the involvement of PKCs in NPC1 disease pathogenesis and suggest that PKCs may be targeted in future efforts to develop therapeutics for NPC1 disease.
Collapse
Affiliation(s)
- Franziska Peter
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Sebastian Rost
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Moritz J. Frech
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
18
|
Rabenstein M, Peter F, Joost S, Trilck M, Rolfs A, Frech MJ. Decreased calcium flux in Niemann-Pick type C1 patient-specific iPSC-derived neurons due to higher amount of calcium-impermeable AMPA receptors. Mol Cell Neurosci 2017; 83:27-36. [PMID: 28666962 DOI: 10.1016/j.mcn.2017.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 01/31/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene, resulting mainly in the accumulation of cholesterol and the ganglioside GM2. Recently, we described accumulations of these lipids in neuronal differentiated cells derived from NPC1 patient-specific induced pluripotent stem cells (iPSCs). As these lipids are essential for proper cell membrane composition, we were interested in the expression and function of voltage-gated ion channels and excitatory AMPA receptors (AMPARs) in neurons derived from three patient-specific iPSC lines. By means of patch clamp recordings and microfluorimetric measurements of calcium (Ca2+), we examined the expression of voltage-gated ion channels and AMPARs. Cells of the three used cell lines carrying the c.1836A>C/c.1628delC, the c.1180T>C or the c.3182T>C mutation demonstrated a significantly reduced AMPA-induced Ca2+-influx, suggesting an altered expression profile of these receptors. RT-qPCR revealed a significant upregulation of mRNA for the AMPA receptor subunits GluA1 and GluA2 and western blot analysis showed increased protein level of GluA2. Thus, we conclude that the observed reduced Ca2+-influx is based on an increase of GluA2 containing Ca2+-impermeable AMPARs. An attenuated function of GluRs in neurons potentially contributes to the progressive neurodegeneration observed in NPC1 and might represent an objective in regard of the development of new therapeutic approaches in NPC1.
Collapse
Affiliation(s)
- Michael Rabenstein
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Franziska Peter
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Sarah Joost
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Michaela Trilck
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Moritz J Frech
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| |
Collapse
|
19
|
Trilck M, Peter F, Zheng C, Frank M, Dobrenis K, Mascher H, Rolfs A, Frech MJ. Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons. Brain Res 2016; 1657:52-61. [PMID: 27923633 DOI: 10.1016/j.brainres.2016.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. On the cellular level NPC1 mutations lead to an accumulation of cholesterol and gangliosides. As a thorough analysis of the severely affected neuronal cells is unfeasible in NPC1 patients, we recently described the cellular phenotype of neuronal cells derived from NPC1 patient iPSCs carrying the compound heterozygous mutation c.1836A>C/c.1628delC. Here we expanded the analysis to cell lines carrying the prevalent mutation c.3182T>C and the novel mutation c.1180T>C, as well as to the determination of GM2 and GM3 gangliosides in NPC1 patient-specific iPSC-derived neurons and glia cells. Immunocytochemical detection of GM2 revealed punctated staining pattern predominantly localized in neurons. Detection of cholesterol by filipin staining showed a comparable staining pattern, colocalized with GM2, indicating a deposit of GM2 and cholesterol in the same cellular compartments. Accumulations were not only restricted to cell bodies, but were also found in the neuronal extensions. A quantification of the GM2 amount by HPLC-MS/MS confirmed significantly higher amounts in neurons carrying a mutation. Additionally, these cells displayed a lowered activity of the catabolic enzyme Hex A, but not B4GALNT1. Molecular docking simulations indicated binding of cholesterol to Hex A, suggesting cholesterol influences the GM2 degradation pathway and, subsequently, leading to the accumulation of GM2. Taken together, this is the first study showing an accumulation of GM2 in neuronal derivatives of patient-specific iPSCs and thus proving further disease-specific hallmarks in this human in vitro model of NPC1.
Collapse
Affiliation(s)
- Michaela Trilck
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; Institute of Neurogenetics, University of Luebeck, Maria-Goeppert-Str. 1, 23562 Luebeck, Germany.
| | - Franziska Peter
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Chaonan Zheng
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; Leibniz Institute for Catalysis, University of Rostock, Rostock, Germany.
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, University Medicine Rostock, Strempelstraße 14, 18057 Rostock, Germany.
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| | - Hermann Mascher
- pharm-analyt Labor GmbH, Ferdinand-Pichler-Gasse 2, 2500 Baden, Austria.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Moritz J Frech
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| |
Collapse
|
20
|
Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol 2016; 9:e1204498. [PMID: 27574541 PMCID: PMC4988448 DOI: 10.1080/19420889.2016.1204498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
The small GTPase Rab9 has long been described as a protein that mediates endosome-to-trans-Golgi Network (TGN) transport, and specifically mannose-6-phospate receptor (MPR) recycling. However, studies have challenged this view by showing that Rab9 also is connected to sorting pathways toward the endolysosomal compartments. We recently characterized the spatio-temporal dynamics of Rab9 and, by using live cell imaging, we showed that it enters the endosomal pathway together with CI-MPR at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. More so, the Rab9 constitutively active mutant, Rab9Q66L, accumulates on late endosomes and promotes carrier formation at the TGN. Here, we discuss our findings in light of previous reports on Rab9 in the retrograde transport pathway.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| |
Collapse
|
21
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
22
|
Feldman MJ, Poirier BC, Lange BM. Misexpression of the Niemann-Pick disease type C1 (NPC1)-like protein in Arabidopsis causes sphingolipid accumulation and reproductive defects. PLANTA 2015; 242:921-33. [PMID: 26007685 DOI: 10.1007/s00425-015-2322-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/04/2015] [Indexed: 05/25/2023]
Abstract
Misexpression of the AtNPC1 - 1 and AtNPC1 - 2 genes leads to altered sphingolipid metabolism, growth impairment, and male reproductive defects in a hemizygous Arabidopsis thaliana (L.) double-mutant population. Abolishing the expression of both gene copies has lethal effects. Niemann-Pick disease type C1 is a lysosomal storage disorder caused by mutations in the NPC1 gene. At the cellular level, the disorder is characterized by the accumulation of storage lipids and lipid trafficking defects. The Arabidopsis thaliana genome contains two genes (At1g42470 and At4g38350) with weak homology to mammalian NPC1. The corresponding proteins have 11 predicted membrane-spanning regions and contain a putative sterol-sensing domain. The At1g42470 protein is localized to the plasma membrane, while At4g38350 protein has a dual localization in the plasma and tonoplast membranes. A phenotypic analysis of T-DNA insertion mutants indicated that At1g42470 and At4g38350 (designated AtNPC1-1 and AtNPC1-2, respectively) have partially redundant functions and are essential for plant reproductive viability and development. Homozygous plants impaired in the expression of both genes were not recoverable. Plants of a hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 population were severely dwarfed and exhibited male gametophytic defects. These gene disruptions did not have an effect on sterol concentrations; however, hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 mutants had increased fatty acid amounts. Among these, fatty acid α-hydroxytetracosanoic acid (h24:0) occurs in plant sphingolipids. Follow-up analyses confirmed the accumulation of significantly increased levels of sphingolipids (assayed as hydrolyzed sphingoid base component) in the hemizygous double-mutant population. Certain effects of NPC1 misexpression may be common across divergent lineages of eukaryotes (sphingolipid accumulation), while other defects (sterol accumulation) may occur only in certain groups of eukaryotic organisms.
Collapse
Affiliation(s)
- Maximilian J Feldman
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | | | | |
Collapse
|
23
|
Platt N, Speak AO, Colaco A, Gray J, Smith DA, Williams IM, Wallom KL, Platt FM. Immune dysfunction in Niemann-Pick disease type C. J Neurochem 2015; 136 Suppl 1:74-80. [PMID: 25946402 PMCID: PMC4833189 DOI: 10.1111/jnc.13138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysosomal storage diseases are inherited monogenic disorders in which lysosome function is compromised. Although individually very rare, they occur at a collective frequency of approximately one in five thousand live births and usually have catastrophic consequences for health. The lysosomal storage diseases Niemann‐Pick disease type C (NPC) is caused by mutations predominantly in the lysosomal integral membrane protein NPC1 and clinically presents as a progressive neurodegenerative disorder. In this article we review data that demonstrate significant dysregulation of innate immunity in NPC, which occurs both in peripheral organs and the CNS. In particular pro‐inflammatory responses promote disease progression and anti‐inflammatory drugs provide benefit in animal models of the disease and are an attractive target for clinical intervention in this disorder.
![]() Niemann‐Pick disease type C is a rare, devastating, inherited lysosomal storage disease with a unique cellular phenotype characterized by lysosomal accumulation of sphingosine, various glycosphingolipids and cholesterol and a reduction in lysosomal calcium. In this review we highlight the impact of the disease on innate immune activities in both the central nervous system (CNS) and peripheral tissues and discuss their contributions to pathology and the underlying mechanisms.
Collapse
Affiliation(s)
- Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ian M Williams
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis 2015; 38:187-99. [PMID: 25425283 DOI: 10.1007/s10545-014-9794-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/31/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
Abstract
Niemann-Pick disease type C (NPC) is an atypical lysosomal storage disease resulting from mutations in one of two genes, either NPC1 or NPC2. Although a neurovisceral disorder, it is above all a neurodegenerative disease in the vast majority of patients. Not an enzyme deficiency, it is currently conceived as a lipid trafficking disorder. Impaired egress of cholesterol from the late endosomal/lysosomal (LE/L) compartment is a specific and key element of the pathogenesis, but other lipids, more specially sphingolipids, are also involved, and there are indications for further abnormalities. The full function of the NPC1 and NPC2 proteins is still unclear. This review provides a reappraisal of lipid storage and lysosomal enzymes activities in tissues/cells from NPC patients and animal models. It summarizes the current knowledge on the NPC1 and NPC2 proteins and their function in transport of cholesterol within the late endosomal-lysosomal compartment, with emphasis on differences between systemic organs and the brain; it also discusses regulation by membrane lipids of the NPC2-mediated cholesterol trafficking, interplay between cholesterol and sphingomyelin, the metabolic origin of glycosphingolipids stored in brain, and the putative role of free sphingoid bases in pathogenesis. Brief mention is finally made of diseases affecting other genes that were very recently shown to impact the "NPC pathway".
Collapse
Affiliation(s)
- Marie T Vanier
- Institut National de la Santé et de la Recherche Médicale U820, Université Lyon-1 EA4611, Faculté de Médecine Lyon-Est, 7 Rue G. Paradin, 69008, Lyon, France,
| |
Collapse
|
25
|
Improved neuroprotection using miglustat, curcumin and ibuprofen as a triple combination therapy in Niemann–Pick disease type C1 mice. Neurobiol Dis 2014; 67:9-17. [DOI: 10.1016/j.nbd.2014.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 02/07/2023] Open
|
26
|
Rohrbeck A, Schröder A, Hagemann S, Pich A, Höltje M, Ahnert-Hilger G, Just I. Vimentin mediates uptake of C3 exoenzyme. PLoS One 2014; 9:e101071. [PMID: 24967582 PMCID: PMC4072758 DOI: 10.1371/journal.pone.0101071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023] Open
Abstract
Clostridium botulinum C3 exoenzyme (C3) selectively inactivates RhoA/B/C GTPases by ADP-ribosylation. Based on this substrate specificity C3 is a well-established tool in cell biology. C3 is taken up by eukaryotic cells although lacking an uptake and translocation domain. Based on different approaches vimentin was identified as membranous C3-interaction partner by mass spectrometry. Vimentin in fact was partly localized at the outer surface of hippocampal HT22 cells and J744A.1 macrophages. Domain analysis identified the rod domain as binding partner of C3. Vimentin was also involved in uptake of C3 as shown by knock down of vimentin in HT22 and J774A.1 cells. The involvement of vimentin in uptake of C3 was further supported by the findings that the vimentin disruptor acrylamide blocked uptake of C3. Vimentin is not only a major organizing element of the intermediate filament network but is also involved in both binding and uptake of C3 exoenzyme.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Charité-Universitätsmedizin Berlin, Germany
- * E-mail:
| | - Anke Schröder
- Institute of Toxicology, Hannover Medical School, Charité-Universitätsmedizin Berlin, Germany
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Charité-Universitätsmedizin Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Charité-Universitätsmedizin Berlin, Germany
| | - Markus Höltje
- Center for Anatomy, Functional Cell Biology, Charité-Universitätsmedizin Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Center for Anatomy, Functional Cell Biology, Charité-Universitätsmedizin Berlin, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
27
|
On the formation of lipid droplets in human adipocytes: the organization of the perilipin-vimentin cortex. PLoS One 2014; 9:e90386. [PMID: 24587346 PMCID: PMC3938729 DOI: 10.1371/journal.pone.0090386] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
We report on the heterogeneity and diversity of lipid droplets (LDs) in early stages of adipogenesis by elucidating the cell and molecular biology of amphiphilic and cytoskeletal proteins regulating and stabilizing the generation of LDs in human adipose cells. A plethora of distinct and differently sized LDs was detected by a brief application of adipocyte differentiation medium and additional short treatment with oleic acid. Using these cells and highly specific antibodies for LD-binding proteins of the perilipin (PLIN) family, we could distinguish between endogenously derived LDs (endogenous LDs) positive for perilipin from exogenously induced LDs (exogenous LDs) positive for adipophilin, TIP47 and S3-12. Having optimized these stimulation conditions, we used early adipogenic differentiation stages to investigate small-sized LDs and concentrated on LD-protein associations with the intermediate-sized filament (IF) vimentin. This IF protein was described earlier to surround lipid globules, showing spherical, cage-like structures. Consequently - by biochemical methods, by immunofluorescence microscopy and by electron- and immunoelectron microscopy - various stages of emerging lipid globules were revealed with perilipin as linking protein between LDs and vimentin. For this LD-PLIN-Vimentin connection, a model is now proposed, suggesting an interaction of proteins via opposed charged amino acid domains respectively. In addition, multiple sheaths of smooth endoplasmic reticulum cisternae surrounding concentrically nascent LDs are shown. Based on our comprehensive localization studies we present and discuss a novel pathway for the LD formation.
Collapse
|
28
|
Tamari F, Chen FW, Li C, Chaudhari J, Ioannou YA. PKC activation in Niemann pick C1 cells restores subcellular cholesterol transport. PLoS One 2013; 8:e74169. [PMID: 23977398 PMCID: PMC3744505 DOI: 10.1371/journal.pone.0074169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
Activation of protein kinase C (PKC) has previously been shown to ameliorate the cholesterol transport defect in Niemann Pick Type C1 (NPC1) cells, presumably by increasing the soluble levels of one of its substrates, vimentin. This activity would then restore the vimentin cycle in these cells and allow vimentin-dependent retrograde transport to proceed. Here, we further investigate the effects of PKC activation in NPC1 cells by evaluating different isoforms for their ability to solubilize vimentin and correct the NPC1 cholesterol storage phenotype. We also examine the effects of PKC activators, including free fatty acids and the PKC-specific activator diazoxide, on the NPC1 disease phenotype. Our results indicate that PKC isoforms α, βII, and ε have the greatest effects on vimentin solubilization. Furthermore, expression or activation of PKCε in NPC1 cells dramatically reduces the amount of stored cholesterol and restores cholesterol transport out of endocytic vesicles. These results provide further support for the contribution of PKCs in NPC1 disease pathogenesis and suggest that PKCs may be targeted in future efforts to develop therapeutics for NPC1 disease.
Collapse
Affiliation(s)
- Farshad Tamari
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, New York, United States of America
| | - Fannie W. Chen
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
| | - Chunlei Li
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jagrutiben Chaudhari
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yiannis A. Ioannou
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cogli L, Progida C, Bramato R, Bucci C. Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1283-93. [PMID: 23458836 PMCID: PMC3787733 DOI: 10.1016/j.bbamcr.2013.02.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
Abstract
Intermediate filaments are cytoskeletal elements important for cell architecture. Recently it has been discovered that intermediate filaments are highly dynamic and that they are fundamental for organelle positioning, transport and function thus being an important regulatory component of membrane traffic. We have identified, using the yeast two-hybrid system, vimentin, a class III intermediate filament protein, as a Rab7a interacting protein. Rab7a is a member of the Rab family of small GTPases and it controls vesicular membrane traffic to late endosomes and lysosomes. In addition, Rab7a is important for maturation of phagosomes and autophagic vacuoles. We confirmed the interaction in HeLa cells by co-immunoprecipitation and pull-down experiments, and established that the interaction is direct using bacterially expressed recombinant proteins. Immunofluorescence analysis on HeLa cells indicate that Rab7a-positive vesicles sometimes overlap with vimentin filaments. Overexpression of Rab7a causes an increase in vimentin phosphorylation at different sites and causes redistribution of vimentin in the soluble fraction. Consistently, Rab7a silencing causes an increase of vimentin present in the insoluble fraction (assembled). Also, expression of Charcot–Marie–Tooth 2B-causing Rab7a mutant proteins induces vimentin phosphorylation and increases the amount of vimentin in the soluble fraction. Thus, modulation of expression levels of Rab7a wt or expression of Rab7a mutant proteins changes the assembly of vimentin and its phosphorylation state indicating that Rab7a is important for the regulation of vimentin function. ► We searched for new Rab7a interacting proteins and we found vimentin. ► We demonstrated that Rab7a interacts directly with vimentin. ► Rab7a influences vimentin's phosphorylation and soluble/insoluble ratio. ► Rab7a regulates vimentin organization and function.
Collapse
Affiliation(s)
- Laura Cogli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | |
Collapse
|
30
|
Shen WJ, Zaidi SK, Patel S, Cortez Y, Ueno M, Azhar R, Azhar S, Kraemer FB. Ablation of vimentin results in defective steroidogenesis. Endocrinology 2012; 153:3249-57. [PMID: 22535769 PMCID: PMC3380307 DOI: 10.1210/en.2012-1048] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In steroidogenic tissues, cholesterol must be transported to the inner mitochondrial membrane to be converted to pregnenolone as the first step of steroidogenesis. Whereas steroidogenic acute regulatory protein has been shown to be responsible for the transport of cholesterol from the outer to the inner mitochondrial membrane, the process of how cholesterol moves to mitochondria from the cytoplasm is not clearly defined. The involvement of the cytoskeleton has been suggested; however, no specific mechanism has been confirmed. In this paper, using genetic ablation of an intermediate filament protein in mice, we present data demonstrating a marked defect in adrenal and ovarian steroidogenesis in the absence of vimentin. Cosyntropin-stimulated corticosterone production is decreased 35 and 50% in male and female Vimentin null (Vim(-/-)) mice, respectively, whereas progesterone production is decreased 70% in female Vim(-/-) mice after pregnant mare's serum gonadotropin and human chorionic gonadotropin stimulation, but no abnormalities in human chorionic gonadotropin-stimulated testosterone production is observed in male Vim(-/-) mice. These defects in steroid production are also seen in isolated adrenal and granulosa cells in vitro. Further studies show a defect in the movement of cholesterol from the cytosol to mitochondria in Vim(-/-) cells. Because the mobilization of cholesterol from lipid droplets and its transport to mitochondria is a preferred pathway for the initiation of steroid production in the adrenal and ovary but not the testis and vimentin is a droplet-associated protein, our results suggest that vimentin is involved in the movement of cholesterol from its storage in lipid droplets to mitochondria for steroidogenesis.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Blom T, Li Z, Bittman R, Somerharju P, Ikonen E. Tracking sphingosine metabolism and transport in sphingolipidoses: NPC1 deficiency as a test case. Traffic 2012; 13:1234-43. [PMID: 22607065 DOI: 10.1111/j.1600-0854.2012.01379.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 12/21/2022]
Abstract
The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3)H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3)H]-sphingomyelin-derived [(3)H]-ceramide and depletion of [(3)H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3)H]-sphingosine-derived [(3)H]-ceramide and attenuation of [(3)H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3)H]-sphingosine derived from [(3)H]-sphingomyelin/LDL or [(3)H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3)H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.
Collapse
Affiliation(s)
- Tomas Blom
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
32
|
Liapis A, Chen FW, Davies JP, Wang R, Ioannou YA. MLN64 transport to the late endosome is regulated by binding to 14-3-3 via a non-canonical binding site. PLoS One 2012; 7:e34424. [PMID: 22514632 PMCID: PMC3326014 DOI: 10.1371/journal.pone.0034424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/02/2012] [Indexed: 12/12/2022] Open
Abstract
MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics.
Collapse
Affiliation(s)
- Anastasia Liapis
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Fannie W. Chen
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Joanna P. Davies
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rong Wang
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yiannis A. Ioannou
- Department of Genetics & Genomic Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cianciola NL, Carlin CR, Kelley TJ. Molecular pathways for intracellular cholesterol accumulation: common pathogenic mechanisms in Niemann-Pick disease Type C and cystic fibrosis. Arch Biochem Biophys 2011; 515:54-63. [PMID: 21924233 PMCID: PMC3192251 DOI: 10.1016/j.abb.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
It has been less than two decades since the underlying genetic defects in Niemann-Pick disease Type C were first identified. These defects impair function of two proteins with a direct role in lipid trafficking, resulting in deposition of free cholesterol within late endosomal compartments and a multitude of effects on cell function and clinical manifestations. The rapid pace of research in this area has vastly improved our overall understanding of intracellular cholesterol homeostasis. Excessive cholesterol buildup has also been implicated in clinical manifestations associated with a number of genetically unrelated diseases including cystic fibrosis. Applying knowledge about anomalous cell signaling behavior in cystic fibrosis opens prospects for identifying similar previously unrecognized disease pathways in Niemann-Pick disease Type C. Recognition that Niemann-Pick disease Type C and cystic fibrosis both impair cholesterol regulatory pathways also provides a rationale for identifying common therapeutic targets.
Collapse
Affiliation(s)
- Nicholas L. Cianciola
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
- Case Western Reserve University Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Thomas J. Kelley
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| |
Collapse
|
34
|
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68:3033-46. [PMID: 21637948 PMCID: PMC3162105 DOI: 10.1007/s00018-011-0735-1] [Citation(s) in RCA: 1074] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin's overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin's role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
| | - Shulin Li
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
- UTMD, Graduate School of Biomedical Science, Houston, TX 77030 USA
| |
Collapse
|
35
|
Liu HP, Wu CC, Kao HY, Huang YC, Liang Y, Chen CC, Yu JS, Chang YS. Proteome-wide dysregulation by PRA1 depletion delineates a role of PRA1 in lipid transport and cell migration. Mol Cell Proteomics 2010; 10:M900641MCP200. [PMID: 20592422 DOI: 10.1074/mcp.m900641-mcp200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified prenylated Rab acceptor 1 (PRA1) as a novel cellular interacting partner for Epstein-Barr virus-encoded oncoprotein, latent membrane protein 1 (LMP1). The intracellular trafficking and full signaling of LMP1 requires its interaction with PRA1. To further explore the role of PRA1 in Epstein-Barr virus-associated nasopharyngeal carcinoma (NPC) cells, we generated several PRA1-knockdown cell clones, which exhibited altered cell morphology and increased cell motility. We identified proteins differentially expressed in the knockdown clones by means of isobaric mass tags labeling coupled with multidimensional liquid chromatography-mass spectrometry. We validated a panel of proteins, which showed consistent up-regulation in PRA1-knockdown clones and participated in regulating lipid homeostasis and cell migration. Immunofluorescence staining further revealed altered localization of these proteins and accumulation of intracellular cholesterol in PRA1-knockdown clones. These effects were phenocopied by treatment with a cholesterol transport inhibitor, U18666A. Moreover, overexpressed PRA1 was able to alleviate the dysregulation of these affected proteins either from PRA1 knockdown or U18666A treatment, implying a role for PRA1 in regulating the levels of these affected proteins in response to altered cholesterol homeostasis. We further demonstrated that LMP1 expression caused PRA1 sequestration in NPC cells, leading to a consequence reminiscent of PRA1 knockdown. Finally, the immunohistochemistry showed a physiological relevance of the PRA1-associated proteome-wide changes in NPC biopsy tissues. In sum, our findings delineated novel roles of PRA1 in lipid transport and cell migration, and provided additional insights into the molecular basis of NPC morphogenesis, namely a consequence of LMP1-PRA1 interaction.
Collapse
Affiliation(s)
- Hao-Ping Liu
- Molecular Medicine Research Center, Department of Medical Biotechnology and Laboratory Science, Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Madra M, Sturley SL. Niemann-Pick type C pathogenesis and treatment: from statins to sugars. CLINICAL LIPIDOLOGY 2010; 5:387-395. [PMID: 21394236 PMCID: PMC3050622 DOI: 10.2217/clp.10.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isolation of the causative genes for Niemann-Pick type C disease, a panethnic lysosomal lipid storage disorder, has provided models of how sterols and other lipids such as glycosphingolipids traverse the membranes of eukaryotic cells. Unfortunately, these molecular advances have yet to reciprocate with a cure for this devastating neurodegenerative disorder where neuronal replenishment will most likely yield the greatest benefit. In the meantime, stabilizing treatment strategies based on the removal of presumably toxic metabolites are in place. For example, the small molecule inhibition of glucosylceramide synthase by miglustat limits ganglioside accumulation and is now the only approved treatment of Niemann-Pick type C. In addition, 2-hydroxypropyl-B-cyclodextrin, a lipid chelator, relieves the lysosomal to endoplasmic reticulum blockage and markedly increases the life expectancy of the murine model. Ultimately, these strategies, targeting the primary biochemical lesion in these cells, and others will likely be combined to provide a synergistic cocktail approach to treating this disease.
Collapse
Affiliation(s)
- Moneek Madra
- Department of Pediatrics, Columbia University Medical Center, 630 West 168th St, NY 10032, USA
| | - Stephen L Sturley
- Department of Pediatrics, Columbia University Medical Center, 630 West 168th St, NY 10032, USA
| |
Collapse
|
37
|
Arora S, Beaudry C, Bisanz KM, Sima C, Kiefer JA, Azorsa DO. A High-Content RNAi-Screening Assay to Identify Modulators of Cholesterol Accumulation in Niemann–Pick Type C Cells. Assay Drug Dev Technol 2010; 8:295-320. [DOI: 10.1089/adt.2009.0240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shilpi Arora
- Pharmaceutical Genomics Division, The Translational Genomics Research Institute, Scottsdale, Arizona
| | - Christian Beaudry
- Pharmaceutical Genomics Division, The Translational Genomics Research Institute, Scottsdale, Arizona
| | - Kristen M. Bisanz
- Pharmaceutical Genomics Division, The Translational Genomics Research Institute, Scottsdale, Arizona
| | - Chao Sima
- Computational Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Jeffrey A. Kiefer
- Pharmaceutical Genomics Division, The Translational Genomics Research Institute, Scottsdale, Arizona
| | - David O. Azorsa
- Pharmaceutical Genomics Division, The Translational Genomics Research Institute, Scottsdale, Arizona
| |
Collapse
|
38
|
Lloyd-Evans E, Platt FM. Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 2010; 11:419-28. [PMID: 20059748 DOI: 10.1111/j.1600-0854.2010.01032.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Niemann-Pick disease type C is a complex lysosomal storage disorder caused by mutations in either the NPC1 or NPC2 genes that is characterized at the cellular level by the storage of multiple lipids, defective lysosomal calcium homeostasis and unique trafficking defects. We review the potential role of each of the individual storage lipids in initiating the pathogenic cascade and propose a model of NPC1 and NPC2 function based on the current knowledge.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
39
|
Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci 2010; 43:33-42. [DOI: 10.1016/j.mcn.2009.07.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 11/27/2022] Open
|
40
|
Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 2009; 26:965-79. [PMID: 19771525 DOI: 10.1007/s10585-009-9287-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/04/2009] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) are a novel class of RNAs with important roles in regulating gene expression. To identify miRs controlling prostate tumor progression, we utilized unique human prostate sublines derived from the parental P69 cell line, which differ in their tumorigenic properties in vivo. Grown embedded in laminin-rich extracellular matrix (lrECM) gels these genetically-related sublines displayed drastically different morphologies correlating with their behaviour in vivo. The non-tumorigenic P69 subline grew as multicellular acini with a defined lumen and basal/polar expression of relevant marker proteins. M12, a highly tumorigenic, metastatic derivative, grew as a disorganized mass of cells with no polarization, whereas the F6 subline, a weakly tumorigenic, non-metastatic M12 variant, reverted to acini formation akin to the P69 cell line. These sublines also differed in expression of vimentin, which was high in M12, but low in F6 and P69 sublines. Analysis of vimentin's conserved 3'-UTR suggested several miRs that could regulate vimentin expression. The lack of miR-17-3p expression correlated with an increase in vimentin synthesis and tumorigenicity. Stable expression of miR-17-3p in the M12 subline reduced vimentin levels 85% and reverted growth to organized, polarized acini in lrECM gels. In vitro motility and invasion assays suggested a decrease in tumorigenic behaviour, confirmed by reduced tumor growth in male athymic, nude mice dependent on miR-17-3p expression. Analysis of LCM-purified clinical human prostatectomy specimens confirmed that miR-17-3p levels were reduced in tumor cells. These results suggest that miR-17-3p functions as a tumor suppressor, representing a novel target to block prostate tumor progression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry & Molecular Biology and The Massey Cancer Center, School of Medicine, VCU Medical Center, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
41
|
Rosenbaum AI, Rujoi M, Huang AY, Du H, Grabowski GA, Maxfield FR. Chemical screen to reduce sterol accumulation in Niemann-Pick C disease cells identifies novel lysosomal acid lipase inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1155-65. [PMID: 19699313 DOI: 10.1016/j.bbalip.2009.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 01/23/2023]
Abstract
Niemann-Pick C disease (NPC) is a lysosomal storage disorder causing abnormal accumulation of unesterified free cholesterol in lysosomal storage organelles. High content phenotypic microscopy chemical screens in both human and hamster NPC-deficient cells have identified several compounds that partially revert the NPC phenotype. Cell biological and biochemical studies show that several of these molecules inhibit lysosomal acid lipase, the enzyme that hydrolyzes LDL-derived triacylglycerol and cholesteryl esters. The effects of reduced lysosomal acid lipase activity in lowering cholesterol accumulation in NPC mutant cells were verified by RNAi-mediated knockdown of lysosomal acid lipase in NPC1-deficient human fibroblasts. This work demonstrates the utility of phenotypic cellular screens as a means to identify molecular targets for altering a complex process such as intracellular cholesterol trafficking and metabolism.
Collapse
Affiliation(s)
- Anton I Rosenbaum
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
42
|
Deficiency of niemann-pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in Gag accumulation in late endosomal/lysosomal compartments. J Virol 2009; 83:7982-95. [PMID: 19474101 DOI: 10.1128/jvi.00259-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) relies on cholesterol-laden lipid raft membrane microdomains for entry into and egress out of susceptible cells. In the present study, we examine the need for intracellular cholesterol trafficking pathways with respect to HIV-1 biogenesis using Niemann-Pick type C-1 (NPC1)-deficient (NPCD) cells, wherein these pathways are severely compromised, causing massive accumulation of cholesterol in late endosomal/lysosomal (LE/L) compartments. We have found that induction of an NPC disease-like phenotype through treatment of various cell types with the commonly used hydrophobic amine drug U18666A resulted in profound suppression of HIV-1 release. Further, NPCD Epstein-Barr virus-transformed B lymphocytes and fibroblasts from patients with NPC disease infected with a CD4-independent strain of HIV-1 or transfected with an HIV-1 proviral clone, respectively, replicated HIV-1 poorly compared to normal cells. Infection of the NPCD fibroblasts with a vesicular stomatitis virus G-pseudotyped strain of HIV-1 produced similar results, suggesting a postentry block to HIV-1 replication in these cells. Examination of these cells using confocal microscopy showed an accumulation and stabilization of Gag in LE/L compartments. Additionally, normal HIV-1 production could be restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increased HIV-1 release. Taken together, our findings demonstrate that intact intracellular cholesterol trafficking pathways mediated by NPC1 are needed for efficient HIV-1 production.
Collapse
|
43
|
Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:726-36. [PMID: 19111580 PMCID: PMC4382014 DOI: 10.1016/j.bbamcr.2008.11.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease.
Collapse
Affiliation(s)
- Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | |
Collapse
|
44
|
Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 2008; 14:1247-55. [PMID: 18953351 DOI: 10.1038/nm.1876] [Citation(s) in RCA: 659] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 09/05/2008] [Indexed: 11/08/2022]
Abstract
Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder caused by mutations in the acidic compartment (which we define as the late endosome and the lysosome) protein, NPC1. The function of NPC1 is unknown, but when it is dysfunctional, sphingosine, glycosphingolipids, sphingomyelin and cholesterol accumulate. We have found that NPC1-mutant cells have a large reduction in the acidic compartment calcium store compared to wild-type cells. Chelating luminal endocytic calcium in normal cells with high-affinity Rhod-dextran induced an NPC disease cellular phenotype. In a drug-induced NPC disease cellular model, sphingosine storage in the acidic compartment led to calcium depletion in these organelles, which then resulted in cholesterol, sphingomyelin and glycosphingolipid storage in these compartments. Sphingosine storage is therefore an initiating factor in NPC1 disease pathogenesis that causes altered calcium homeostasis, leading to the secondary storage of sphingolipids and cholesterol. This unique calcium phenotype represents a new target for therapeutic intervention, as elevation of cytosolic calcium with curcumin normalized NPC1 disease cellular phenotypes and prolonged survival of the NPC1 mouse.
Collapse
|