1
|
Shen T, Dong T, Wang H, Ding Y, Zhang J, Zhu X, Ding Y, Cai W, Wei Y, Wang Q, Wang S, Jiang F, Tang B. Integrative machine learning frameworks to uncover specific protein signature in neuroendocrine cervical carcinoma. BMC Cancer 2025; 25:57. [PMID: 39794740 PMCID: PMC11720509 DOI: 10.1186/s12885-025-13454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE Neuroendocrine cervical carcinoma (NECC) is a rare but highly aggressive tumor. The clinical management of NECC follows neuroendocrine neoplasms and cervical cancer in general. However, the diagnosis and prognosis of NECC remain dismal. The aim of this study was to identify a specific protein signature for the diagnosis of NECC. METHODS Protein and gene expression data for NECC and other cervical cancers were retrieved or downloaded from self-collected samples or public resources. Eleven machine-learning algorithms were packaged into 66 combinations, of which we selected the optimal algorithm, including randomForest, SVM-RFE, and LASSO, to select key NECC specific dysregulated proteins (kNsDEPs). The diagnostic effect of kNsDEPs was validated by a set of predictive models and immunohistochemical staining method. The dysregulation patterns of kNsDEPs were further investigated in other neuroendocrine carcinomas. RESULTS Our results showed that NECC displays distinctive biological characteristics, such as HPV18 infection, and exhibits unique molecular features, particularly an enrichment in cytoskeleton-related functions. Furthermore, secretagogin (SCGN), adenylyl cyclase-associated protein 2 (CAP2), and calcyclin-binding protein (CACYBP) were identified as kNsDEPs. These kNsDEPs play a central role in cytoskeleton protein binding and showcase robust diagnostic ability and specificity for NECC. Moreover, the concurrent upregulation of SCGN and CACYBP, along with the downregulation of CAP2, represents a unique feature of NECC, distinguishing it from other neuroendocrine carcinomas. CONCLUSIONS This study uncovers the significance of kNsDEPs and elucidates their regulated networks in the context of NECC. It highlights the pivotal role of kNsDEPs in NECC diagnosis, thus offering promising prospects for the development of diagnostic biomarkers for NECC.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China.
| | - Tingting Dong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yi Ding
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Jianuo Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xinyi Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yeping Ding
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Wen Cai
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Yalan Wei
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Qiao Wang
- Department of Pathology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Sufen Wang
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Feiyun Jiang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Bin Tang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| |
Collapse
|
2
|
Villafan-Bernal JR, Barajas-Olmos F, Guzmán-Guzmán IP, Martínez-Hernández A, Contreras-Cubas C, García-Ortiz H, Morales-Rivera MI, Martínez-Portilla RJ, Orozco L. Relevant Serum Endoplasmic Reticulum Stress Biomarkers in Type 2 Diabetes and Its Complications: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:1564. [PMID: 39765892 PMCID: PMC11673038 DOI: 10.3390/antiox13121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) is activated in all cells by stressors such as hyperglycemia. However, it remains unclear which specific serum biomarkers of ERS are consistently altered in type 2 diabetes (T2D). We aimed to identify serum ERS biomarkers that are consistently altered in T2D and its complications, and their correlation with metabolic and anthropometric variables. We performed a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-Analyses and Systematic Reviews of Observational Studies (MOOSE). The risk of bias was assessed using the Newcastle-Ottawa scale. Random-effects models weighted by the inverse variance were employed to estimate the standardized mean difference and correlations as effect size measures. Indicators of heterogeneity and meta-regressions were evaluated. Of the 1206 identified studies, 22 were finally included, representing 11,953 subjects (2224 with T2D and 9992 non-diabetic controls). Most studies were of high quality. Compared with controls, subjects with T2D had higher circulating levels of heat shock protein 70 (HSP70; SMD: 2.30, 95% CI 1.13-3.46; p < 0.001) and secretagogin (SMD: 0.60, 95%CI 0.19-1.01; p < 0.001). They also had higher serum levels of peroxiredoxin-1, -2, -4, and -6. Secretagogin inversely correlated with HOMA-IR, yet positively correlated with HOMA-B, HbA1c, and FPG. PRX4 negatively correlated with HbA1c and FPG, while HSP70 positively correlated with HbA1c. In conclusion, six ERS biomarkers are consistently elevated in human T2D and correlate with glycemic control, insulin resistance, and β-cell function. Emerging evidence links serum ERS biomarkers to diabetes complications, but further research should evaluate their prognostic implications.
Collapse
Affiliation(s)
- José Rafael Villafan-Bernal
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
- Investigador por México, Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
- Iberoamerican Research Network in Translational, Molecular and Maternal-Fetal Medicine, Mexico City 01010, Mexico;
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Iris Paola Guzmán-Guzmán
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo 39086, Guerrero, Mexico;
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Monserrat I. Morales-Rivera
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
- Postdoctoral Researcher, Consejo Nacional de Humanidades Ciencias y Tecnologías, Mexico City 03940, Mexico
| | | | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| |
Collapse
|
3
|
Yıldırım Ç, Yay F, İmre A, Soysal O, Yıldırım HÇ. CXCL10, SCGN, and H2BC5 as Potential Key Genes Regulated by HCV Infection. Genes (Basel) 2024; 15:1502. [PMID: 39766770 PMCID: PMC11675613 DOI: 10.3390/genes15121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction: Hepatitis C infections are the main causes of fatal clinical conditions such as cirrhosis and HCC development, and biomarkers are needed to predict the development of these complications. Therefore, it is important to first determine which genes are deregulated in HCV-cells compared to healthy individuals. In our study, we aimed to identify the genes that are commonly upregulated or downregulated in HCV-infected cells using two different databases. Material and Method: In this study, differentially expressed genes (DEGs) that were commonly upregulated or downregulated were identified using publicly available databases GSE66842 and GSE84587. Afterwards, the interactions of DEG products with each other and other proteins were examined using the STRING database. Enrichment analyses of DEGs were performed using the Enrichr-KG web tool including the Gene Ontology Biological Process, KEGG, Jensen_DISEASES and DisGeNET libraries. miRNAs targeting DEGs were detected using miRDB and TargetScanHuman8.0. Results: In HCV-infected cells, the CXCL10 expression is increased in both databases, while the SCGN and H2BC5 (HIST1H2BD) expression is decreased. No direct interaction was found among CXCL10, SCGN, H2BC5 in the top ten proteins. CXCL10 is a member of Hepatitis C and viral protein interactions with cytokine and cytokine receptor KEGG pathways. H2BC5 is a member of viral carcinogenesis KEGG pathways. Predicted overlapping miRNAs targeted by common DEGs were as follows: 59 were where CXCL10 was the estimated target, 22 where SCGN was the estimated target and 29 where H2BC5 (HIST1H2BD) was the estimated target. Conclusions: Our study identified genes that were upregulated or downregulated in HCV-infected cells in both databases and miRNAs associated with these genes, using two different databases. This study creates groundwork for future studies to investigate whether these genes can predict HCV prognosis and HCV-associated HCC development.
Collapse
Affiliation(s)
- Çiğdem Yıldırım
- Department of Infectious Diseases and Clinical Microbiology, Nigde Training and Research Hospital, 51100 Nigde, Turkey; (A.İ.); (O.S.)
| | - Fatih Yay
- Clinical Biochemistry Laboratory, Nigde Training and Research Hospital, 51100 Nigde, Turkey;
| | - Ayfer İmre
- Department of Infectious Diseases and Clinical Microbiology, Nigde Training and Research Hospital, 51100 Nigde, Turkey; (A.İ.); (O.S.)
| | - Orçun Soysal
- Department of Infectious Diseases and Clinical Microbiology, Nigde Training and Research Hospital, 51100 Nigde, Turkey; (A.İ.); (O.S.)
| | - Hasan Çağrı Yıldırım
- Department of Medical Oncology, Nigde Training and Research Hospital, 51100 Nigde, Turkey;
| |
Collapse
|
4
|
Li J, Sun L, Sun J, Jiang H. Genome-wide association research on the reproductive traits of Qianhua Mutton Merino sheep. Anim Biosci 2024; 37:1535-1547. [PMID: 38575125 PMCID: PMC11366534 DOI: 10.5713/ab.23.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE Qianhua Mutton Merino sheep is a new breed of meat wool sheep cultivated independently in China. In 2018, it was approved by the state and brought into the national list of livestock and poultry genetic resources. Qianhua Mutton Merino sheep have the common characteristics of typical meat livestock varieties with rapid growth and development in the early stage and high meat production performance. The objective of this research is to investigate the Genome-wide association of the reproductive traits of Qianhua Mutton Merino sheep. METHODS Qianhua Mutton Merino sheep from the breeding core group were selected as the research object, genome-wide association analysis was conducted on genes associated with the reproductive traits (singleton or twins, birth weight, age [in days] for sexual maturity, weaning weight, and daily gain from birth to weaning) of Qianhua mutton merino. RESULTS Our study findings showed that 151 loci of single-nucleotide polymorphisms (SNPs) were detected, among which 3 SNPs related to birth weight and weaning weight occupied a significant portion of the wide genome. The candidate genes preliminarily obtained were SYNE1, SLC12A4, BMP2K, CAMK2D, IMMP2L, DMD, and BCL2. CONCLUSION We found 151 SNP loci for five traits related to reproduction (including singleton or twins, birth weight, age [in days] at sexual maturity, weaning weight, and daily weight gain from birth to weaning). The functions of these candidate genes were mainly enriched in nucleotide metabolism, metal ion binding, oxytocin signaling pathway, and neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Jiarong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130000, China
| | - Limin Sun
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130000, China
| | - Jiazhi Sun
- Anhua Agricultural Insurance Co., Ltd. Changchun Central Branch, Changchun, 130000, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130000, China
| |
Collapse
|
5
|
Ouyang S, Xiang S, Wang X, Yang X, Liu X, Zhang M, Zhou Y, Xiao Y, Zhou L, Fan G, Yang J. The downregulation of SCGN induced by lipotoxicity promotes NLRP3-mediated β-cell pyroptosis. Cell Death Discov 2024; 10:340. [PMID: 39068218 PMCID: PMC11283536 DOI: 10.1038/s41420-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Lipotoxicity is a well-established phenomenon that could exacerbate damage to islet β-cells and play a significant role in the development of type 2 diabetes, the underlying mechanisms of which, however, remain unclear. In lipotoxic conditions, secretagogin (SCGN), an EF-hand calcium-binding protein abundantly expressed in islets, is found to undergo downregulation. In light of this, we aim to explore the role of SCGN in lipotoxicity-induced β-cell injury. Our findings show that exposure to ox-LDL in vitro or long-term high-fat diets (HFD) in vivo decreases SCGN expression and induces pyroptosis in β-cells. Moreover, restoring SCGN partially reverses the pyroptotic cell death under ox-LDL or HFD treatments. We have observed that the downregulation of SCGN facilitates the translocation of ChREBP from the cytosol to the nucleus, thereby promoting TXNIP transcription. The upregulation of TXNIP activates the NLRP3/Caspase-1 pathway, leading to pyroptotic cell death. In summary, our study demonstrates that lipotoxicity leads to the downregulation of SCGN expression in islet β-cells, resulting in ChREBP accumulation in the nucleus and subsequent activation of the NLRP3/Caspase-1 pyroptotic pathway. Thus, administering SCGN could be a potential therapeutic strategy to alleviate β-cell damage induced by lipotoxicity in type 2 diabetes.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sunmin Xiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Hospital Infection Control, Xingsha District of Hunan Provincial People's Hospital (Changsha County People's Hospital), Changsha, 410100, Hunan, China
| | - Xin Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meilin Zhang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yiting Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yang Xiao
- The School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Lingzhi Zhou
- Department of pediatrics, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Metabolism and Endocrinology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
6
|
Szodorai E, Hevesi Z, Wagner L, Hökfelt TGM, Harkany T, Schnell R. A hydrophobic groove in secretagogin allows for alternate interactions with SNAP-25 and syntaxin-4 in endocrine tissues. Proc Natl Acad Sci U S A 2024; 121:e2309211121. [PMID: 38593081 PMCID: PMC11032447 DOI: 10.1073/pnas.2309211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and β-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.
Collapse
Affiliation(s)
- Edit Szodorai
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, ViennaA-1090, Austria
| | - Tomas G. M. Hökfelt
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| | - Tibor Harkany
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Robert Schnell
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| |
Collapse
|
7
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
8
|
Cheruiyot A, Hollister-Lock J, Sullivan B, Pan H, Dreyfuss JM, Bonner-Weir S, Schaffer JE. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. J Clin Invest 2023; 134:e173280. [PMID: 38032734 PMCID: PMC10849759 DOI: 10.1172/jci173280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Pancreatic β cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair β cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion is similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on β cell mRNA translation. Before induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our study uncovered a translational regulatory circuit during β cell glucose toxicity that impairs expression of proteins with critical roles in β cell function.
Collapse
|
9
|
Cheruiyot A, Hollister-Lock J, Sullivan B, Pan H, Dreyfuss JM, Bonner-Weir S, Schaffer JE. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560203. [PMID: 37808767 PMCID: PMC10557781 DOI: 10.1101/2023.09.29.560203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Pancreatic β-cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair β-cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion are similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on β-cell mRNA translation. Prior to induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also of mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex-vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our findings uncover a translational regulatory circuit during β-cell glucose toxicity that impairs expression of proteins with critical roles in β-cell function.
Collapse
|
10
|
Wang QW, Qin J, Chen YF, Tu Y, Xing YY, Wang Y, Yang LY, Lu SY, Geng L, Shi W, Yang Y, Yao J. 16p11.2 CNV gene Doc2α functions in neurodevelopment and social behaviors through interaction with Secretagogin. Cell Rep 2023; 42:112691. [PMID: 37354460 DOI: 10.1016/j.celrep.2023.112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Copy-number variations (CNVs) of the human 16p11.2 genetic locus are associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, it remains largely unclear how this locus is involved in the disease pathogenesis. Doc2α is localized within this locus. Here, using in vivo and ex vivo electrophysiological and morphological approaches, we show that Doc2α-deficient mice have neuronal morphological abnormalities and defects in neural activity. Moreover, the Doc2α-deficient mice exhibit social and repetitive behavioral deficits. Furthermore, we demonstrate that Doc2α functions in behavioral and neural phenotypes through interaction with Secretagogin (SCGN). Finally, we demonstrate that SCGN functions in social/repetitive behaviors, glutamate release, and neuronal morphology of the mice through its Doc2α-interacting activity. Therefore, Doc2α likely contributes to neurodevelopmental disorders through its interaction with SCGN.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Yun Xing
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Yuchen Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lv-Yu Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Libo Geng
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shi
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yiming Yang
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China.
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Ruiz-Otero N, Kuruvilla R. Role of Delta/Notch-like EGF-related receptor in blood glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1161085. [PMID: 37223028 PMCID: PMC10200888 DOI: 10.3389/fendo.2023.1161085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Cell-cell interactions are necessary for optimal endocrine functions in the pancreas. β-cells, characterized by the expression and secretion of the hormone insulin, are a major constituent of functional micro-organs in the pancreas known as islets of Langerhans. Cell-cell contacts between β-cells are required to regulate insulin production and glucose-stimulated insulin secretion, which are key determinants of blood glucose homeostasis. Contact-dependent interactions between β-cells are mediated by gap junctions and cell adhesion molecules such as E-cadherin and N-CAM. Recent genome-wide studies have implicated Delta/Notch-like EGF-related receptor (Dner) as a potential susceptibility locus for Type 2 Diabetes in humans. DNER is a transmembrane protein and a proposed Notch ligand. DNER has been implicated in neuron-glia development and cell-cell interactions. Studies herein demonstrate that DNER is expressed in β-cells with an onset during early postnatal life and sustained throughout adulthood in mice. DNER loss in adult β-cells in mice (β-Dner cKO mice) disrupted islet architecture and decreased the expression of N-CAM and E-cadherin. β-Dner cKO mice also exhibited impaired glucose tolerance, defects in glucose- and KCl-induced insulin secretion, and decreased insulin sensitivity. Together, these studies suggest that DNER plays a crucial role in mediating islet cell-cell interactions and glucose homeostasis.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
ox-LDL induces autophagy-mediated apoptosis by suppressing secretagogin-regulated autophagic flux in pancreatic β-cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1822-1831. [PMID: 36789686 PMCID: PMC10157621 DOI: 10.3724/abbs.2022186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipotoxicity has been shown to induce the loss of functional β-cell mass and lead to type 2 diabetes, but the mechanism remains unknown. In this study, we aim to explore the role of secretagogin (SCGN) in lipotoxicity-induced β-cell injury. Our results indicate that ox-LDL treatment leads to autophagic cell death, as evidenced by decreased cell viability, aggravated cell apoptosis, and the accumulation of the p62 protein in MIN6 cells. LysoTracker Red staining, TEM and mRFP-GFP-LC3 assays demonstrate that autophagic flux is blocked in ox-LDL-treated MIN6 cells. Intriguingly, SCGN is significantly decreased in MIN6 cells under lipotoxic conditions. Additionally, siRNA-guided SCGN knockdown blocks autophagic flux triggered by rapamycin, while SCGN restoration alleviates autophagic flux retardation and mitigates cell apoptosis. The physical interaction between SCGN and SNAP29 is validated by bioinformatics analysis, coimmunoprecipitation assay and SCGN knockdown test. Downregulation of SCGN expression reduces the interaction of these two proteins. Taken together, our results indicate that ox-LDL treatment induces apoptotic β-cell death by blocking autophagic flux dependent on SCGN downregulation. SCGN administration prevents lipotoxic β-cell injury and may be a potential therapeutic strategy to promote β-cell expansion in type 2 diabetes.
Collapse
|
13
|
Bosi E, Marchetti P, Rutter GA, Eizirik DL. Human alpha cell transcriptomic signatures of types 1 and 2 diabetes highlight disease-specific dysfunction pathways. iScience 2022; 25:105056. [PMID: 36134336 PMCID: PMC9483809 DOI: 10.1016/j.isci.2022.105056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023] Open
Abstract
Although glucagon secretion is perturbed in both T1D and T2D, the pathophysiological changes in individual pancreatic alpha cells are still obscure. Using recently curated single-cell RNASeq data from T1D or T2D donors and their controls, we identified alpha cell transcriptomic alterations consistent with both common and discrete pathways. Although alterations in alpha cell identity gene (ARX, MAFB) expression were conserved, cytokine-regulated genes and genes involved in glucagon biosynthesis and processing were up-regulated in T1D. Conversely, mitochondrial genes associated with ROS (COX7B, NQO2) were dysregulated in T2D. Additionally, T1D alpha cells displayed altered expression of autoimmune-induced ER stress genes (ERLEC1, HSP90), whilst those from T2D subjects showed modified glycolytic and citrate cycle gene (LDHA?, PDHB, PDK4) expression. Thus, despite conserved alterations related to loss of function, alpha cells display disease-specific gene signatures which may be secondary to the main pathogenic events in each disease, namely immune- or metabolism-mediated-stress, in T1D and T2D, respectively.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
- Corresponding author
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, Italy
| | - Guy Allen Rutter
- CR-CHUM and Université de Montréal, Montréal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Decio Laks Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Biancolin AD, Srikrishnaraj A, Jeong H, Martchenko A, Brubaker PL. The Cytoskeletal Transport Protein, Secretagogin, Is Essential for Diurnal Glucagon-like Peptide-1 Secretion in Mice. Endocrinology 2022; 163:6678475. [PMID: 36036556 DOI: 10.1210/endocr/bqac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L-cell incretin, glucagon-like peptide-1 (GLP-1), exhibits a circadian pattern of secretion, thereby entraining diurnal insulin release. Secretagogin (Scgn), an actin-binding regulatory protein, is essential for the temporal peak of GLP-1 secretion in vitro. To interrogate the role of Scgn in diurnal GLP-1 secretion in vivo, peak and trough GLP-1 release were evaluated in knockout mice (Scgn-/-, Gcg-CreERT2/+; Scgnfl/fl and Vil-CreERT2/+; Scgnfl/fl), and RNA sequencing (RNA-Seq) was conducted in Scgn knockdown L-cells. All 3 knockout models demonstrated loss of the diurnal rhythm of GLP-1 secretion in response to oral glucose. Gcg-CreERT2/+; Scgnfl/fl mice also lost the normal pattern in glucagon secretion, while Scgn-/- and Vil-CreERT2/+; Scgnfl/fl animals demonstrated impaired diurnal secretion of the related incretin, glucose-dependent insulinotrophic polypeptide. RNA-Seq of mGLUTag L-cells showed decreased pathways regulating vesicle transport, transport and binding, and protein-protein interaction at synapse, as well as pathways related to proteasome-mediated degradation including chaperone-mediated protein complex assembly following Scgn knockdown. Scgn is therefore essential for diurnal L-cell GLP-1 secretion in vivo, likely mediated through effects on secretory granule dynamics.
Collapse
Affiliation(s)
| | - Arjuna Srikrishnaraj
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hyerin Jeong
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alexandre Martchenko
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patricia Lee Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Biancolin AD, Jeong H, Mak KWY, Yuan Z, Brubaker PL. Disrupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of Type 2 Diabetes. Endocrinology 2022; 163:6649564. [PMID: 35876276 PMCID: PMC9368029 DOI: 10.1210/endocr/bqac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/19/2022]
Abstract
Metabolism and circadian rhythms are intimately linked, with circadian glucagon-like peptide-1 (GLP-1) secretion by the intestinal L-cell entraining rhythmic insulin release. GLP-1 secretion has been explored in the context of obesogenic diets, but never in a rodent model of type 2 diabetes (T2D). There is also considerable disagreement regarding GLP-1 levels in human T2D. Furthermore, recent evidence has demonstrated decreased expression of the β-cell exocytotic protein secretagogin (SCGN) in T2D. To extend these findings to the L-cell, we administered oral glucose tolerance tests at 6 time points in 4-hour intervals to the high-fat diet/streptozotocin (HFD-STZ) mouse model of T2D. This revealed a 10-fold increase in peak GLP-1 secretion with a phase shift of the peak from the normal feeding period into the fasting-phase. This was accompanied by impairments in the rhythms of glucose, glucagon, mucosal clock genes (Arntl and Cry2), and Scgn. Immunostaining revealed that L-cell GLP-1 intensity was increased in the HFD-STZ model, as was the proportion of L-cells that expressed SCGN; however, this was not found in L-cells from humans with T2D, which exhibited decreased GLP-1 staining but maintained their SCGN expression. Gcg expression in isolated L-cells was increased along with pathways relating to GLP-1 secretion and electron transport chain activity in the HFD-STZ condition. Further investigation into the mechanisms responsible for this increase in GLP-1 secretion may give insights into therapies directed toward upregulating endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Andrew D Biancolin
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Hyerin Jeong
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Kimberly W Y Mak
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Zixuan Yuan
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Patricia L Brubaker
- Correspondence: Patricia L. Brubaker, Ph.D., Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Blandino-Rosano M, Scheys JO, Werneck-de-Castro JP, Louzada RA, Almaça J, Leibowitz G, Rüegg MA, Hall MN, Bernal-Mizrachi E. Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. Am J Physiol Endocrinol Metab 2022; 323:E133-E144. [PMID: 35723227 PMCID: PMC9291412 DOI: 10.1152/ajpendo.00076.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023]
Abstract
Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in β-cells has been extensively studied, less is known about mTORC2's function in β-cells. Here, we show that mice with constitutive and inducible β-cell-specific deletion of RICTOR (βRicKO and iβRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in βRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in βRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua O Scheys
- Medical School, Division of Metabolism, Endocrinology, and Diabetes and Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruy A Louzada
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Miami VA Healthcare System, Miami, Florida
| |
Collapse
|
17
|
Shahal T, Segev E, Konstantinovsky T, Marcus Y, Shefer G, Pasmanik-Chor M, Buch A, Ebenstein Y, Zimmet P, Stern N. Deconvolution of the epigenetic age discloses distinct inter-personal variability in epigenetic aging patterns. Epigenetics Chromatin 2022; 15:9. [PMID: 35255955 PMCID: PMC8900303 DOI: 10.1186/s13072-022-00441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epigenetic age can now be extrapolated from one of several epigenetic clocks, which are based on age-related changes in DNA methylation levels at specific multiple CpG sites. Accelerated aging, calculated from the discrepancy between the chronological age and the epigenetic age, has shown to predict morbidity and mortality rate. We assumed that deconvolution of epigenetic age to its components could shed light on the diversity of epigenetic, and by inference, on inter-individual variability in the causes of biological aging. RESULTS Using the Horvath original epigenetic clock, we identified several CpG sites linked to distinct genes that quantitatively explain much of the inter-personal variability in epigenetic aging, with CpG sites related to secretagogin and malin being the most variable. We show that equal epigenetic age in different subjects can result from variable contribution size of the same CpG sites to the total epigenetic age. In a healthy cohort, the most variable CpG sites are responsible for accelerated and decelerated epigenetic aging, relative to chronological age. CONCLUSIONS Of the 353 CpG sites that form the basis for the Horvath epigenetic age, we have found the CpG sites that are responsible for accelerated and decelerated epigenetic aging in healthy subjects. However, the relative contribution of each site to aging varies between individuals, leading to variable personal aging patterns. Our findings pave the way to form personalized aging cards allowing the identification of specific genes related to CpG sites, as aging markers, and perhaps treatment of these targets in order to hinder undesirable age drifting.
Collapse
Affiliation(s)
- Tamar Shahal
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Thomas Konstantinovsky
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Yonit Marcus
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gabi Shefer
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Buch
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University School of Medicine, Melbourne, Australia
| | - Naftali Stern
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Khandelwal R, Sharma AK, Biswa BB, Sharma Y. Extracellular Secretagogin is internalized into the cells through endocytosis. FEBS J 2021; 289:3183-3204. [PMID: 34967502 DOI: 10.1111/febs.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Secretagogin (SCGN) is a calcium-sensor protein with a regulatory role in glucose metabolism and the secretion of several peptide hormones. Many, but not all, functions of SCGN can be explained by its intracellular manifestation. Despite early data on SCGN secretion, the secretory mechanism, biological fate, physiological implications, and trans-cellular signaling of extracellular SCGN remain unknown. We here report that extracellular SCGN is readily internalized into the C2C12 cells in an energy-dependent manner. Using endocytosis inhibitors, we demonstrate that SCGN internalizes via clathrin-mediated endocytosis, following which, SCGN localizes largely in the cytosol. Exogenous SCGN treatment induces a global proteomic reprogramming in C2C12 cells. Gene ontology search suggests that SCGN-induced proteomic reprogramming favors protein synthesis and cellular growth. We thus validated the cell proliferative action of SCGN using C2C12, HepG2, and NIH-3T3 cell lines. Based on the data, we propose that circulatory SCGN is internalized into the target cells and modulates the expression of cell growth-related proteins. The work suggests that extracellular SCGN is a functional protein, which communicates with specific cell types and directly modulates cell proliferation.
Collapse
Affiliation(s)
- Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India
| | - Bhim B Biswa
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, 760010, India
| |
Collapse
|
19
|
Ma J, Xing B, Cao Y, He X, Bennett KE, Tong C, An C, Hojnacki T, Feng Z, Deng S, Ling S, Xie G, Wu Y, Ren Y, Yu M, Katona BW, Li H, Naji A, Hua X. Menin-regulated Pbk controls high fat diet-induced compensatory beta cell proliferation. EMBO Mol Med 2021; 13:e13524. [PMID: 33821572 PMCID: PMC8103087 DOI: 10.15252/emmm.202013524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells undergo compensatory proliferation in the early phase of type 2 diabetes. While pathways such as FoxM1 are involved in regulating compensatory beta cell proliferation, given the lack of therapeutics effectively targeting beta cell proliferation, other targetable pathways need to be identified. Herein, we show that Pbk, a serine/threonine protein kinase, is essential for high fat diet (HFD)‐induced beta cell proliferation in vivo using a Pbk kinase deficiency knock‐in mouse model. Mechanistically, JunD recruits menin and HDAC3 complex to the Pbk promoter to reduce histone H3 acetylation, leading to epigenetic repression of Pbk expression. Moreover, menin inhibitor (MI) disrupts the menin–JunD interaction and augments Pbk transcription. Importantly, MI administration increases beta cell proliferation, ameliorating hyperglycemia, and impaired glucose tolerance (IGT) in HFD‐induced diabetic mice. Notably, Pbk is required for the MI‐induced beta cell proliferation and improvement of IGT. Together, these results demonstrate the repressive role of the menin/JunD/Pbk axis in regulating HFD‐induced compensatory beta cell proliferation and pharmacologically regulating this axis may serve as a novel strategy for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bowen Xing
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kate E Bennett
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiying An
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunbin Deng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gengchen Xie
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ming Yu
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bryson W Katona
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wu L, Lv Y, Lv Y, Xiang S, Zhao Z, Tang Z, Ou L, Yan B, Xiao X, Wen G, Cao R, Yang J. A novel secretagogin/ATF4 pathway is involved in oxidized LDL-induced endoplasmic reticulum stress and islet β-cell apoptosis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:54-62. [PMID: 33289795 DOI: 10.1093/abbs/gmaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Excessive accumulation of cholesterol in β cells initiates endoplasmic reticulum (ER) stress and associated apoptosis. We have reported that excessive uptake of cholesterol by MIN6 cells decreases the expression of secretagogin (SCGN) and then attenuates insulin secretion. Here, we aimed to determine whether cholesterol-induced SCGN decrease is involved in the modulation of ER stress and apoptosis in pancreatic β cells. In this study, MIN6 cells were treated with oxidized low-density lipoprotein (ox-LDL) for 24 h, and then intracellular lipid droplets and cell apoptosis were quantified, and SCGN and ER stress markers were identified by western blot analysis. Furthermore, small interfer RNA (siRNA)-mediated SCGN knockdown and recombinant plasmid-mediated SCGN restoration experiments were performed to confirm the role of SCGN in ER stress and associated cell apoptosis. Finally, the interaction of SCGN with ATF4 was computationally predicted and then validated by a co-immunoprecipitation assay. We found that ox-LDL treatment increased the levels of ER stress markers, such as phosphorylated protein kinase-like endoplasmic reticulum kinase, phosphorylated eukaryotic initiation factor 2 alpha, activating transcription factor 4 (ATF4), and transcription factor CCAAT-enhancer-binding protein homologous protein, and promoted MIN6 cell apoptosis; in addition, the expression of SCGN was downregulated. siRNA-mediated SCGN knockdown exacerbated β-cell ER stress by increasing ATF4 expression. Pretreatment of MIN6 cells with the recombinant SCGN partly antagonized ox-LDL-induced ER stress and apoptosis. Furthermore, a co-immunoprecipitation assay revealed an interaction between SCGN and ATF4 in MIN6 cells. Taken together, these results demonstrated that pancreatic β-cell apoptosis induced by ox-LDL treatment can be attributed, in part, to an SCGN/ATF4-dependent ER stress response.
Collapse
Affiliation(s)
- Li Wu
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Ying Lv
- Department of Metabolism & Endocrinology, The Second Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Sunmin Xiang
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Zhibo Zhao
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Ziqing Tang
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Linling Ou
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Bin Yan
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Xinhua Xiao
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Gebo Wen
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Renxian Cao
- Department of Clinical Research, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Lv Y, Xiang S, Cao R, Wu L, Yang J. SCGN-regulated Stage-wise SNARE Assembly: Novel Insight into Synaptic Exocytosis. Neurosci Bull 2020; 36:1576-1578. [PMID: 33025412 DOI: 10.1007/s12264-020-00590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Ying Lv
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of the University of South China, Hengyang, 421001, China
| | - Sunmin Xiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang, 421001, China
| | - Renxian Cao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang, 421001, China
| | - Li Wu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang, 421001, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of the University of South China, Hengyang, 421001, China.
| |
Collapse
|
22
|
Alzu'bi A, Clowry GJ. Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon. Front Neuroanat 2020; 14:61. [PMID: 32982702 PMCID: PMC7492523 DOI: 10.3389/fnana.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023] Open
Abstract
Secretagogin (SCGN) which acts as a calcium signaling sensor, has previously been shown to be expressed by a substantial population of cortical GABAergic neurons at mid-gestation in humans but not in mice. The present study traced SCGN expression in cortical GABAergic neurons in human fetal forebrain from earlier stages than previously studied. Multiple potential origins of SCGN-expressing neurons were identified in the caudal ganglionic eminence (CGE) lateral ganglionic eminence (LGE) septum and preoptic area; these cells largely co-expressed SP8 but not the medial ganglionic eminence marker LHX6. They followed various migration routes to reach their target regions in the neocortex, insular and olfactory cortex (OC) and olfactory bulbs. A robust increase in the number of SCGN-expressing GABAergic cortical neurons was observed in the midgestational period; 58% of DLX2+ neurons expressed SCGN in the cortical wall at 19 post-conceptional weeks (PCW), a higher proportion than expressed calretinin, a marker for GABAergic neurons of LGE/CGE origin. Furthermore, although most SCGN+ neurons co-expressed calretinin in the cortical plate (CP) and deeper layers, in the marginal zone (MZ) SCGN+ and calretinin+ cells formed separate populations. In the adult mouse, it has previously been shown that in the rostral migratory stream (RMS), SCGN, annexin V (ANXA5), and matrix metalloprotease 2 (MMP2) are co-expressed forming a functioning complex that exocytoses MMP2 in response to calcium. In the present study, ANXA5 showed widespread expression throughout the cortical wall, although MMP2 expression was very largely limited to the CP. We found co-expression of these proteins in some SCGN+ neurons in the subventricular zones (SVZ) suggesting a limited role for these cells in remodeling the extracellular matrix, perhaps during cell migration.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
23
|
Liu Y, Song Y, Zhang S, Diao M, Huang S, Li S, Tan X. PSGL-1 inhibits HIV-1 infection by restricting actin dynamics and sequestering HIV envelope proteins. Cell Discov 2020; 6:53. [PMID: 32802403 PMCID: PMC7400672 DOI: 10.1038/s41421-020-0184-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
PSGL-1 has recently been identified as an HIV restriction factor that inhibits HIV DNA synthesis and more potently, virion infectivity. But the underlying mechanisms of these inhibitions are unknown. Here we show that PSGL-1 directly binds to cellular actin filaments (F-actin) to restrict actin dynamics, which leads to inhibition of HIV DNA synthesis. PSGL-1 is incorporated into nascent virions and restricts actin dynamics in the virions, which partially accounts for the inhibition of virion infectivity. More potently, PSGL-1 inhibits incorporation of Env proteins into nascent virions, causing a loss of envelope spikes on the virions as shown by Cryo-electron microscopy and super-resolution imaging. This loss is associated with a profound defect in viral entry. Mechanistically, PSGL-1 binds gp41 and sequesters gp41 at the plasma membrane, explaining the inhibition of Env incorporation in nascent virions. PSGL-1’s dual anti-HIV mechanisms represent novel strategies of human cells to defend against HIV infection.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yutong Song
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol 2020; 11:1582. [PMID: 32793223 PMCID: PMC7387426 DOI: 10.3389/fimmu.2020.01582] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance and obesity play key roles in the induction and progression of type 2 diabetes mellitus (T2DM). The field of immunometabolism implies a bidirectional link between the immune system and metabolism, in which inflammation plays an essential role in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic factors, in turn, regulate immune cell functions. Obesity as the main inducer of a systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related immune cell infiltration, inflammation, and increased oxidative stress promote metabolic impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure, and premature aging occur. Hyperglycemia and the subsequent inflammation are the main causes of micro- and macroangiopathies in the circulatory system. They also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty liver disease. The impaired immune system together with metabolic imbalance also increases the susceptibility of patients to several pathogenic agents such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper immunization protocol among such patients is granted. The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Secretagogin is Related to Insulin Secretion but Unrelated to Gestational Diabetes Mellitus Status in Pregnancy. J Clin Med 2020; 9:jcm9072277. [PMID: 32708966 PMCID: PMC7408624 DOI: 10.3390/jcm9072277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Secretagogin (SCGN) is a calcium binding protein related to insulin release in the pancreas. Although SCGN is not co-released with insulin, plasma concentrations have been found to be increased in type 2 diabetes mellitus patients. Until now, no study on SCGN levels in pregnancy or patients with gestational diabetes mellitus (GDM) has been published. In 93 women of a high-risk population for GDM at the Medical University of Vienna, secretagogin levels of 45 GDM patients were compared to 48 women with a normal glucose tolerance (NGT). Glucose tolerance, insulin resistance and secretion were assessed with oral glucose tolerance tests (OGTT) between the 10th and 28th week of gestation (GW) and postpartum. In all women, however, predominantly in women with NGT, there was a significant positive correlation between SCGN levels and Stumvoll first (rp = 0.220, p = 0.032) and second phase index (rp = 0.224, p = 0.028). SCGN levels were not significantly different in women with NGT and GDM. However, SCGN was higher postpartum than during pregnancy (postpartum: 88.07 ± 35.63 pg/mL; pregnancy: 75.24 ± 37.90 pg/mL, p = 0.004). SCGN was directly correlated with week of gestation (rp = 0.308; p = 0.021) and triglycerides (rp = 0.276; p = 0.038) in women with GDM. Therefore, SCGN is related to insulin secretion and hyperinsulinemia during pregnancy; however, it does not display differences between women with NGT and GDM.
Collapse
|
26
|
Structural and mechanistic insights into secretagogin-mediated exocytosis. Proc Natl Acad Sci U S A 2020; 117:6559-6570. [PMID: 32156735 DOI: 10.1073/pnas.1919698117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secretagogin (SCGN) is a hexa-EF-hand protein that is highly expressed in the pancreas, brain, and gastrointestinal tract. SCGN is known to modulate regulated exocytosis in multiple cell lines and tissues; however, its exact functions and underlying mechanisms remain unclear. Here, we report that SCGN interacts with the plasma membrane SNARE SNAP-25, but not the assembled SNARE complex, in a Ca2+-dependent manner. The crystal structure of SCGN in complex with a SNAP-25 fragment reveals that SNAP-25 adopts a helical structure and binds to EF-hands 5 and 6 of SCGN. SCGN strongly inhibits SNARE-mediated vesicle fusion in vitro by binding to SNAP-25. SCGN promotes the plasma membrane localization of SNAP-25, but not Syntaxin-1a, in SCGN-expressing cells. Finally, SCGN controls neuronal growth and brain development in zebrafish, likely via interacting with SNAP-25 or its close homolog, SNAP-23. Our results thus provide insights into the regulation of SNAREs and suggest that aberrant synapse functions underlie multiple neurological disorders caused by SCGN deficiency.
Collapse
|
27
|
Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, Wang X, Ma M, Du W, Liu Y, Dai L, Huang W, Tong N, Wei Y, Fu X. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol 2020; 18:e3000603. [PMID: 32092075 PMCID: PMC7058362 DOI: 10.1371/journal.pbio.3000603] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/05/2020] [Accepted: 01/31/2020] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance along with pancreatic β cell failure. β cell factors are traditionally thought to control glucose homeostasis by modulating insulin levels, not insulin sensitivity. Exosomes are emerging as new regulators of intercellular communication. However, the role of β-cell-derived exosomes in metabolic homeostasis is poorly understood. Here, we report that microRNA-26a (miR-26a) in β cells not only modulates insulin secretion and β cell replication in an autocrine manner but also regulates peripheral insulin sensitivity in a paracrine manner through circulating exosomes. MiR-26a is reduced in serum exosomes of overweight humans and is inversely correlated with clinical features of T2D. Moreover, miR-26a is down-regulated in serum exosomes and islets of obese mice. Using miR-26a knockin and knockout mouse models, we showed that miR-26a in β cells alleviates obesity-induced insulin resistance and hyperinsulinemia. Mechanistically, miR-26a in β cells enhances peripheral insulin sensitivity via exosomes. Meanwhile, miR-26a prevents hyperinsulinemia through targeting several critical regulators of insulin secretion and β cell proliferation. These findings provide a new paradigm for the far-reaching systemic functions of β cells and offer opportunities for the treatment of T2D.
Collapse
Affiliation(s)
- Haixia Xu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiao Du
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, Yaan People's Hospital, Yaan, Sichuan, China
| | - Jia Xu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiuxuan Wang
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Meilin Ma
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yu Liu
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lunzhi Dai
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Nanwei Tong
- Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
28
|
Biancolin AD, Martchenko A, Mitova E, Gurges P, Michalchyshyn E, Chalmers JA, Doria A, Mychaleckyj JC, Adriaenssens AE, Reimann F, Gribble FM, Gil-Lozano M, Cox BJ, Brubaker PL. The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1. Mol Metab 2020; 31:124-137. [PMID: 31918914 PMCID: PMC6920326 DOI: 10.1016/j.molmet.2019.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted from intestinal L-cells upon nutrient intake. While recent evidence has shown that GLP-1 is released in a circadian manner in rats, whether this occurs in mice and if this pattern is regulated by the circadian clock remain to be elucidated. Furthermore, although circadian GLP-1 secretion parallels expression of the core clock gene Bmal1, the link between the two remains largely unknown. Secretagogin (Scgn) is an exocytotic SNARE regulatory protein that demonstrates circadian expression and is essential for insulin secretion from β-cells. The objective of the current study was to establish the necessity of the core clock gene Bmal1 and the SNARE protein SCGN as essential regulators of circadian GLP-1 secretion. METHODS Oral glucose tolerance tests were conducted at different times of the day on 4-hour fasted C57BL/6J, Bmal1 wild-type, and Bmal1 knockout mice. Mass spectrometry, RNA-seq, qRT-PCR and/or microarray analyses, and immunostaining were conducted on murine (m) and human (h) primary L-cells and mGLUTag and hNCI-H716 L-cell lines. At peak and trough GLP-1 secretory time points, the mGLUTag cells were co-stained for SCGN and a membrane-marker, ChIP was used to analyze BMAL1 binding sites in the Scgn promoter, protein interaction with SCGN was tested by co-immunoprecipitation, and siRNA was used to knockdown Scgn for GLP-1 secretion assay. RESULTS C57BL/6J mice displayed a circadian rhythm in GLP-1 secretion that peaked at the onset of their feeding period. Rhythmic GLP-1 release was impaired in Bmal1 knockout (KO) mice as compared to wild-type controls at the peak (p < 0.05) but not at the trough secretory time point. Microarray identified SNARE and transport vesicle pathways as highly upregulated in mGLUTag L-cells at the peak time point of GLP-1 secretion (p < 0.001). Mass spectrometry revealed that SCGN was also increased at this time (p < 0.001), while RNA-seq, qRT-PCR, and immunostaining demonstrated Scgn expression in all human and murine primary L-cells and cell lines. The mGLUTag and hNCI-H716 L-cells exhibited circadian rhythms in Scgn expression (p < 0.001). The ChIP analysis demonstrated increased binding of BMAL1 only at the peak of Scgn expression (p < 0.01). Immunocytochemistry showed the translocation of SCGN to the cell membrane after stimulation at the peak time point only (p < 0.05), while CoIP showed that SCGN was pulled down with SNAP25 and β-actin, but only the latter interaction was time-dependent (p < 0.05). Finally, Scgn siRNA-treated cells demonstrated significantly blunted GLP-1 secretion (p < 0.01) in response to stimulation at the peak time point only. CONCLUSIONS These data demonstrate, for the first time, that mice display a circadian pattern in GLP-1 secretion, which is impaired in Bmal1 knockout mice, and that Bmal1 regulation of Scgn expression plays an essential role in the circadian release of the incretin hormone GLP-1.
Collapse
Affiliation(s)
| | | | - Emilia Mitova
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patrick Gurges
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Alessandro Doria
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alice E Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Manuel Gil-Lozano
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brian J Cox
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules 2019; 24:molecules24234394. [PMID: 31805752 PMCID: PMC6930477 DOI: 10.3390/molecules24234394] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Propolis is a natural product resulting from the mixing of bee secretions with botanical exudates. Since propolis is rich in flavonoids and cinnamic acid derivatives, the application of propolis extracts has been tried in therapies against cancer, inflammation, and metabolic diseases. As metabolic diseases develop relatively slowly in patients, the therapeutic effects of propolis in humans should be evaluated over long periods of time. Moreover, several factors such as medical history, genetic inheritance, and living environment should be taken into consideration in human studies. Animal models, especially mice and rats, have some advantages, as genetic and microbiological variables can be controlled. On the other hand, cellular models allow the investigation of detailed molecular events evoked by propolis and derivative compounds. Taking advantage of animal and cellular models, accumulating evidence suggests that propolis extracts have therapeutic effects on obesity by controlling adipogenesis, adipokine secretion, food intake, and energy expenditure. Studies in animal and cellular models have also indicated that propolis modulates oxidative stress, the accumulation of advanced glycation end products (AGEs), and adipose tissue inflammation, all of which contribute to insulin resistance or defects in insulin secretion. Consequently, propolis treatment may mitigate diabetic complications such as nephropathy, retinopathy, foot ulcers, and non-alcoholic fatty liver disease. This review describes the beneficial effects of propolis on metabolic disorders.
Collapse
|
30
|
Sharma AK, Khandelwal R, Kumar MJM, Ram NS, Chidananda AH, Raj TA, Sharma Y. Secretagogin Regulates Insulin Signaling by Direct Insulin Binding. iScience 2019; 21:736-753. [PMID: 31734536 PMCID: PMC6864339 DOI: 10.1016/j.isci.2019.10.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Secretagogin (SCGN) is a β-cell enriched, secretory/cytosolic Ca2+-binding protein with unknown secretory regulation and functions. Recent findings suggest that SCGN deficiency correlates with compromised insulin response and diabetes. However, the (patho)physiological SCGN-insulin nexus remains unexplored. We here report that SCGN is an insulin-interacting protein. The protein-protein interaction between SCGN and insulin regulates insulin stability and increases insulin potency in vitro and in vivo. Mutagenesis studies suggest an indispensable role for N-terminal domain of SCGN in modulating insulin stability and function. SCGN supplementation in diabetogenic-diet-fed mice preserves physiological insulin responsiveness while relieving obesity and cardiovascular risk. SCGN-insulin interaction mediated alleviation of hyperinsulinemia by increased insulin internalization, which translates to reduced body fat and hepatic lipid accumulation, emerges as a plausible mechanism for the preservation of insulin responsiveness. These findings establish SCGN as a functional insulin-binding protein (InsBP) with therapeutic potential against diabetes. SCGN is an insulin-interacting calcium sensor protein SCGN binding protects insulin from aggregation SCGN potentiates insulin action in vivo SCGN administration into HFD-fed animals impedes insulin resistance
Collapse
Affiliation(s)
- Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - M Jerald Mahesh Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - N Sai Ram
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Amrutha H Chidananda
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - T Avinash Raj
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| |
Collapse
|
31
|
Erzin G, Topçuoğlu C, Bayram Ş, Karadağ H, Ozkaya G, Turhan T, Göka E. Secretagogin may not be a new neuroendocrine biomarker in schizophrenia while levels may reflect clinical severity. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1589175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Gamze Erzin
- Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Psychiatry Department, Ankara, Turkey
- Present/permanent work address: Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| | - Canan Topçuoğlu
- Biochemistry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Şenol Bayram
- Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| | - Hasan Karadağ
- Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Psychiatry Department, Ankara, Turkey
- Present/permanent work address: Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| | - Güven Ozkaya
- Faculty of Medicine, Biostatistic Department, Uludag University, Bursa, Turkey
| | - Turan Turhan
- Biochemistry Department, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Erol Göka
- Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| |
Collapse
|
32
|
Zhu Y, Tonne JM, Liu Q, Schreiber CA, Zhou Z, Rakshit K, Matveyenko AV, Terzic A, Wigle D, Kudva YC, Ikeda Y. Targeted Derivation of Organotypic Glucose- and GLP-1-Responsive β Cells Prior to Transplantation into Diabetic Recipients. Stem Cell Reports 2019; 13:307-321. [PMID: 31378674 PMCID: PMC6700523 DOI: 10.1016/j.stemcr.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Generation of functional β cells from pluripotent sources would accelerate diagnostic and therapeutic applications for diabetes research and therapy. However, it has been challenging to generate competent β cells with dynamic insulin-secretory capacity to glucose and incretin stimulations. We introduced transcription factors, critical for β-cell development and function, in differentiating human induced pluripotent stem cells (PSCs) and assessed the impact on the functionality of derived β-cell (psBC) progeny. A perifusion system revealed stepwise transduction of the PDX1, NEUROG3, and MAFA triad (PNM) enabled in vitro generation of psBCs with glucose and GLP-1 responsiveness within 3 weeks. PNM transduction upregulated genes associated with glucose sensing, insulin secretion, and β-cell maturation. In recipient diabetic mice, PNM-transduced psBCs showed glucose-responsive insulin secretion as early as 1 week post transplantation. Thus, enhanced pre-emptive β-cell specification of PSCs by PNM drives generation of glucose- and incretin-responsive psBCs in vitro, offering a competent tissue-primed biotherapy.
Collapse
Affiliation(s)
- Yaxi Zhu
- Department of Molecular Medicine, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Qian Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Claire A Schreiber
- Department of Molecular Medicine, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dennis Wigle
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Division of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yogish C Kudva
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Secretagogin Purification and Quality Control Strategies for Biophysical and Cell Biological Studies. Methods Mol Biol 2019; 1929:551-566. [PMID: 30710296 DOI: 10.1007/978-1-4939-9030-6_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Secretagogin (SCGN) has recently gained attention due to its modulatory effect on insulin/CRH secretion and function. However, a large pool of speculated SCGN functions remains unexplored. A major deficiency is the lack of knowledge about the biological functions of extracellular SCGN. We here describe convenient methods for the scalable production of His-tagged and untagged mouse SCGN. The protocol is optimized to remove endotoxins, and thus the protein is suited for biological applications such as cell culture treatment or animal injections. We also outline expedient methods to check the purity of SCGN preparation for biological applications.
Collapse
|
34
|
Yang J, Lv Y, Zhao Z, Li W, Xiang S, Zhou L, Gao A, Yan B, Ou L, Ling H, Xiao X, Liu J. A microRNA‑24‑to‑secretagogin regulatory pathway mediates cholesterol‑induced inhibition of insulin secretion. Int J Mol Med 2019; 44:608-616. [PMID: 31173188 PMCID: PMC6605698 DOI: 10.3892/ijmm.2019.4224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Hypercholesterolemia is a key factor leading to β‑cell dysfunction, but its underlying mechanisms remain unclear. Secretagogin (Scgn), a Ca2+ sensor protein that is expressed at high levels in the islets, has been shown to play a key role in regulating insulin secretion through effects on the soluble N‑ethylmaleimide‑sensitive factor attachment receptor protein complexes. However, further studies are required to determine whether Scgn plays a role in hypercholesterolemia‑associated β‑cell dysfunction. The present study investigated the involvement of a microRNA‑24 (miR‑24)‑to‑Scgn regulatory pathway in cholesterol‑induced β‑cell dysfunction. In the present study, MIN6 cells were treated with increasing concentrations of cholesterol and then, the cellular functions and changes in the miR‑24‑to‑Scgn signal pathway were observed. Excessive uptake of cholesterol in MIN6 cells increased the expression of miR‑24, resulting in a reduction in Sp1 expression by directly targeting its 3' untranslated region. As a transcriptional activator of Scgn, downregulation of Sp1 decreased Scgn levels and subsequently decreased the phosphorylation of focal adhesion kinase and paxillin, which is regulated by Scgn. Therefore, the focal adhesions in insulin granules were impaired and insulin exocytosis was reduced. The present study concluded that a miR‑24‑to‑Scgn pathway participates in the mechanism regulating cholesterol accumulation‑induced β‑cell dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuncheng Lv
- Laboratory of Clinical Anatomy and Reproductive Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhibo Zhao
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wu Li
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Sunmin Xiang
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingzhi Zhou
- Department of Paediatrics, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Anbo Gao
- Laboratory of Clinical Anatomy and Reproductive Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bin Yan
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingling Ou
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Ling
- Emergency Surgery, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinhua Xiao
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jianghua Liu
- Department of Endocrinology, The First Affiliated Hospital of The University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
35
|
cAMP-PKA dependent ERK1/2 activation is necessary for vanillic acid potentiated glucose-stimulated insulin secretion in pancreatic β-cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Alzu’bi A, Homman-Ludiye J, Bourne JA, Clowry GJ. Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex 2019; 29:1706-1718. [PMID: 30668846 PMCID: PMC6418397 DOI: 10.1093/cercor/bhy327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.
Collapse
Affiliation(s)
- Ayman Alzu’bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Sharma AK, Khandelwal R, Sharma Y. Veiled Potential of Secretagogin in Diabetes: Correlation or Coincidence? Trends Endocrinol Metab 2019; 30:234-243. [PMID: 30772140 DOI: 10.1016/j.tem.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Secretagogin (SCGN) is a calcium sensor protein enriched in neuroendocrine cells in general and pancreatic β-cells in particular. SCGN regulates insulin secretion through several Ca2+-dependent interactions. Recent studies implicate SCGN in the β-cell physiology and extracellular insulin function, making it an intriguing candidate in diabetes research. Here, we propose a conjoining theme of diversified SCGN function in diabetes pathology. In our opinion, SCGN is an attractive therapeutic candidate ascribed by its role in β-cell maintenance and neuronal functions and in the efficacy of insulin. To scrutinize the therapeutic prospects of SCGN, we abridge putative diabetes-related properties of SCGN and put forth strategies to determine the precise role of SCGN in the pathogenesis/preclusion of diabetes.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India.
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
38
|
Maj M, Wagner L, Tretter V. 20 Years of Secretagogin: Exocytosis and Beyond. Front Mol Neurosci 2019; 12:29. [PMID: 30853888 PMCID: PMC6396707 DOI: 10.3389/fnmol.2019.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/23/2019] [Indexed: 01/04/2023] Open
Abstract
Calcium is one of the most important signaling factors in mammalian cells. Specific temporal and spatial calcium signals underlie fundamental processes such as cell growth, development, circadian rhythms, neurotransmission, hormonal actions and apoptosis. In order to translate calcium signals into cellular processes a vast number of proteins bind this ion with affinities from the nanomolar to millimolar range. Using classical biochemical methods an impressing number of calcium binding proteins (CBPs) have been discovered since the late 1960s, some of which are expressed ubiquitously, others are more restricted to specific cell types. In the nervous system expression patterns of different CBPs have been used to discern different neuronal cell populations, especially before advanced methods like single-cell transcriptomics and activity recording were available to define neuronal identity. However, understanding CBPs and their interacting proteins is still of central interest. The post-genomic era has coined the term “calciomics,” to describe a whole new research field, that engages in the identification and characterization of CBPs and their interactome. Secretagogin is a CBP, that was discovered 20 years ago in the pancreas. Consecutively it was found also in other organs including the nervous system, with characteristic expression patterns mostly forming cell clusters. Its regional expression and subcellular location together with the identification of protein interaction partners implicated, that secretagogin has a central role in hormone secretion. Meanwhile, with the help of modern proteomics a large number of actual and putative interacting proteins has been identified, that allow to anticipate a much more complex role of secretagogin in developing and adult neuronal cells. Here, we review recent findings that appear like puzzle stones of a greater picture.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Ludwig Wagner
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medizinische Universität Wien, Vienna, Austria
| | - Verena Tretter
- Department of Anesthesia and General Intensive Care, Clinical Department of Anesthesia, Medizinische Universität Wien, Vienna, Austria
| |
Collapse
|
39
|
Selvanayagam T, Walker S, Gazzellone MJ, Kellam B, Cytrynbaum C, Stavropoulos DJ, Li P, Birken CS, Hamilton J, Weksberg R, Scherer SW. Genome-wide copy number variation analysis identifies novel candidate loci associated with pediatric obesity. Eur J Hum Genet 2018; 26:1588-1596. [PMID: 29976977 PMCID: PMC6189095 DOI: 10.1038/s41431-018-0189-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022] Open
Abstract
Obesity is a multifactorial condition that is highly heritable. There have been ~60 susceptibility loci identified, but they only account for a fraction of cases. As copy number variations (CNVs) have been implicated in the etiology of a multitude of human disorders including obesity, here, we investigated the contribution of rare (<1% population frequency) CNVs in pediatric cases of obesity. We genotyped 67 such individuals, including 22 with co-morbid developmental delay and prioritized rare CNVs at known obesity-associated loci, as well as, those impacting genes involved in energy homeostasis or related processes. We identified clinically relevant or potentially clinically relevant CNVs in 15% (10/67) of individuals. Of these, 4% (3/67) had 16p11.2 microdeletions encompassing the known obesity risk gene SH2B1. Notably, we identified two unrelated probands harboring different 6p22.2 microduplications encompassing SCGN, a potential novel candidate gene for obesity. Further, we identified other biologically relevant candidate genes for pediatric obesity including ARID5B, GPR39, PTPRN2, and HNF4G. We found previously reported candidate loci for obesity, and new ones, suggesting CNV analysis may assist in the diagnosis of pediatric obesity.
Collapse
Affiliation(s)
- Thanuja Selvanayagam
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Susan Walker
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Matthew J Gazzellone
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Barbara Kellam
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dimitri J Stavropoulos
- Department of Pediatric Laboratory Medicine, Genome Diagnostics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ping Li
- Division of Endocrinology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Catherine S Birken
- Division of Pediatric Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Jill Hamilton
- Division of Endocrinology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Wang LC, Fang FS, Gong YP, Yang G, Li CL. Characteristics of repaglinide and its mechanism of action on insulin secretion in patients with newly diagnosed type-2 diabetes mellitus. Medicine (Baltimore) 2018; 97:e12476. [PMID: 30235745 PMCID: PMC6160250 DOI: 10.1097/md.0000000000012476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study aims to compare the effect of repaglinide and metformin among Chinese patients with newly diagnosed diabetes, and explore the possible mechanisms by which repaglinide alters insulin secretion.Sixty subjects with glycated hemoglobin (HbA1c) < 10.0% were randomly selected to receive repaglinide or metformin monotherapy for 15 weeks. Blood glucose levels, glycemic variability, β-cell function, and first-phase insulin secretion were compared between these 2 groups at baseline and at 15 weeks. Mouse insulinoma (MIN-6) cells were divided into 3 groups: low glucose, high glucose, and repaglinide 50 nm groups. Cells and cell culture mediums were collected at different timepoints. The expression of pericentrin (PCNT), F-actin, and insulin were tested with immunofluorescence and enzyme-linked immunosorbent assay.All glycemic parameters and variability indexes significantly decreased from baseline to 15 weeks, while no significant difference was found between these 2 groups at baseline or at 15 weeks. Furthermore, there was no significant difference found in fasting insulin and postprandial insulin at baseline and at 15 weeks, while homeostasis model assessment β significantly increased. The first-phase glucose and insulin secretion of the intravenous glucose tolerance test improved in both groups, especially in the repaglinide group. Insulin, PCNT, and F-actin expression in MIN-6 cells decreased after 15 minutes of stimulation with repaglinide, while no difference was observed at 2, 6, and 12 hours. The insulin levels of the cell medium in the repaglinide group remained significantly higher at all timepoints.This study manifests that repaglinide has a noninferiority effect on the glycemic parameters of Chinese patients with newly diagnosed diabetes, when compared with metformin. The PCNT-F-actin pathway plays an important role in the repaglinide regulation process of on-demand insulin secretion.
Collapse
Affiliation(s)
- Liang-Chen Wang
- Department of Geriatric Endocrinology, Chinese PLA General Hospital
- National Clinical Research Center for Geriatic Diseases
- Department of Endocrinology, Air Force General Hospital, PLA, Beijing, China
| | - Fu-Sheng Fang
- Department of Geriatric Endocrinology, Chinese PLA General Hospital
- National Clinical Research Center for Geriatic Diseases
| | - Yan-Ping Gong
- Department of Geriatric Endocrinology, Chinese PLA General Hospital
- National Clinical Research Center for Geriatic Diseases
| | - Guang Yang
- Department of Geriatric Endocrinology, Chinese PLA General Hospital
- National Clinical Research Center for Geriatic Diseases
| | - Chun-Lin Li
- Department of Geriatric Endocrinology, Chinese PLA General Hospital
- National Clinical Research Center for Geriatic Diseases
| |
Collapse
|
41
|
Haller C, Chaskar P, Piccand J, Cominetti O, Macron C, Dayon L, Kraus MRC. Insights into Islet Differentiation and Maturation through Proteomic Characterization of a Human iPSC-Derived Pancreatic Endocrine Model. Proteomics Clin Appl 2018; 12:e1600173. [PMID: 29578310 DOI: 10.1002/prca.201600173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/09/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Great progresses have been made for generating in vitro pluripotent stem cell pancreatic β-like cells. However, the maturation stage of the cells still requires in vivo maturation to recreate the environmental niche. A deeper understanding of the factors promoting maturation of the cells is of great interest for clinical applications. EXPERIMENTAL DESIGN Label-free mass spectrometry based proteomic analysis is performed on samples from a longitudinal study of differentiation of human induced pluripotent stem cells toward glucose responsive insulin producing cells. RESULTS Proteome patterns correlate with specific transcription factor gene expression levels during in vitro differentiation, showing the relevance of the technology for identification of pancreatic-specific markers. The analysis of proteomes of the implanted cells in a longitudinal study shows that the neovascularization process linked to the extracellular matrix environment is time-dependent and conditions the proper maturation of the cells in β-like cells secreting insulin in response to glucose. CONCLUSIONS AND CLINICAL RELEVANCE Proteomic profiling is valuable to qualify and better understand in vivo maturation of progenitor cells toward β-cells. This is critical for future clinical trials where in vivo maturation still needs to be improved for robustness and effectiveness of cell therapy. Novel biomarkers for predicting the efficiency of maturation represents noninvasive monitoring tools for following efficiency of the implant.
Collapse
Affiliation(s)
- Corinne Haller
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Prasad Chaskar
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Julie Piccand
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Charlotte Macron
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Marine R-C Kraus
- Stem Cells, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
42
|
Hansson SF, Zhou AX, Vachet P, Eriksson JW, Pereira MJ, Skrtic S, Jongsma Wallin H, Ericsson-Dahlstrand A, Karlsson D, Ahnmark A, Sörhede Winzell M, Magnone MC, Davidsson P. Secretagogin is increased in plasma from type 2 diabetes patients and potentially reflects stress and islet dysfunction. PLoS One 2018; 13:e0196601. [PMID: 29702679 PMCID: PMC5922551 DOI: 10.1371/journal.pone.0196601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Beta cell dysfunction accompanies and drives the progression of type 2 diabetes mellitus (T2D), but there are few clinical biomarkers available to assess islet cell stress in humans. Secretagogin, a protein enriched in pancreatic islets, demonstrates protective effects on beta cell function in animals. However, its potential as a circulating biomarker released from human beta cells and islets has not been studied. In this study primary human islets, beta cells and plasma samples were used to explore secretion and expression of secretagogin in relation to the T2D pathology. Secretagogin was abundantly and specifically expressed and secreted from human islets. Furthermore, T2D patients had an elevated plasma level of secretagogin compared with matched healthy controls, which was confirmed in plasma of diabetic mice transplanted with human islets. Additionally, the plasma secretagogin level of the human cohort had an inverse correlation to clinical assessments of beta cell function. To explore the mechanism of secretagogin release in vitro, human beta cells (EndoC-βH1) were exposed to elevated glucose or cellular stress-inducing agents. Secretagogin was not released in parallel with glucose stimulated insulin release, but was markedly elevated in response to endoplasmic reticulum stressors and cytokines. These findings indicate that secretagogin is a potential novel biomarker, reflecting stress and islet cell dysfunction in T2D patients.
Collapse
Affiliation(s)
- Sara F. Hansson
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Alex-Xianghua Zhou
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paulina Vachet
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- Translational Medicine Unit CVRM, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Daniel Karlsson
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Sörhede Winzell
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Chiara Magnone
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Pia Davidsson
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
43
|
Martinez-Sanchez A, Nguyen-Tu MS, Cebola I, Yavari A, Marchetti P, Piemonti L, de Koning E, Shapiro AMJ, Johnson P, Sakamoto K, Smith DM, Leclerc I, Ashrafian H, Ferrer J, Rutter GA. MiR-184 expression is regulated by AMPK in pancreatic islets. FASEB J 2018; 32:2587-2600. [PMID: 29269398 PMCID: PMC6207280 DOI: 10.1096/fj.201701100r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AMPK is a critical energy sensor and target for widely used antidiabetic drugs. In β cells, elevated glucose concentrations lower AMPK activity, and the ablation of both catalytic subunits [β-cell–specific AMPK double-knockout (βAMPKdKO) mice] impairs insulin secretion in vivo and β-cell identity. MicroRNAs (miRNAs) are small RNAs that silence gene expression that are essential for pancreatic β-cell function and identity and altered in diabetes. Here, we have explored the miRNAs acting downstream of AMPK in mouse and human β cells. We identified 14 down-regulated and 9 up-regulated miRNAs in βAMPKdKO vs. control islets. Gene ontology analysis of targeted transcripts revealed enrichment in pathways important for β-cell function and identity. The most down-regulated miRNA was miR-184 (miR-184-3p), an important regulator of β-cell function and compensatory expansion that is controlled by glucose and reduced in diabetes. We demonstrate that AMPK is a potent regulator and an important mediator of the negative effects of glucose on miR-184 expression. Additionally, we reveal sexual dimorphism in miR-184 expression in mouse and human islets. Collectively, these data demonstrate that glucose-mediated changes in AMPK activity are central for the regulation of miR-184 and other miRNAs in islets and provide a link between energy status and gene expression in β cells.—Martinez-Sanchez, A., Nguyen-Tu, M.-S., Cebola, I., Yavari, A., Marchetti, P., Piemonti, L., de Koning, E., Shapiro, A. M. J., Johnson, P., Sakamoto, K., Smith, D. M., Leclerc, I., Ashrafian, H., Ferrer, J., Rutter, G. A. MiR-184 expression is regulated by AMPK in pancreatic islets.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ines Cebola
- Beta Cell Genome Regulation Laboratory, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Arash Yavari
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute (SR-DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Eelco de Koning
- Hubrecht Institute, Utrecht, The Netherlands.,Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Kei Sakamoto
- Nestle Institute of Health Sciences, Lausanne, Switzerland
| | - David M Smith
- AstraZeneca Research and Development, Innovative Medicines and Early Development, Discovery Sciences, Cambridge, United Kingdom
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Houman Ashrafian
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jorge Ferrer
- Beta Cell Genome Regulation Laboratory, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Abstract
Objective Actin cytoskeleton remodeling is necessary for glucose-stimulated insulin secretion in pancreatic β-cells. A mechanistic understanding of actin dynamics in the islet is paramount to a better comprehension of β-cell dysfunction in diabetes. Here, we investigate the Rho GTPase regulator Stard13 and its role in F-actin cytoskeleton organization and islet function in adult mice. Methods We used Lifeact-EGFP transgenic animals to visualize actin cytoskeleton organization and dynamics in vivo in the mouse islets. Furthermore, we applied this model to study actin cytoskeleton and insulin secretion in mutant mice deleted for Stard13 selectively in pancreatic cells. We isolated transgenic islets for 3D-imaging and perifusion studies to measure insulin secretion dynamics. In parallel, we performed histological and morphometric analyses of the pancreas and used in vivo approaches to study glucose metabolism in the mouse. Results In this study, we provide the first genetic evidence that Stard13 regulates insulin secretion in response to glucose. Postnatally, Stard13 expression became restricted to the mouse pancreatic islets. We showed that Stard13 deletion results in a marked increase in actin polymerization in islet cells, which is accompanied by severe reduction of insulin secretion in perifusion experiments. Consistently, Stard13-deleted mice displayed impaired glucose tolerance and reduced glucose-stimulated insulin secretion. Conclusions Taken together, our results suggest a previously unappreciated role for the RhoGAP protein Stard13 in the interplay between actin cytoskeletal remodeling and insulin secretion. Lifeact-EGFP mice allow in vivo labeling of the actin cytoskeleton in islets. The RhoGAP Stard13 regulates actin cytoskeleton organization in mouse islets. Stard13 deficiency hampers glucose-induced insulin secretion by mouse β-cells.
Collapse
|
45
|
Harrington S, Williams SJ, Otte V, Barchman S, Jones C, Ramachandran K, Stehno-Bittel L. Improved yield of canine islet isolation from deceased donors. BMC Vet Res 2017; 13:264. [PMID: 28830425 PMCID: PMC5567429 DOI: 10.1186/s12917-017-1177-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Canine diabetes is a strikingly prevalent and growing disease, and yet the standard treatment of a twice-daily insulin injection is both cumbersome to pet owners and only moderately effective. Islet transplantation has been performed with repeated success in canine research models, but has unfortunately not been made available to companion animals. Standard protocols for islet isolation, developed primarily for human islet transplantation, include beating-heart organ donation, vascular perfusion of preservation solutions, specialized equipment. Unfortunately, these processes are prohibitively complex and expensive for veterinary use. The aim of the study was to develop a simplified approach for isolating canine islets that is compatible with the financial and logistical restrictions inherent to veterinary medicine for the purpose of translating islet transplantation to a clinical treatment for canine diabetes. RESULTS Here, we describe simplified strategies for isolating quality islets from deceased canine donors without vascular preservation and with up to 90 min of cold ischemia time. An average of more than 1500 islet equivalents per kg of donor bodyweight was obtained with a purity of 70% (N = 6 animals). Islets were 95% viable and responsive to glucose stimulation for a week. We found that processing only the body and tail of the pancreas increased isolation efficiency without sacrificing islet total yield. Islet yield per gram of tissue increased from 773 to 1868 islet equivalents when the head of the pancreas was discarded (N = 3/group). CONCLUSIONS In summary, this study resulted in the development of an efficient and readily accessible method for obtaining viable and functional canine islets from deceased donors. These strategies provide an ethical means for obtaining donor islets.
Collapse
Affiliation(s)
| | - S Janette Williams
- University of Kansas Medical Center, MS 2002, Kansas City, KS, 66160, USA.,Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS, 66103, USA
| | - Vern Otte
- State Line Animal Hospital, 2009 W 104th Street, Leawood, KS, 66206, USA
| | - Sally Barchman
- State Line Animal Hospital, 2009 W 104th Street, Leawood, KS, 66206, USA
| | - Cheryl Jones
- State Line Animal Hospital, 2009 W 104th Street, Leawood, KS, 66206, USA
| | | | - Lisa Stehno-Bittel
- University of Kansas Medical Center, MS 2002, Kansas City, KS, 66160, USA. .,Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS, 66103, USA.
| |
Collapse
|
46
|
Lee JJ, Yang SY, Park J, Ferrell JE, Shin DH, Lee KJ. Calcium Ion Induced Structural Changes Promote Dimerization of Secretagogin, Which Is Required for Its Insulin Secretory Function. Sci Rep 2017; 7:6976. [PMID: 28765527 PMCID: PMC5539292 DOI: 10.1038/s41598-017-07072-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022] Open
Abstract
Secretagogin (SCGN), a hexa EF-hand calcium binding protein, plays key roles in insulin secretion in pancreatic β-cells. It is not yet understood how the binding of Ca2+ to human SCGN (hSCGN) promotes secretion. Here we have addressed this question, using mass spectrometry combined with a disulfide searching algorithm DBond. We found that the binding of Ca2+ to hSCGN promotes the dimerization of hSCGN via the formation of a Cys193-Cys193 disulfide bond. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics studies revealed that Ca2+ binding to the EF-hands of hSCGN induces significant structural changes that affect the solvent exposure of N-terminal region, and hence the redox sensitivity of the Cys193 residue. These redox sensitivity changes were confirmed using biotinylated methyl-3-nitro-4-(piperidin-1-ylsulfonyl) benzoate (NPSB-B), a chemical probe that specifically labels reactive cysteine sulfhydryls. Furthermore, we found that wild type hSCGN overexpression promotes insulin secretion in pancreatic β cells, while C193S-hSCGN inhibits it. These findings suggest that insulin secretion in pancreatic cells is regulated by Ca2+ and ROS signaling through Ca2+-induced structural changes promoting dimerization of hSCGN.
Collapse
Affiliation(s)
- Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Seo-Yun Yang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Jimin Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Dong-Hae Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
47
|
Malenczyk K, Girach F, Szodorai E, Storm P, Segerstolpe Å, Tortoriello G, Schnell R, Mulder J, Romanov RA, Borók E, Piscitelli F, Di Marzo V, Szabó G, Sandberg R, Kubicek S, Lubec G, Hökfelt T, Wagner L, Groop L, Harkany T. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J 2017; 36:2107-2125. [PMID: 28637794 PMCID: PMC5510001 DOI: 10.15252/embj.201695347] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in β-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to β-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of β-cells.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petter Storm
- Department of Clinical Sciences, Diabetes and Endocrinology CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Åsa Segerstolpe
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | | | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erzsébet Borók
- Department of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli Naples, Italy
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rickard Sandberg
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Stefan Kubicek
- CeMM Research Centre for Molecular Medicine, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ludwig Wagner
- University Clinic for Internal Medicine III, General Hospital Vienna, Vienna, Austria
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
SUMOylation and calcium control syntaxin-1A and secretagogin sequestration by tomosyn to regulate insulin exocytosis in human ß cells. Sci Rep 2017; 7:248. [PMID: 28325894 PMCID: PMC5428262 DOI: 10.1038/s41598-017-00344-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
Insulin secretion from pancreatic ß cells is a multistep process that requires the coordination of exocytotic proteins that integrate diverse signals. These include signals derived from metabolic control of post-translational SUMOylation and depolarization-induced rises in intracellular Ca2+. Here we show that tomosyn, which suppresses insulin exocytosis by binding syntaxin1A, does so in a manner which requires its SUMOylation. Glucose-dependent de-SUMOylation of tomosyn1 at K298 releases syntaxin1A and controls the amplification of exocytosis in concert with a recently-identified tomosyn1-interacting partner; the Ca2+-binding protein secretagogin, which dissociates from tomosyn1 in response to Ca2+-raising stimuli and is required for insulin granule trafficking and exocytosis downstream of Ca2+ influx. Together our results suggest that tomosyn acts as a key signaling hub in insulin secretion by integrating signals mediated by metabolism-dependent de-SUMOylation and electrically-induced entry of Ca2+ to regulate the availability of exocytotic proteins required for the amplification of insulin secretion.
Collapse
|
49
|
Romanov RA, Alpár A, Hökfelt T, Harkany T. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. J Endocrinol 2017; 232:R161-R172. [PMID: 28057867 DOI: 10.1530/joe-16-0256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as 'stress neurons'. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish 'stress neurons' of the paraventricular nucleus that constitutively express secretagogin, a Ca2+ sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.
Collapse
Affiliation(s)
- Roman A Romanov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alán Alpár
- MTA-SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologyHungarian Academy of Sciences, Budapest, Hungary
- Department of AnatomySemmelweis University, Budapest, Hungary
| | - Tomas Hökfelt
- Department of NeuroscienceKarolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of NeuroscienceKarolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Khandelwal R, Sharma AK, Chadalawada S, Sharma Y. Secretagogin Is a Redox-Responsive Ca2+ Sensor. Biochemistry 2017; 56:411-420. [DOI: 10.1021/acs.biochem.6b00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Swathi Chadalawada
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|