1
|
Jame-Chenarboo F, Reyes JN, Twells NM, Ng HH, Macdonald D, Hernando E, Mahal LK. Screening the human miRNA interactome reveals coordinated up-regulation in melanoma, adding bidirectional regulation to miRNA networks. SCIENCE ADVANCES 2025; 11:eadr0277. [PMID: 39792681 PMCID: PMC11721578 DOI: 10.1126/sciadv.adr0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation. Herein, we demonstrate coordinated up-regulation of functionally coupled proteins by miRNA. We focused on CD98hc, the heavy chain of the amino acid transporter LAT-1, and α-2,3-sialyltransferases ST3GAL1 and ST3GAL2, which are critical for CD98hc stability in melanoma. Profiling miRNA regulation using our high-throughput miRFluR assay, we identified miRNA that up-regulated the expression of both CD98hc and either ST3GAL1 or ST3GAL2. These co-up-regulating miRNAs were enriched in melanoma datasets associated with transformation and progression. Our findings add co-up-regulation by miRNA into miRNA regulatory networks and add a bidirectional twist to the impact miRNAs have on protein regulation and glycosylation.
Collapse
Affiliation(s)
| | - Joseph N. Reyes
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Lima GM, Jame-Chenarboo Z, Sojitra M, Sarkar S, Carpenter EJ, Yang CY, Schmidt E, Lai J, Atrazhev A, Yazdan D, Peng C, Volker EA, Ho R, Monteiro G, Lai R, Mahal LK, Macauley MS, Derda R. The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage. Cell Chem Biol 2024; 31:1986-2001.e9. [PMID: 39454580 DOI: 10.1016/j.chembiol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages-liquid lectin array (LiLA)-detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
Collapse
Affiliation(s)
- Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Mirat Sojitra
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Claire Y Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Edward Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Justine Lai
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Danial Yazdan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ray Ho
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP 05508 000, Brazil
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
3
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
5
|
Agrawal P, Chen S, de Pablos A, Jame-Chenarboo F, Miera Saenz de Vega E, Darvishian F, Osman I, Lujambio A, Mahal LK, Hernando E. Integrated in vivo functional screens and multi-omics analyses identify α-2,3-sialylation as essential for melanoma maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584072. [PMID: 38559078 PMCID: PMC10979837 DOI: 10.1101/2024.03.08.584072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glycosylation is a hallmark of cancer biology, and altered glycosylation influences multiple facets of melanoma growth and progression. To identify glycosyltransferases, glycans, and glycoproteins essential for melanoma maintenance, we conducted an in vivo growth screen with a pooled shRNA library of glycosyltransferases, lectin microarray profiling of benign nevi and melanoma patient samples, and mass spectrometry-based glycoproteomics. We found that α-2,3 sialyltransferases ST3GAL1 and ST3GAL2 and corresponding α-2,3-linked sialosides are upregulated in melanoma compared to nevi and are essential for melanoma growth in vivo and in vitro. Glycoproteomics revealed that glycoprotein targets of ST3GAL1 and ST3GAL2 are enriched in transmembrane proteins involved in growth signaling, including the amino acid transporter Solute Carrier Family 3 Member 2 (SLC3A2/CD98hc). CD98hc suppression mimicked the effect of ST3GAL1 and ST3GAL2 silencing, inhibiting melanoma cell proliferation. We found that both CD98hc protein stability and its pro-survival effect in melanoma are dependent upon α-2,3 sialylation mediated by ST3GAL1 and ST3GAL2. In summary, our studies reveal that α-2,3-sialosides functionally contribute to melanoma maintenance, supporting ST3GAL1 and ST3GAL2 as novel therapeutic targets in these tumors.
Collapse
Affiliation(s)
- Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shuhui Chen
- Department of Chemistry, New York University
| | - Ana de Pablos
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Dermatology, NYU Grossman School of Medicine, New York
| | | | - Lara K. Mahal
- Department of Chemistry, New York University
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
| |
Collapse
|
6
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. COLLAGEN MINERALIZATION DECREASES NK CELL-MEDIATED CYTOTOXICITY OF BREAST CANCER CELLS VIA INCREASED GLYCOCALYX THICKNESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576377. [PMID: 38328161 PMCID: PMC10849468 DOI: 10.1101/2024.01.20.576377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Muñoz-Provencio D, Yebra MJ. Gut Microbial Sialidases and Their Role in the Metabolism of Human Milk Sialylated Glycans. Int J Mol Sci 2023; 24:9994. [PMID: 37373145 DOI: 10.3390/ijms24129994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sialic acids (SAs) are α-keto-acid sugars with a nine-carbon backbone present at the non-reducing end of human milk oligosaccharides and the glycan moiety of glycoconjugates. SAs displayed on cell surfaces participate in the regulation of many physiologically important cellular and molecular processes, including signaling and adhesion. Additionally, sialyl-oligosaccharides from human milk act as prebiotics in the colon by promoting the settling and proliferation of specific bacteria with SA metabolism capabilities. Sialidases are glycosyl hydrolases that release α-2,3-, α-2,6- and α-2,8-glycosidic linkages of terminal SA residues from oligosaccharides, glycoproteins and glycolipids. The research on sialidases has been traditionally focused on pathogenic microorganisms, where these enzymes are considered virulence factors. There is now a growing interest in sialidases from commensal and probiotic bacteria and their potential transglycosylation activity for the production of functional mimics of human milk oligosaccharides to complement infant formulas. This review provides an overview of exo-alpha-sialidases of bacteria present in the human gastrointestinal tract and some insights into their biological role and biotechnological applications.
Collapse
Affiliation(s)
- Diego Muñoz-Provencio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - María J Yebra
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
8
|
Notova S, Imberty A. Tuning specificity and topology of lectins through synthetic biology. Curr Opin Chem Biol 2023; 73:102275. [PMID: 36796139 DOI: 10.1016/j.cbpa.2023.102275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/16/2023]
Abstract
Lectins are non-immunoglobulin and non-catalytic glycan binding proteins that are able to decipher the structure and function of complex glycans. They are widely used as biomarkers for following alteration of glycosylation state in many diseases and have application in therapeutics. Controlling and extending lectin specificity and topology is the key for obtaining better tools. Furthermore, lectins and other glycan binding proteins can be combined with additional domains, providing novel functionalities. We provide a view on the current strategy with a focus on synthetic biology approaches yielding to novel specificity, but other novel architectures with novel application in biotechnology or therapy.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
9
|
Park S, Chin-Hun Kuo J, Reesink HL, Paszek MJ. Recombinant mucin biotechnology and engineering. Adv Drug Deliv Rev 2023; 193:114618. [PMID: 36375719 PMCID: PMC10253230 DOI: 10.1016/j.addr.2022.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mucins represent a largely untapped class of polymeric building block for biomaterials, therapeutics, and other biotechnology. Because the mucin polymer backbone is genetically encoded, sequence-specific mucins with defined physical and biochemical properties can be fabricated using recombinant technologies. The pendent O-glycans of mucins are increasingly implicated in immunomodulation, suppression of pathogen virulence, and other biochemical activities. Recent advances in engineered cell production systems are enabling the scalable synthesis of recombinant mucins with precisely tuned glycan side chains, offering exciting possibilities to tune the biological functionality of mucin-based products. New metabolic and chemoenzymatic strategies enable further tuning and functionalization of mucin O-glycans, opening new possibilities to expand the chemical diversity and functionality of mucin building blocks. In this review, we discuss these advances, and the opportunities for engineered mucins in biomedical applications ranging from in vitro models to therapeutics.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Møller MS, Cockburn DW, Wilkens C. Surface Plasmon Resonance Analysis for Quantifying Protein-Carbohydrate Interactions. Methods Mol Biol 2023; 2657:141-150. [PMID: 37149528 DOI: 10.1007/978-1-0716-3151-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
During the past two decades, surface plasmon resonance (SPR) analysis has emerged as an important tool for studying protein-carbohydrate interactions, with several commercial instruments available. Binding affinities in the nM to mM range can be determined; however, there are pitfalls that require careful experimental design to avoid. Here we give an overview of each step in the SPR analysis from immobilization to data analysis, providing key points of consideration that will allow practitioners to achieve reliable and reproducible results.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Darrell W Cockburn
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022; 17:2993-3012. [PMID: 35084820 PMCID: PMC9679999 DOI: 10.1021/acschembio.1c00689] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology and Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden 405 30
| | - Lawrence Meche
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - William Eng
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - David F. Smith
- Department
of Biochemistry, Glycomics Center, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lara K. Mahal
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States,Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2,E-mail:
| |
Collapse
|
12
|
Qin R, Kurz E, Chen S, Zeck B, Chiribogas L, Jackson D, Herchen A, Attia T, Carlock M, Rapkiewicz A, Bar-Sagi D, Ritchie B, Ross TM, Mahal LK. α2,6-Sialylation Is Upregulated in Severe COVID-19, Implicating the Complement Cascade. ACS Infect Dis 2022; 8:2348-2361. [PMID: 36219583 PMCID: PMC9578644 DOI: 10.1021/acsinfecdis.2c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Better understanding of the molecular mechanisms underlying COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein are unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find that α2,6-sialylation is upregulated in the plasma of patients with severe COVID-19 and in autopsied lung tissue. This glycan motif is enriched on members of the complement cascade (e.g., C5, C9), which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated α2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the α2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.
Collapse
Affiliation(s)
- Rui Qin
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Emma Kurz
- Department
of Cell Biology, NYU Grossman School of
Medicine, 550 First Avenue, New York, New York 10016, United
States
| | - Shuhui Chen
- Department
of Chemistry, Biomedical Research Institute, New York University, New York, New York10003, United States
| | - Briana Zeck
- Center
for Biospecimen Research and Development, NYU Langone, New York, New York 10016, United
States
| | - Luis Chiribogas
- Center
for Biospecimen Research and Development, NYU Langone, New York, New York 10016, United
States
| | - Dana Jackson
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Alex Herchen
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Tyson Attia
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Michael Carlock
- Center for
Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States
| | - Amy Rapkiewicz
- Department
of Pathology, NYU Long Island School of
Medicine, Mineola, New York 11501, United
States
| | - Dafna Bar-Sagi
- Department
of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Bruce Ritchie
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Ted M. Ross
- Center for
Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
13
|
Notova S, Cannac N, Rabagliati L, Touzard M, Mante J, Navon Y, Coche-Guérente L, Lerouxel O, Heux L, Imberty A. Building an Artificial Plant Cell Wall on a Lipid Bilayer by Assembling Polysaccharides and Engineered Proteins. ACS Synth Biol 2022; 11:3516-3528. [PMID: 36194500 DOI: 10.1021/acssynbio.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cell wall constitutes a fundamental structural component of plant cells, providing them with mechanical resistance and flexibility. Mimicking this wall is a critical step in the conception of an experimental model of the plant cell. The assembly of cellulose/hemicellulose in the form of cellulose nanocrystals and xyloglucans as a representative model of the plant cell wall has already been mastered; however, these models lacked the pectin component. In this work, we used an engineered chimeric protein designed for bridging pectin to the cellulose/hemicellulose network, therefore achieving the assembly of complete cell wall mimics. We first engineered a carbohydrate-binding module from Ruminococcus flavefaciens able to bind oligogalacturonan, resulting in high-affinity polygalacturonan receptors with Kd in the micromolar range. A Janus protein, with cell wall gluing property, was then designed by assembling this carbohydrate-binding module with a Ralstonia solanacearum lectin specific for fucosylated xyloglucans. The resulting supramolecular architecture is able to bind fucose-containing xyloglucans and homogalacturonan, ensuring high affinity for both. A two-dimensional assembly of an artificial plant cell wall was then built first on synthetic polymer and then on the supported lipid bilayer. Such an artificial cell wall can serve as a basis for the development of plant cell mechanical models and thus deepen the understanding of the principles underlying various aspects of plant cells and tissues.
Collapse
Affiliation(s)
- Simona Notova
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Nathan Cannac
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Luca Rabagliati
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Maeva Touzard
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Josselin Mante
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Yotam Navon
- The Pulp and Paper Research & Technical Centre, 38044Grenoble, France
| | | | | | - Laurent Heux
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000Grenoble, France
| |
Collapse
|
14
|
Tobola F, Wiltschi B. One, two, many: Strategies to alter the number of carbohydrate binding sites of lectins. Biotechnol Adv 2022; 60:108020. [PMID: 35868512 DOI: 10.1016/j.biotechadv.2022.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
Carbohydrates are more than an energy-storage. They are ubiquitously found on cells and most proteins, where they encode biological information. Lectins bind these carbohydrates and are essential for translating the encoded information into biological functions and processes. Hundreds of lectins are known, and they are found in all domains of life. For half a century, researchers have been preparing variants of lectins in which the binding sites are varied. In this way, the traits of the lectins such as the affinity, avidity and specificity towards their ligands as well as their biological efficacy were changed. These efforts helped to unravel the biological importance of lectins and resulted in improved variants for biotechnological exploitation and potential medical applications. This review gives an overview on the methods for the preparation of artificial lectins and complexes thereof and how reducing or increasing the number of binding sites affects their function.
Collapse
Affiliation(s)
- Felix Tobola
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
15
|
Qin R, Kurz E, Chen S, Zeck B, Chiribogas L, Jackson D, Herchen A, Attia T, Carlock M, Rapkiewicz A, Bar-Sagi D, Ritchie B, Ross TM, Mahal LK. α2,6-Sialylation is Upregulated in Severe COVID-19 Implicating the Complement Cascade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.06.22275981. [PMID: 35702159 PMCID: PMC9196116 DOI: 10.1101/2022.06.06.22275981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Better understanding of the mechanisms of COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein is unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find α2,6-sialylation is upregulated in plasma of patients with severe COVID-19 and in the lung. This glycan motif is enriched on members of the complement cascade, which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated α2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the α2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emma Kurz
- Department of Cell Biology, NYU Grossman School of Medicine, 550 1st Avenue, New York, New York, USA
| | - Shuhui Chen
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA
| | - Briana Zeck
- Center for Biospecimen Research and Development, NYU Langone, New York, New York, USA
| | - Luis Chiribogas
- Center for Biospecimen Research and Development, NYU Langone, New York, New York, USA
| | - Dana Jackson
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Alex Herchen
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Tyson Attia
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Michael Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Amy Rapkiewicz
- Department of Pathology, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| | - Bruce Ritchie
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Li Z, Kitov PI, Kitova EN, Bui DT, Moremen KW, Wakarchuk WW, Mahal LK, Macauley MS, Klassen JS. Quantifying Carbohydrate-Active Enzyme Activity with Glycoprotein Substrates Using Electrospray Ionization Mass Spectrometry and Center-of-Mass Monitoring. Anal Chem 2021; 93:15262-15270. [PMID: 34752696 DOI: 10.1021/acs.analchem.1c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate-active enzymes (CAZymes) play critical roles in diverse physiological and pathophysiological processes and are important for a wide range of biotechnology applications. Kinetic measurements offer insight into the activity and substrate specificity of CAZymes, information that is of fundamental interest and supports diverse applications. However, robust and versatile kinetic assays for monitoring the kinetics of intact glycoprotein and glycolipid substrates are lacking. Here, we introduce a simple but quantitative electrospray ionization mass spectrometry (ESI-MS) method for measuring the kinetics of CAZyme reactions involving glycoprotein substrates. The assay, referred to as center-of-mass (CoM) monitoring (CoMMon), relies on continuous (real-time) monitoring of the CoM of an ensemble of glycoprotein substrates and their corresponding CAZyme products. Notably, there is no requirement for calibration curves, internal standards, labeling, or mass spectrum deconvolution. To demonstrate the reliability of CoMMon, we applied the method to the neuraminidase-catalyzed cleavage of N-acetylneuraminic acid (Neu5Ac) residues from a series of glycoproteins of varying molecular weights and degrees of glycosylation. Reaction progress curves and initial rates determined with CoMMon are in good agreement (initial rates within ≤5%) with results obtained, simultaneously, using an isotopically labeled Neu5Ac internal standard, which enabled the time-dependent concentration of released Neu5Ac to be precisely measured. To illustrate the applicability of CoMMon to glycosyltransferase reactions, the assay was used to measure the kinetics of sialylation of a series of asialo-glycoproteins by a human sialyltransferase. Finally, we show how combining CoMMon and the competitive universal proxy receptor assay enables the relative reactivity of glycoprotein substrates to be quantitatively established.
Collapse
Affiliation(s)
- Zhixiong Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
17
|
Jung J, Enterina JR, Bui DT, Mozaneh F, Lin PH, Nitin, Kuo CW, Rodrigues E, Bhattacherjee A, Raeisimakiani P, Daskhan GC, St. Laurent CD, Khoo KH, Mahal LK, Zandberg WF, Huang X, Klassen JS, Macauley MS. Carbohydrate Sulfation As a Mechanism for Fine-Tuning Siglec Ligands. ACS Chem Biol 2021; 16:2673-2689. [PMID: 34661385 DOI: 10.1021/acschembio.1c00501] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc and Neu5Acα2-3Galβ1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galβ1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galβ1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.
Collapse
Affiliation(s)
- Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Jhon R. Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| | - Duong T. Bui
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Fahima Mozaneh
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Po-Han Lin
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nitin
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | | | - Gour C. Daskhan
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| |
Collapse
|
18
|
The Two Sweet Sides of Janus Lectin Drive Crosslinking of Liposomes to Cancer Cells and Material Uptake. Toxins (Basel) 2021; 13:toxins13110792. [PMID: 34822576 PMCID: PMC8620536 DOI: 10.3390/toxins13110792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
A chimeric, bispecific Janus lectin has recently been engineered with different, rationally oriented recognition sites. It can bind simultaneously to sialylated and fucosylated glycoconjugates. Because of its multivalent architecture, this lectin reaches nanomolar avidities for sialic acid and fucose. The lectin was designed to detect hypersialylation—a dysregulation in physiological glycosylation patterns, which promotes the tumor growth and progression of several cancer types. In this study, the characteristic properties of this bispecific Janus lectin were investigated on human cells by flow cytometry and confocal microscopy in order to understand the fundamentals of its interactions. We evaluated its potential in targeted drug delivery, precisely leading to the cellular uptake of liposomal content in human epithelial cancer cells. We successfully demonstrated that Janus lectin mediates crosslinking of glyco-decorated giant unilamellar vesicles (GUVs) and H1299 lung epithelial cells. Strikingly, the Janus lectin induced the internalization of liposomal lipids and also of complete GUVs. Our findings serve as a solid proof of concept for lectin-mediated targeted drug delivery using glyco-decorated liposomes as possible drug carriers to cells of interest. The use of Janus lectin for tumor recognition certainly broadens the possibilities for engineering diverse tailor-made lectin constructs, specifically targeting extracellular structures of high significance in pathological conditions.
Collapse
|
19
|
Kurz E, Chen S, Vucic E, Baptiste G, Loomis C, Agrawal P, Hajdu C, Bar-Sagi D, Mahal LK. Integrated Systems Analysis of the Murine and Human Pancreatic Cancer Glycomes Reveals a Tumor-Promoting Role for ST6GAL1. Mol Cell Proteomics 2021; 20:100160. [PMID: 34634466 PMCID: PMC8604807 DOI: 10.1016/j.mcpro.2021.100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. Glycans, such as carbohydrate antigen 19-9, are biomarkers of PDAC and are emerging as important modulators of cancer phenotypes. Herein, we used a systems-based approach integrating glycomic analysis of the well-established KC mouse, which models early events in transformation, and analysis of samples from human pancreatic cancer patients to identify glycans with potential roles in cancer formation. We observed both common and distinct patterns of glycosylation in pancreatic cancer across species. Common alterations included increased levels of α-2,3-sialic acid and α-2,6-sialic acid, bisecting GlcNAc and poly-N-acetyllactosamine. However, core fucose, which was increased in human PDAC, was not seen in the mouse, indicating that not all human glycomic changes are observed in the KC mouse model. In silico analysis of bulk and single-cell sequencing data identified ST6 beta-galactoside alpha-2,6-sialyltransferase 1, which underlies α-2,6-sialic acid, as overexpressed in human PDAC, concordant with histological data showing higher levels of this enzyme at the earliest stages. To test whether ST6 beta-galactoside alpha-2,6-sialyltransferase 1 promotes pancreatic cancer, we created a novel mouse in which a pancreas-specific genetic deletion of this enzyme overlays the KC mouse model. The analysis of our new model showed delayed cancer formation and a significant reduction in fibrosis. Our results highlight the importance of a strategic systems approach to identifying glycans whose functions can be modeled in mouse, a crucial step in the development of therapeutics targeting glycosylation in pancreatic cancer.
Collapse
Affiliation(s)
- Emma Kurz
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Shuhui Chen
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA
| | - Emily Vucic
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| | - Gillian Baptiste
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Office of Science and Research, NYU Grossman School of Medicine, New York, New York, USA
| | - Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Cristina Hajdu
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA.
| | - Lara K Mahal
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA.
| |
Collapse
|
20
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Notova S, Bonnardel F, Lisacek F, Varrot A, Imberty A. Structure and engineering of tandem repeat lectins. Curr Opin Struct Biol 2019; 62:39-47. [PMID: 31841833 DOI: 10.1016/j.sbi.2019.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Through their ability to bind complex glycoconjugates, lectins have unique specificity and potential for biomedical and biotechnological applications. In particular, lectins with short repeated peptides forming carbohydrate-binding domains are not only of high interest for understanding protein evolution but can also be used as scaffold for engineering novel receptors. Synthetic glycobiology now provides the tools for engineering the specificity of lectins as well as their structure, multivalency and topologies. This review focuses on the structure and diversity of two families of tandem-repeat lectins, that is, β-trefoils and β-propellers, demonstrated as the most promising scaffold for engineering novel lectins.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland; Section of Biology, UniGe, CH-1205 Geneva, Switzerland
| | | | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
22
|
Hirabayashi J, Arai R. Lectin engineering: the possible and the actual. Interface Focus 2019; 9:20180068. [PMID: 30842871 DOI: 10.1098/rsfs.2018.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Lectins are a widespread group of sugar-binding proteins occurring in all types of organisms including animals, plants, bacteria, fungi and even viruses. According to a recent report, there are more than 50 lectin scaffolds (∼Pfam), for which three-dimensional structures are known and sugar-binding functions have been confirmed in the literature, which far exceeds our view in the twentieth century (Fujimoto et al. 2014 Methods Mol. Biol. 1200, 579-606 (doi:10.1007/978-1-4939-1292-6_46)). This fact suggests that new lectins will be discovered either by a conventional screening approach or just by chance. It is also expected that new lectin domains including those found in enzymes as carbohydrate-binding modules will be generated in the future through evolution, although this has never been attempted on an experimental level. Based on the current state of the art, various methods of lectin engineering are available, by which lectin specificity and/or stability of a known lectin scaffold can be improved. However, the above observation implies that any protein scaffold, including those that have never been described as lectins, may be modified to acquire a sugar-binding function. In this review, possible approaches to confer sugar-binding properties on synthetic proteins and peptides are described.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.,Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304, Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
23
|
Biophysical Analyses for Probing Glycan-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:119-147. [PMID: 30484247 PMCID: PMC7153041 DOI: 10.1007/978-981-13-2158-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycan-protein interactions occur at many physiological events, and the analyses are of considerable importance for understanding glycan-dependent mechanisms. Biophysical approaches including 3D structural analysis are essential for revealing glycan-protein interactions at the atomic level. The inherent diversity of glycans suits them to function as identification tags, e.g., distinguish self from the nonself components of pathogens. However, the complexity of glycans and poor affinities for interaction partners limit the usefulness of conventional analyses. To cope with such troublesome glycans, a logical sequence of biophysical analyses need to be developed. In this chapter, we introduce a workflow of glycan-protein interaction analysis consisting of six steps: preparation of lectin and glycan, screening of glycan ligand, determination of binding epitope, quantitative interaction analysis, 3D structural analysis, and molecular dynamics simulation. Our increasing knowledge and understanding of lectin-glycan interactions will hopefully lead to the design of glyco-based medicines and vaccines.
Collapse
|
24
|
Wong MY, Chen K, Antonopoulos A, Kasper BT, Dewal MB, Taylor RJ, Whittaker CA, Hein PP, Dell A, Genereux JC, Haslam SM, Mahal LK, Shoulders MD. XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc Natl Acad Sci U S A 2018; 115:E10089-E10098. [PMID: 30305426 PMCID: PMC6205500 DOI: 10.1073/pnas.1805425115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Classically, the unfolded protein response (UPR) safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated spliced X-box binding protein 1 (XBP1s)-mediated response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s activation for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional output of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. For example, XBP1s activity decreased levels of sialylation and bisecting GlcNAc in the HEK293 membrane proteome and secretome, while substantially increasing the population of oligomannose N-glycans only in the secretome. In HeLa cell membranes, stress-independent XBP1s activation increased the population of high-mannose and tetraantennary N-glycans, and also enhanced core fucosylation. mRNA profiling experiments suggest that XBP1s-mediated remodeling of the N-glycome is, at least in part, a consequence of coordinated transcriptional resculpting of N-glycan maturation pathways by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s can act as a master regulator of N-glycan maturation. Moreover, because the sugars on cell-surface proteins or on proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling into altered interactions with the extracellular environment.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Brian T Kasper
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003
| | - Mahender B Dewal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rebecca J Taylor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Pyae P Hein
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003;
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
25
|
Ribeiro JP, Villringer S, Goyard D, Coche-Guerente L, Höferlin M, Renaudet O, Römer W, Imberty A. Tailor-made Janus lectin with dual avidity assembles glycoconjugate multilayers and crosslinks protocells. Chem Sci 2018; 9:7634-7641. [PMID: 30393524 PMCID: PMC6182566 DOI: 10.1039/c8sc02730g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/12/2018] [Indexed: 01/29/2023] Open
Abstract
The double-faced Janus lectin, designed by assembling sialic acid and fucose-specific lectin, organize multivalent heteroglyco compounds in mulitlayered material, and glycosylated protocells in prototissues.
We engineered the first chimeric, bispecific lectin, with two rationally oriented and distinct recognition surfaces. This lectin, coined Janus lectin in allusion to the two-faced roman god, is able to bind independently to both fucosylated and sialylated glycoconjugates. The multivalent presentation of binding sites on each face of the Janus lectin is very efficient, resulting in avidities in the low nanomolar range for both fucosylated and sialylated surfaces. Moreover, novel heterovalent, bifunctional glycoclusters were synthetized that match the topology of the Janus lectin. Based on these tools, we constructed organized and controlled supramolecular architectures by assembling Janus lectin and glycocompound layer-by-layer. Furthermore, the Janus lectin was employed as biomolecular linker to organize protocells made from giant unilamellar vesicles of different nature, to more complex prototissues. In summary, tailor-made Janus lectins open wide possibilities for creating biomimetic matrices or artificial tissues.
Collapse
Affiliation(s)
- João P Ribeiro
- Univ. Grenoble Alpes , CNRS , CERMAV , 38000 Grenoble , France . .,Univ. Grenoble Alpes , CNRS , DCM , 38000 Grenoble , France
| | - Sarah Villringer
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Centre for Biological Signalling Studies (BIOSS) , Schänzlestraße 18 , 79104 Freiburg , Germany .
| | - David Goyard
- Univ. Grenoble Alpes , CNRS , DCM , 38000 Grenoble , France
| | | | - Manuela Höferlin
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Centre for Biological Signalling Studies (BIOSS) , Schänzlestraße 18 , 79104 Freiburg , Germany .
| | | | - Winfried Römer
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Centre for Biological Signalling Studies (BIOSS) , Schänzlestraße 18 , 79104 Freiburg , Germany .
| | - Anne Imberty
- Univ. Grenoble Alpes , CNRS , CERMAV , 38000 Grenoble , France .
| |
Collapse
|
26
|
Evidence for a carbohydrate-binding module (CBM) of Tannerella forsythia NanH sialidase, key to interactions at the host–pathogen interface. Biochem J 2018; 475:1159-1176. [DOI: 10.1042/bcj20170592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
Bacterial sialidases cleave terminal sialic acid from a variety of host glycoproteins, and contribute to survival and growth of many human-dwelling bacterial species, including various pathogens. Tannerella forsythia, an oral, Gram-negative, fastidious anaerobe, is a key organism in periodontal disease and possesses a dedicated sialic acid utilisation and scavenging (nan) operon, including NanH sialidase. Here, we describe biochemical characterisation of recombinant NanH, including its action on host-relevant sialoglycans such as sialyl Lewis A and sialyl Lewis X (SLeA/X), and on human cell-attached sialic acids directly, uncovering that it is a highly active broad specificity sialidase. Furthermore, the N-terminal domain of NanH was hypothesised and proved to be capable of binding to a range of sialoglycans and non-sialylated derivatives with Kd in the micromolar range, as determined by steady-state tryptophan fluorescence spectroscopy, but it has no catalytic activity in isolation from the active site. We consider this domain to represent the founding member of a novel subfamily of carbohydrate-binding module (CBM), involved in glycosidase-ligand binding. In addition, we created a catalytically inactive version of the NanH enzyme (FRIP → YMAP) that retained its ability to bind sialic acid-containing ligands and revealed for the first time that binding activity of a CBM is enhanced by association with the catalytic domain. Finally, we investigated the importance of Lewis-type sialoglycans on T. forsythia–host interactions, showing that nanomolar amounts of SLeA/X were capable of reducing invasion of oral epithelial cells by T. forsythia, suggesting that these are key ligands for bacterial–cellular interactions during periodontal disease.
Collapse
|
27
|
Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat Commun 2017; 8:2196. [PMID: 29259165 PMCID: PMC5736709 DOI: 10.1038/s41467-017-02109-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/07/2017] [Indexed: 02/08/2023] Open
Abstract
Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut. The mucus layer is an important physical niche within the gut which harbours a distinct microbial community. Here the authors show that specific carbohydrate-binding modules associated with bacterial carbohydrate-active enzymes are mucus adhesins that target regions of the distal colon rich in sialomucins.
Collapse
|
28
|
Ribeiro JP, Ali Abol Hassan M, Rouf R, Tiralongo E, May TW, Day CJ, Imberty A, Tiralongo J, Varrot A. Biophysical characterization and structural determination of the potent cytotoxic Psathyrella asperospora lectin. Proteins 2017; 85:969-975. [PMID: 28168856 DOI: 10.1002/prot.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/03/2023]
Abstract
A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- João P Ribeiro
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, Grenoble, 38041, France.,DCM, UMR5250, CNRS and Université Grenoble Alpes, Grenoble, 38041, France
| | | | - Razina Rouf
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Evelin Tiralongo
- School of Pharmacy and Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, Victoria, 3004, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Anne Imberty
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, Grenoble, 38041, France
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, Grenoble, 38041, France
| |
Collapse
|