1
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
2
|
Pan J, Xu C, Qi M, Zhou Y, Li Z, Mi C, Zou Y. Transcriptome analysis of the medicinal mushroom Sanghuangporus vaninii in response to white light stress. Gene 2024; 930:148825. [PMID: 39116957 DOI: 10.1016/j.gene.2024.148825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Light is a vital environmental factor that promotes the growth and development of edible fungi mycelium. Under white light, the mycelium color of Sanghuangporus vaninii shifts during its growth stages. To investigate the impact of visible light on mycelial morphogenesis, a comparative transcriptomic analysis was conducted. This analysis revealed the molecular processes that underpin mycelial growth and development in S. vaninii when cultured in both darkness and light conditions. From the analysis, 13,643 genes were aligned using Illumina raw reads. Of these, 596 genes exhibited significant expression changes under white light exposure. Specifically, 226 genes were upregulated and 370 downregulated, spanning 55 different metabolic pathways. We further classified differentially expressed genes (DEGs), these genes play roles in photomorphogenesis, signal transduction, carbohydrate metabolism, and melanin production, among other processes. Some are also implicated in cell cycle regulation and the differential expression of respiratory functions. The validation of the differentially expressed transcripts using qRT-PCR showed complete agreement with RNA-Seq data for 9 transcripts. Meanwhile, the light had an inhibitory effect on the bioactive components in S. vaninii. These findings offer valuable insights into the transcriptional shifts and molecular mechanisms driving the color change in S. vaninii under light exposure, providing a basis for further research into mechanisms of light-response regulation.
Collapse
Affiliation(s)
- Jinlong Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Congtao Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Mudanjiang Normal University, Mudanjiang 157011, China
| | - Menjiao Qi
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Mudanjiang Normal University, Mudanjiang 157011, China
| | - Yuanyuan Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihao Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxia Mi
- Mudanjiang Normal University, Mudanjiang 157011, China
| | - Yajie Zou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Ko VI, Ong K, Kwon DY, Li X, Pietrasiewicz A, Harvey JS, Lulla M, Bhat G, Cleveland DW, Ravits JM. CK1δ/ε-mediated TDP-43 phosphorylation contributes to early motor neuron disease toxicity in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2024; 12:187. [PMID: 39633494 PMCID: PMC11619411 DOI: 10.1186/s40478-024-01902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models. In this study, we advanced our findings into the hTDP-43-ΔNLS in vivo mouse model of ALS and TDP-43 proteinopathy. This mouse model possesses robust disease-relevant features of ALS, including TDP-43 nuclear depletion, cytoplasmic pTDP-43 accumulation, motor behavior deficits, and shortened survival. We tested the effect of homozygous genetic deletion of Csnk1e in the hTDP-43-ΔNLS mouse model and observed a delay in the formation of pTDP-43 without significant ultimate rescue of TDP-43 proteinopathy or disease progression. Homozygous genetic deletion of Csnk1d is lethal in mice, and we were unable to test the role of CK1δ alone. We then targeted both CK1δ and CK1ε kinases by way of CK1δ/ε-selective PF-05236216 inhibitor in the hTDP-43-ΔNLS mouse model, reasoning that inhibiting CK1ε alone would be insufficient as shown by our Csnk1e knockout mouse model study. Treated mice demonstrated reduced TDP-43 phosphorylation, lowered Nf-L levels, and improved survival in the intermediate stages. The soluble TDP-43 may have been more amenable to the inhibitor treatment than insoluble TDP-43. However, the treatments did not result in improved functional measurements or in overall survival. Our results demonstrate that phosphorylation contributes to neuronal toxicity and suggest CK1δ/ε inhibition in combination with other therapies targeting TDP-43 pathology could potentially provide therapeutic benefit in ALS.
Collapse
Affiliation(s)
- Vivian I Ko
- Neuroscience Graduate Program, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA
- Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA
| | - Kailee Ong
- Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA
| | - Deborah Y Kwon
- Neuromuscular & Muscle Disorders, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Xueying Li
- Neuromuscular & Muscle Disorders, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Alicia Pietrasiewicz
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - James S Harvey
- Biotherapeutics and Medicinal Sciences, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Mukesh Lulla
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Guruharsha Bhat
- Neuromuscular & Muscle Disorders, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - John M Ravits
- Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
4
|
Wen Y, Wang H, Yang X, Zhu Y, Li M, Ma X, Huang L, Wan R, Zhang C, Li S, Jia H, Guo Q, Lu X, Li Z, Shen X, Zhang Q, Si L, Yin C, Liu T. Pharmacological targeting of casein kinase 1δ suppresses oncogenic NRAS-driven melanoma. Nat Commun 2024; 15:10088. [PMID: 39572526 PMCID: PMC11582648 DOI: 10.1038/s41467-024-54140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Activating mutations in NRAS account for 15-20% of melanoma, yet effective anti-NRAS therapies are still lacking. In this study, we unveil the casein kinase 1δ (CK1δ) as an uncharacterized regulator of oncogenic NRAS mutations, specifically Q61R and Q61K, which are the most prevalent NRAS mutations in melanoma. The genetic ablation or pharmacological inhibition of CK1δ markedly destabilizes NRAS mutants and suppresses their oncogenic functions. Moreover, we identify USP46 as a bona fide deubiquitinase of NRAS mutants. Mechanistically, CK1δ directly phosphorylates USP46 and activates its deubiquitinase activity towards NRAS mutants, thus promoting oncogenic NRAS-driven melanocyte malignant transformation and melanoma progression in vitro and in vivo. Our findings underscore the significance of the CK1δ-USP46 axis in stabilizing oncogenic NRAS mutants and provide preclinical evidence that targeting this axis holds promise as a therapeutic strategy for human melanoma harboring NRAS mutations.
Collapse
Affiliation(s)
- Yalei Wen
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xiuqing Ma
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Lei Huang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Rui Wan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Shengrong Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qin Guo
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Xiaoyun Lu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengqiu Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Qiushi Zhang
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China.
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China.
| | - Tongzheng Liu
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Bova V, Mannino D, Capra AP, Lanza M, Palermo N, Filippone A, Esposito E. CK and LRRK2 Involvement in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:11661. [PMID: 39519213 PMCID: PMC11546471 DOI: 10.3390/ijms252111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer's disease (AD), dementia, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD)-all characterized by a progressive loss of neurons in specific regions of the brain leading to varied clinical symptoms. At the basis of neurodegenerative diseases, an emerging role is played by genetic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene that cause increased LRRK2 activity with consequent alteration of neuronal autophagy pathways. LRRK2 kinase activity requires GTPase activity which functions independently of kinase activity and is required for neurotoxicity and to potentiate neuronal death. Important in the neurodegeneration process is the upregulation of casein kinase (CK), which causes the alteration of the AMPK pathway by enhancing the phosphorylation of α-synuclein and huntingtin proteins, known to be involved in PD and HD, and increasing the accumulation of the amyloid-β protein (Aβ) for AD. Recent research has identified CK of the kinases upstream of LRRK2 as a regulator of the stability of the LRRK2 protein. Based on this evidence, this review aims to understand the direct involvement of individual kinases in NDDs and how their crosstalk may impact the pathogenesis and early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Nicoletta Palermo
- Department of Biochemical, Dental, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| |
Collapse
|
6
|
Grieco I, Bassani D, Trevisan L, Salmaso V, Cescon E, Prencipe F, Da Ros T, Martinez-Gonzalez L, Martinez A, Spalluto G, Moro S, Federico S. 7-Amino-[1,2,4]triazolo[1,5-a][1,3,5]triazines as CK1δ inhibitors: Exploring substitutions at the 2 and 5-positions. Bioorg Chem 2024; 151:107659. [PMID: 39059072 DOI: 10.1016/j.bioorg.2024.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
CK1δ is a serine-threonine kinase involved in several pathological conditions including neuroinflammation and neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Specifically, it seems that an inhibition of CK1δ could have a neuroprotective effect in these conditions. Here, a series of [1,2,4]triazolo[1,5-a][1,3,5]triazines were developed as ATP-competitive CK1δ inhibitors. Both positions 2 and 5 have been explored leading to a total of ten compounds exhibiting IC50s comprised between 29.1 µM and 2.08 µM. Three of the four most potent compounds (IC50 < 3 µM) bear a thiophene ring at the 2 position. All compounds have been submitted to computational studies that identified the chain composed of at least 2 atoms (e.g., nitrogen and carbon atoms) at the 5 position as crucial to determine a key bidentate hydrogen bond with Leu85 of CK1δ. Most potent compounds have been tested in vitro, resulting passively permeable to the blood-brain barrier and, safe and slight neuroprotective on a neuronal cell model. These results encourage to further structural optimize the series to obtain more potent CK1δ inhibitors as possible neuroprotective agents to be tested on models of the above-mentioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilenia Grieco
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Davide Bassani
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Letizia Trevisan
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Eleonora Cescon
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Tatiana Da Ros
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Loreto Martinez-Gonzalez
- Centro de Investigaciones Biologicas, CSIC, Avenida Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de investigación biomédica en red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain.
| | - Ana Martinez
- Centro de Investigaciones Biologicas, CSIC, Avenida Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de investigación biomédica en red en enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain.
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
7
|
Enos MD, Gavagan M, Jameson N, Zalatan JG, Weis WI. Structural and functional effects of phosphopriming and scaffolding in the kinase GSK-3β. Sci Signal 2024; 17:eado0881. [PMID: 39226374 PMCID: PMC11461088 DOI: 10.1126/scisignal.ado0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Glycogen synthase kinase 3β (GSK-3β) targets specific signaling pathways in response to distinct upstream signals. We used structural and functional studies to dissect how an upstream phosphorylation step primes the Wnt signaling component β-catenin for phosphorylation by GSK-3β and how scaffolding interactions contribute to this reaction. Our crystal structure of GSK-3β bound to a phosphoprimed β-catenin peptide confirmed the expected binding mode of the phosphoprimed residue adjacent to the catalytic site. An aspartate phosphomimic in the priming site of β-catenin adopted an indistinguishable structure but reacted approximately 1000-fold slower than the native phosphoprimed substrate. This result suggests that substrate positioning alone is not sufficient for catalysis and that native phosphopriming interactions are necessary. We also obtained a structure of GSK-3β with an extended peptide from the scaffold protein Axin that bound with greater affinity than that of previously crystallized Axin fragments. This structure neither revealed additional contacts that produce the higher affinity nor explained how substrate interactions in the GSK-3β active site are modulated by remote Axin binding. Together, our findings suggest that phosphopriming and scaffolding produce small conformational changes or allosteric effects, not captured in the crystal structures, that activate GSK-3β and facilitate β-catenin phosphorylation. These results highlight limitations in our ability to predict catalytic activity from structure and have potential implications for the role of natural phosphomimic mutations in kinase regulation and phosphosite evolution.
Collapse
Affiliation(s)
- Michael D. Enos
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Maire Gavagan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Noel Jameson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse G. Zalatan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - William I. Weis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| |
Collapse
|
8
|
Shrestha P, Kandel J, Tayara H, Chong KT. Post-translational modification prediction via prompt-based fine-tuning of a GPT-2 model. Nat Commun 2024; 15:6699. [PMID: 39107330 PMCID: PMC11303401 DOI: 10.1038/s41467-024-51071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Post-translational modifications (PTMs) are pivotal in modulating protein functions and influencing cellular processes like signaling, localization, and degradation. The complexity of these biological interactions necessitates efficient predictive methodologies. In this work, we introduce PTMGPT2, an interpretable protein language model that utilizes prompt-based fine-tuning to improve its accuracy in precisely predicting PTMs. Drawing inspiration from recent advancements in GPT-based architectures, PTMGPT2 adopts unsupervised learning to identify PTMs. It utilizes a custom prompt to guide the model through the subtle linguistic patterns encoded in amino acid sequences, generating tokens indicative of PTM sites. To provide interpretability, we visualize attention profiles from the model's final decoder layer to elucidate sequence motifs essential for molecular recognition and analyze the effects of mutations at or near PTM sites to offer deeper insights into protein functionality. Comparative assessments reveal that PTMGPT2 outperforms existing methods across 19 PTM types, underscoring its potential in identifying disease associations and drug targets.
Collapse
Affiliation(s)
- Palistha Shrestha
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeevan Kandel
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
9
|
Alessi DR, Pfeffer SR. Leucine-Rich Repeat Kinases. Annu Rev Biochem 2024; 93:261-287. [PMID: 38621236 DOI: 10.1146/annurev-biochem-030122-051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.
Collapse
Affiliation(s)
- Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom;
| | - Suzanne R Pfeffer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Lishman-Walker E, Coffey K. Casein Kinase 1α-A Target for Prostate Cancer Therapy? Cancers (Basel) 2024; 16:2436. [PMID: 39001502 PMCID: PMC11240421 DOI: 10.3390/cancers16132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
The androgen receptor (AR) is a key driver of prostate cancer (PCa) and, as such, current mainstay treatments target this molecule. However, resistance commonly arises to these therapies and, therefore, additional targets must be evaluated to improve patient outcomes. Consequently, alternative approaches for indirectly targeting the AR are sought. AR crosstalk with other signalling pathways, including several protein kinase signalling cascades, has been identified as a potential route to combat therapy resistance. The casein kinase 1 (CK1) family of protein kinases phosphorylate a multitude of substrates, allowing them to regulate a diverse range of pathways from the cell cycle to DNA damage repair. As well as its role in several signalling pathways that are de-regulated in PCa, mutational data suggest its potential to promote prostate carcinogenesis. CK1α is one isoform predicted to regulate AR activity via phosphorylation and has been implicated in the progression of several other cancer types. In this review, we explore how the normal biological function of CK1 is de-regulated in cancer, the impact on signalling pathways and how this contributes towards prostate tumourigenesis, with a particular focus on the CK1α isoform as a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
11
|
Gybeľ T, Čada Š, Klementová D, Schwalm MP, Berger BT, Šebesta M, Knapp S, Bryja V. Splice variants of CK1α and CK1α-like: Comparative analysis of subcellular localization, kinase activity, and function in the Wnt signaling pathway. J Biol Chem 2024; 300:107407. [PMID: 38796065 PMCID: PMC11255964 DOI: 10.1016/j.jbc.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/β-catenin pathway, which promotes the degradation of β-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/β-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of β-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/β-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate β-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/β KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-β-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/β-catenin pathway at the level of β-catenin and Axin.
Collapse
Affiliation(s)
- Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Darja Klementová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin P Schwalm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, Heidelberg, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marek Šebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; Structural Genomics Consortium, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, Heidelberg, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
12
|
de Souza Gama FH, Dutra LA, Hawgood M, Dos Reis CV, Serafim RAM, Ferreira MA, Teodoro BVM, Takarada JE, Santiago AS, Balourdas DI, Nilsson AS, Urien B, Almeida VM, Gileadi C, Ramos PZ, Salmazo A, Vasconcelos SNS, Cunha MR, Mueller S, Knapp S, Massirer KB, Elkins JM, Gileadi O, Mascarello A, Lemmens BBLG, Guimarães CRW, Azevedo H, Couñago RM. Novel Dihydropteridinone Derivatives As Potent Inhibitors of the Understudied Human Kinases Vaccinia-Related Kinase 1 and Casein Kinase 1δ/ε. J Med Chem 2024; 67:8609-8629. [PMID: 38780468 DOI: 10.1021/acs.jmedchem.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.
Collapse
Affiliation(s)
| | - Luiz A Dutra
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Michael Hawgood
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Caio Vinícius Dos Reis
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Ricardo A M Serafim
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Marcos A Ferreira
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Bruno V M Teodoro
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Jéssica Emi Takarada
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - André S Santiago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Ann-Sofie Nilsson
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Bruno Urien
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Vitor M Almeida
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Carina Gileadi
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Anita Salmazo
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Micael R Cunha
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Susanne Mueller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Katlin B Massirer
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Jonathan M Elkins
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Opher Gileadi
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | | | - Bennie B L G Lemmens
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | - Hatylas Azevedo
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Rafael M Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| |
Collapse
|
13
|
Singh H, Kumar R, Mazumder A. Protein kinase inhibitors in the management of cancer: therapeutic opportunities from natural compounds. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:663-680. [PMID: 38373215 DOI: 10.1080/10286020.2024.2313546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
Kinase is an enzyme that helps in the phosphorylation of the targeted molecules and can affect their ability to react with other molecules. So, kinase influences metabolic reactions like cell signaling, secretory processes, transport of molecules, etc. The increased activity of certain kinases may cause various types of cancer, i.e. leukemia, glioblastoma, and neuroblastomas. So, the growth of particular cancer cells can be prevented by the inhibition of the kinase responsible for those cancers. Natural products are the key resources for the development of new drugs where approximately 60% of anti-tumor drugs are being developed with the same including specific kinase dwellers. This study comprised molecular interactions of various molecules (obtained from natural sources) as kinase inhibitors for the treatment of cancer. It is expected that by analyzing the skeleton behavior, the process of action, and the body-related activity of these organic products, new cancer-avoiding molecules can be developed.
Collapse
Affiliation(s)
- Himanshu Singh
- Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| |
Collapse
|
14
|
Calenda S, Catarzi D, Varano F, Vigiani E, Volpini R, Lambertucci C, Spinaci A, Trevisan L, Grieco I, Federico S, Spalluto G, Novello G, Salmaso V, Moro S, Colotta V. Structural Investigations on 2-Amidobenzimidazole Derivatives as New Inhibitors of Protein Kinase CK1 Delta. Pharmaceuticals (Basel) 2024; 17:468. [PMID: 38675428 PMCID: PMC11054282 DOI: 10.3390/ph17040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.
Collapse
Affiliation(s)
- Sara Calenda
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Daniela Catarzi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Flavia Varano
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Erica Vigiani
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Letizia Trevisan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Gianluca Novello
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Vittoria Colotta
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| |
Collapse
|
15
|
Yu Y, Yu J, Cui X, Sun X, Yu X. TNF-α-induced down-regulation of type I interferon receptor contributes to acquired resistance of cervical squamous cancer to Cisplatin. J Antibiot (Tokyo) 2024; 77:102-110. [PMID: 38102186 DOI: 10.1038/s41429-023-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
We aimed to investigate the effects of tumor necrosis factor (TNF)-α on the expression of interferon α/β receptor subunit 1 (IFNAR1) and cervical squamous cancer (CSCC) resistance to Cisplatin, as well as the underlying mechanisms. Kaplan-Meier analysis was used to plot the overall survival curves. SiHa cells were treated with 20 ng/ml TNF-α to determine cell proliferation in human CSCC cells and the expression of IFNAR1. The effects of TNF-α on the downstream signaling pathway, including casein kinase 1α (CK1α), were investigated using the caspase protease inhibitor FK009, the c-Jun kinase inhibitor SP600125, and the nuclear factor kappa-B inhibitor ammonium pyrrolidinedithiocarbamate (PDTC). TNF-α induced down-regulation of IFNAR1 in human CSCC cells and promoted proliferation of SiHa cells. SiHa cells were transfected with the catalytic inactive mutant CK1α K49A, and the ability of TNF-α to induce down-regulation of IFNAR1 expression was found to be significantly diminished in this context. FK009 and PDTC had no obvious effect on the expression of CK1α, however, SP600125 significantly reduced the expression of CK1α in the presence of TNF-α. SiHa cells treated with TNF-α showed reduced sensitivity to Cisplatin and exhibited higher cell viability, while the sensitivity of SiHa cells to Cisplatin was restored after treatment with CK1α inhibitor D4476. Additionally, we constructed a TNF-α overexpressing SiHa cell line and a transplanted tumor model. The results were similar to those of in vitro efficacy. We demonstrate that TNF-α-induced down-regulation of type I interferon receptor contributes to acquired resistance of cervical squamous cancer to Cisplatin.
Collapse
Affiliation(s)
- Yani Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Jia Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China.
| | - Xiaorong Cui
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Xin Sun
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Xiaohui Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| |
Collapse
|
16
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Alghareeb SA, Alfhili MA, Alsughayyir J. Stimulation of Hemolysis and Eryptosis by β-Caryophyllene Oxide. Life (Basel) 2023; 13:2299. [PMID: 38137900 PMCID: PMC10744803 DOI: 10.3390/life13122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Eryptosis stimulated by anticancer drugs can lead to anemia in patients. β-caryophyllene oxide (CPO) is an anticancer sesquiterpene present in various plants; however, its effect on the structure and function of human red blood cells (RBCs) remains unexplored. The aim of this study was to investigate the hemolytic and eryptotic activities and underlying molecular mechanisms of CPO in human RBCs. METHODS Cells were treated with 10-100 μM of CPO for 24 h at 37 °C, and hemolysis, LDH, AST, and AChE activities were photometrically assayed. Flow cytometry was employed to determine changes in cell volume from FSC, phosphatidylserine (PS) externalization by annexin-V-FITC, intracellular calcium by Fluo4/AM, and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Cells were also cotreated with CPO and specific signaling inhibitors and antihemolytic agents. Furthermore, whole blood was exposed to CPO to assess its toxicity to other peripheral blood cells. RESULTS CPO induced concentration-responsive hemolysis with LDH and AST leakage, in addition to PS exposure, cell shrinkage, Ca2+ accumulation, oxidative stress, and reduced AChE activity. The toxicity of CPO was ameliorated by D4476, staurosporin, and necrosulfonamide. ATP and PEG 8000 protected the cells from hemolysis, while urea and isotonic sucrose had opposite effects. CONCLUSIONS CPO stimulates hemolysis and eryptosis through energy depletion, Ca2+ buildup, oxidative stress, and the signaling mediators casein kinase 1α, protein kinase C, and mixed lineage kinase domain-like pseudokinase. Development of CPO as an anticancer therapeutic must be approached with prudence to mitigate adverse effects on RBCs using eryptosis inhibitors, Ca2+ channel blockers, and antioxidants.
Collapse
Affiliation(s)
| | | | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (S.A.A.); (M.A.A.)
| |
Collapse
|
18
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Protein Kinases and their Inhibitors Implications in Modulating Disease Progression. Protein J 2023; 42:621-632. [PMID: 37768476 DOI: 10.1007/s10930-023-10159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Protein phosphorylation plays an important role in cellular pathways, including cell cycle regulation, metabolism, differentiation and survival. The protein kinase superfamily network consists of 518 members involved in intrinsic or extrinsic interaction processes. Protein kinases are divided into two categories based on their ability to phosphorylate tyrosine, serine, and threonine residues. The complexity of the system implies its vulnerability. Any changes in the pathways of protein kinases may be implicated in pathological processes. Therefore, they are regarded as having an important role in human diseases and represent prospective therapeutic targets. This article provides a review of the protein kinase inhibitors approved by the FDA. Finally, we summarize the mechanism of action of protein kinases, including their role in the development and progression of protein kinase-related roles in various pathological conditions and the future therapeutic potential of protein kinase inhibitors, along with links to protein kinase databases. Further clinical studies aimed at examining the sequence of protein kinase inhibitor availability would better utilize current protein kinase inhibitors in diseases. Additionally, this review may help researchers and biochemists find new potent and selective protein kinase inhibitors and provide more indications for using existing drugs.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Muazzam Khan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India.
| | - Anuradha Mishra
- Department of pharmacology, Amity Institute of Pharmacy, Amity University, sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gazala Noor
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Usama Ahmad
- Department of pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
19
|
Gülow K, Tümen D, Kunst C. The Important Role of Protein Kinases in the p53 Sestrin Signaling Pathway. Cancers (Basel) 2023; 15:5390. [PMID: 38001650 PMCID: PMC10670278 DOI: 10.3390/cancers15225390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
p53, a crucial tumor suppressor and transcription factor, plays a central role in the maintenance of genomic stability and the orchestration of cellular responses such as apoptosis, cell cycle arrest, and DNA repair in the face of various stresses. Sestrins, a group of evolutionarily conserved proteins, serve as pivotal mediators connecting p53 to kinase-regulated anti-stress responses, with Sestrin 2 being the most extensively studied member of this protein family. These responses involve the downregulation of cell proliferation, adaptation to shifts in nutrient availability, enhancement of antioxidant defenses, promotion of autophagy/mitophagy, and the clearing of misfolded proteins. Inhibition of the mTORC1 complex by Sestrins reduces cellular proliferation, while Sestrin-dependent activation of AMP-activated kinase (AMPK) and mTORC2 supports metabolic adaptation. Furthermore, Sestrin-induced AMPK and Unc-51-like protein kinase 1 (ULK1) activation regulates autophagy/mitophagy, facilitating the removal of damaged organelles. Moreover, AMPK and ULK1 are involved in adaptation to changing metabolic conditions. ULK1 stabilizes nuclear factor erythroid 2-related factor 2 (Nrf2), thereby activating antioxidative defenses. An understanding of the intricate network involving p53, Sestrins, and kinases holds significant potential for targeted therapeutic interventions, particularly in pathologies like cancer, where the regulatory pathways governed by p53 are often disrupted.
Collapse
Affiliation(s)
- Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (C.K.)
| | | | | |
Collapse
|
20
|
Meier L, Gahr BM, Roth A, Gihring A, Kirschner S, Woitaske-Proske C, Baier J, Peifer C, Just S, Knippschild U. Zebrafish as model system for the biological characterization of CK1 inhibitors. Front Pharmacol 2023; 14:1245246. [PMID: 37753113 PMCID: PMC10518421 DOI: 10.3389/fphar.2023.1245246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction: The CK1 family is involved in a variety of physiological processes by regulating different signaling pathways, including the Wnt/β-catenin, the Hedgehog and the p53 signaling pathways. Mutations or dysregulation of kinases in general and of CK1 in particular are known to promote the development of cancer, neurodegenerative diseases and inflammation. There is increasing evidence that CK1 isoform specific small molecule inhibitors, including CK1δ- and CK1ε-specific inhibitors of Wnt production (IWP)-based small molecules with structural similarity to benzimidazole compounds, have promising therapeutic potential. Methods: In this study, we investigated the suitability of the zebrafish model system for the evaluation of such CK1 inhibitors. To this end, the kinetic parameters of human CK1 isoforms were compared with those of zebrafish orthologues. Furthermore, the effects of selective CK1δ inhibition during zebrafish embryonic development were analyzed in vivo. Results: The results revealed that zebrafish CK1δA and CK1δB were inhibited as effectively as human CK1δ by compounds G2-2 with IC50 values of 345 and 270 nM for CK1δA and CK1δB versus 503 nM for human CK1δ and G2-3 exhibiting IC50 values of 514 and 561 nM for zebrafish CK1δA and B, and 562 nM for human CK1δ. Furthermore, the effects of selective CK1δ inhibition on zebrafish embryonic development in vivo revealed phenotypic abnormalities indicative of downregulation of CK1δ. Treatment of zebrafish embryos with selected inhibitors resulted in marked phenotypic changes including blood stasis, heart failure, and tail malformations. Conclusion: The results suggest that the zebrafish is a suitable in vivo assay model system for initial studies of the biological relevance of CK1δ inhibition.
Collapse
Affiliation(s)
- Laura Meier
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Bernd Martin Gahr
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Aileen Roth
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Adrian Gihring
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Stefan Kirschner
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Joana Baier
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Uwe Knippschild
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
21
|
Jiang Y, Yu J, Zhu T, Bu J, Hu Y, Liu Y, Zhu X, Gu X. Involvement of FAM83 Family Proteins in the Development of Solid Tumors: An Update Review. J Cancer 2023; 14:1888-1903. [PMID: 37476189 PMCID: PMC10355199 DOI: 10.7150/jca.83420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
FAM83 family members are a group of proteins that have been implicated in various solid tumors. In this updated review, we mainly focus on the cellular localization, molecular composition, and biological function of FAM83 family proteins in solid tumors. We discussed the factors that regulate abnormal protein expression and alterations in the functional activities of solid tumor cells (including non-coding microRNAs and protein modifiers) and potential mechanisms of tumorigenesis (including the MAPK, WNT, and TGF-β signaling pathways). Further, we highlighted the application of FAM83 family proteins in the diagnoses and treatment of different cancers, such as breast, lung, liver, and ovarian cancers from two aspects: molecular marker diagnosis and tumor drug resistance. We described the overexpression of FAM83 genes in various human malignant tumor cells and its relationship with tumor proliferation, migration, invasion, transformation, and drug resistance. Moreover, we explored the prospects and challenges of using tumor treatments based on the FAM83 proteins. Overall, we provide a theoretical basis for harnessing FAM83 family proteins as novel targets in cancer treatment. We believe that this review opens up open new directions for solid tumor treatment in clinical practice.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| |
Collapse
|
22
|
Ma Z, Zheng H, Li X, Yu B, Peng H. Knockdown of Csnk1a1 results in preimplantation developmental arrest in mice. Theriogenology 2023; 198:30-35. [PMID: 36542875 DOI: 10.1016/j.theriogenology.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022]
Abstract
Casein kinase 1, alpha 1 (CSNK1A1), is a member of the highly conserved serine/threonine protein kinase family. This study was established to analyze the expression and localization of CSNK1A1 and its function in early embryonic development in mice. Csnk1a1 mRNA and protein are expressed in multiple mouse tissues including the ovary. After ovulation and fertilization, Csnk1a1 mRNA and protein were detected in preimplantation embryos and their expression was highest in two-cell-stage embryos. CSNK1A1 protein was also mainly localized in the cytoplasm of preimplantation embryos. Moreover, knockdown of Csnk1a1 in zygotes led to a significant decrease in the rate of blastocyst formation. Furthermore, treatment of zygotes with the CSNK1A1-specific inhibitor D4476 also resulted in embryonic developmental arrest. These results provide the first evidence for a novel function of CSNK1A1 in early embryonic development in mice.
Collapse
Affiliation(s)
- Zengyou Ma
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China; State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China; College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Haoyi Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Xiaoping Li
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China
| | - Beibei Yu
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China.
| |
Collapse
|
23
|
Wang Y, Guo H, He F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev 2023; 42:297-322. [PMID: 36513953 DOI: 10.1007/s10555-022-10072-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The circadian clock is a timekeeping system for numerous biological rhythms that contribute to the regulation of numerous homeostatic processes in humans. Disruption of circadian rhythms influences physiology and behavior and is associated with adverse health outcomes, especially cancer. However, the underlying molecular mechanisms of circadian disruption-associated cancer initiation and development remain unclear. It is essential to construct good circadian disruption models to uncover and validate the detailed molecular clock framework of circadian disruption in cancer development and progression. Mouse models are the most widely used in circadian studies due to their relatively small size, fast reproduction cycle, easy genome manipulation, and economic practicality. Here, we reviewed the current mouse models of circadian disruption, including suprachiasmatic nuclei destruction, genetic engineering, light disruption, sleep deprivation, and other lifestyle factors in our understanding of the crosstalk between circadian rhythms and oncogenic signaling, as well as the molecular mechanisms of circadian disruption that promotes cancer growth. We focused on the discoveries made with the nocturnal mouse, diurnal human being, and cell culture and provided several circadian rhythm-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Abstract
Eryptosis is a coordinated non-lytic cell death of erythrocytes characterized by cell shrinkage, cell membrane scrambling, Ca2+ influx, ceramide accumulation, oxidative stress, activation of calpain and caspases. Physiologically, it aims at removing damaged or aged erythrocytes from circulation. A plethora of diseases are associated with enhanced eryptosis, including metabolic diseases, cardiovascular pathology, renal and hepatic diseases, hematological disorders, systemic autoimmune pathology, and cancer. This makes eryptosis and eryptosis-regulating signaling pathways a target for therapeutic interventions. This review highlights the eryptotic signaling machinery containing several protein kinases and its small molecular inhibitors with a special emphasis on casein kinase 1α (CK1α), a serine/threonine protein kinase with a broad spectrum of activity. In this review article, we provide a critical analysis of the regulatory role of CK1α in eryptosis, highlight triggers of CK1α-mediated suicidal death of red blood cells, cover the knowledge gaps in understanding CK1α-driven eryptosis and discover the opportunity of CK1α-targeted pharmacological modulation of eryptosis. Moreover, we discuss the directions of future research focusing on uncovering crosstalks between CK1α and other eryptosis-regulating kinases and pathways.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| |
Collapse
|
25
|
Montalto G, Ricciarelli R. Tau, tau kinases, and tauopathies: An updated overview. Biofactors 2023. [PMID: 36688478 DOI: 10.1002/biof.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Tau is a macrotubule-associated protein primarily involved in the stabilization of the cytoskeleton. Under normal conditions, phosphorylation reduces the affinity of tau for tubulin, allowing the protein to detach from microtubules and ensuring the system dynamics in neuronal cells. However, hyperphosphorylated tau aggregates into paired helical filaments, the main constituents of neurofibrillary tangles found in the brains of patients with Alzheimer's disease and other tauopathies. In this review, we provide an overview of the structure of tau and the pathophysiological roles of tau phosphorylation. We also evaluate the major protein kinases involved and discuss the progress made in the development of drug therapies aimed at inhibiting tau kinases.
Collapse
Affiliation(s)
- Giulia Montalto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
26
|
Yeung W, Zhou Z, Mathew L, Gravel N, Taujale R, O’Boyle B, Salcedo M, Venkat A, Lanzilotta W, Li S, Kannan N. Tree visualizations of protein sequence embedding space enable improved functional clustering of diverse protein superfamilies. Brief Bioinform 2023; 24:bbac619. [PMID: 36642409 PMCID: PMC9851311 DOI: 10.1093/bib/bbac619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023] Open
Abstract
Protein language models, trained on millions of biologically observed sequences, generate feature-rich numerical representations of protein sequences. These representations, called sequence embeddings, can infer structure-functional properties, despite protein language models being trained on primary sequence alone. While sequence embeddings have been applied toward tasks such as structure and function prediction, applications toward alignment-free sequence classification have been hindered by the lack of studies to derive, quantify and evaluate relationships between protein sequence embeddings. Here, we develop workflows and visualization methods for the classification of protein families using sequence embedding derived from protein language models. A benchmark of manifold visualization methods reveals that Neighbor Joining (NJ) embedding trees are highly effective in capturing global structure while achieving similar performance in capturing local structure compared with popular dimensionality reduction techniques such as t-SNE and UMAP. The statistical significance of hierarchical clusters on a tree is evaluated by resampling embeddings using a variational autoencoder (VAE). We demonstrate the application of our methods in the classification of two well-studied enzyme superfamilies, phosphatases and protein kinases. Our embedding-based classifications remain consistent with and extend upon previously published sequence alignment-based classifications. We also propose a new hierarchical classification for the S-Adenosyl-L-Methionine (SAM) enzyme superfamily which has been difficult to classify using traditional alignment-based approaches. Beyond applications in sequence classification, our results further suggest NJ trees are a promising general method for visualizing high-dimensional data sets.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Zhongliang Zhou
- School of Computing, University of Georgia, 30602, Georgia, USA
| | - Liju Mathew
- Department of Microbiology, University of Georgia, 30602, Georgia, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Mariah Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Sheng Li
- School of Data Science, University of Virginia, 22903, Virginia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| |
Collapse
|
27
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Huang K, Jia Z, Li H, Peng Y, Chen X, Luo N, Song T, Wang Y, Shi X, Kuang S, Yang G. Proto-oncogene FAM83A contributes to casein kinase 1-mediated mitochondrial maintenance and white adipocyte differentiation. J Biol Chem 2022; 298:102339. [PMID: 35931121 PMCID: PMC9493395 DOI: 10.1016/j.jbc.2022.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Family with sequence similarity 83 A (FAM83A) is a newly discovered proto-oncogene that has been shown to play key roles in various cancers. However, the function of FAM83A in other physiological processes is not well known. Here, we report a novel function of FAM83A in adipocyte differentiation. We used an adipocyte-targeting fusion oligopeptide (FITC-ATS-9R) to deliver a FAM83A-sgRNA/Cas9 plasmid to knockdown Fam83a (ATS/sg-FAM83A) in white adipose tissue in mice, which resulted in reduced white adipose tissue mass, smaller adipocytes, and mitochondrial damage that was aggravated by a high-fat diet. In cultured 3T3-L1 adipocytes, we found loss or knockdown of Fam83a significantly repressed lipid droplet formation and downregulated the expression of lipogenic genes and proteins. Furthermore, inhibition of Fam83a decreased mitochondrial ATP production through blockage of the electron transport chain, associated with enhanced apoptosis. Mechanistically, we demonstrate FAM83A interacts with casein kinase 1 (CK1) and promotes the permeability of the mitochondrial outer membrane. Furthermore, loss of Fam83a in adipocytes hampered the formation of the TOM40 complex and impeded CK1-driven lipogenesis. Taken together, these results establish FAM83A as a critical regulator of mitochondria maintenance during adipogenesis.
Collapse
Affiliation(s)
- Kuilong Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907; Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou China, 215123
| | - Haoran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Ying Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Xiaochang Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an, Shaanxi, China, 710021
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Tongxing Song
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Yingqian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Xin'e Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100.
| |
Collapse
|
29
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
30
|
The conserved C-terminal residues of FAM83H are required for the recruitment of casein kinase 1 to the keratin cytoskeleton. Sci Rep 2022; 12:11819. [PMID: 35821396 PMCID: PMC9276658 DOI: 10.1038/s41598-022-16153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The casein kinase 1 (CK1) family of serine/threonine protein kinases is involved in diverse cellular events at discrete subcellular compartments. FAM83H acts as a scaffold protein that recruits CK1 to the keratin cytoskeleton or to the nuclear speckles, which are storage sites for splicing factors. We determined the amino acid region of FAM83H required for recruiting CK1 to the keratin cytoskeleton. The subcellular localization of mutant FAM83H proteins with deletions of amino acid residues at different positions was evaluated via immunofluorescence. FAM83H mutants with deleted C-terminal residues 1134–1139, which are conserved among vertebrates, lost the ability to localize and recruit CK1 to the keratin cytoskeleton, suggesting that these residues are required for recruiting CK1 to the keratin cytoskeleton. The deletion of these residues (1134–1139) translocated FAM83H and CK1 to the nuclear speckles. Amino acid residues 1 to 603 of FAM83H were determined to contain the region responsible for the recruitment of CK1 to the nuclear speckles. Our results indicated that FAM83H recruits CK1 preferentially to the keratin cytoskeleton and alternatively to the nuclear speckles.
Collapse
|
31
|
Jin Y, Yu J, Jiang Y, Bu J, Zhu T, Gu X, Zhu X. Comprehensive analysis of the expression, prognostic significance, and function of FAM83 family members in breast cancer. World J Surg Oncol 2022; 20:172. [PMID: 35650627 PMCID: PMC9158143 DOI: 10.1186/s12957-022-02636-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The FAM83 family plays a key role in tumorigenesis and cancer progression. However, the role of the FAM83 family in the development of breast tumors is unclear to date. This report explores the expression, prognostic significance, and function of the FAM83 family members in breast cancer using public databases. METHODS UALCAN database was used to explore the expression of FAM83 family members in breast cancer. Furthermore, we validated the expression of FAM83 family members in twenty pairs of breast cancer and normal tissues by RT-PCR. Kaplan-Meier plotter database was used to explore the prognostic significance of FAM83 family members in breast cancer. GeneMANIA and DAVID databases were used for functional and pathway enrichment analysis of genes co-expressed with FAM83A, FAM83D, FAM83F, and FAM83G. MEXPRESS and UALCAN databases were used to analyze the level of DNA promoter methylation of FAM83A, FAM83D, FAM83F, and FAM83G in breast cancer. TIMER database was utilized to explore the relationships between immune cell infiltration and FAM83A, FAM83D, FAM83F, and FAM83G expression. RESULTS Among FAM83 family members, FAM83A, FAM83D, FAM83F, and FAM83G were higher expressed in breast cancer than in normal tissues. We also validated the significant high expression of FAM83A, FAM83D, FAM83F, and FAM83G mRNA in breast cancer than in normal samples. Their increased expression has an adverse prognostic effect on breast cancer patients. These genes co-expressed with FAM83A, FAM83D, FAM83F, and FAM83G might take part in cell proliferation, G2/M transition of the mitotic cell cycle, regulation of apoptosis process and other cancer-related biological processes. In addition, they were mainly enriched in the Hippo signaling pathway, Hedgehog signaling pathway, PI3K/AKT signaling pathway, and other cancer-related pathways. We also found that promoter DNA methylation might regulate the expression of FAM83A, FAM83D, FAM83F, and FAM83G mRNA in most CpG islands. At last, we found the expression of FAM83A, FAM83D, FAM83F, and FAM83G mRNA was significantly related to immune cell infiltration. CONCLUSIONS FAM83A, FAM83D, FAM83F, and FAM83G were highly expressed in breast cancer tissues and had an adverse effect on the survival outcomes of breast cancer patients. Also, they were involved in breast cancer-related signal pathways. Therefore, they might serve as potential therapeutic targets for breast cancer clinical treatment.
Collapse
Affiliation(s)
- Yi Jin
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yi Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Tong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
32
|
FAM83B is involved in thyroid cancer cell differentiation and migration. Sci Rep 2022; 12:8608. [PMID: 35597845 PMCID: PMC9124208 DOI: 10.1038/s41598-022-12553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
FAM83B has been recently identified as an oncogene, but its role in thyroid cancers (TC) is still unclear. We examined the expression of FAM83B and its possible involvement in cell migration and differentiation, in neoplastic/normal thyroid tissues and in TC human cell lines. FAM83B expression in TC varies according to the tumor histotype, being significantly downregulated in more aggressive and metastatic tissues. FAM83B levels in cell lines recapitulate patients’ samples variations, and its total and cytoplasmic levels decrease upon the induction of migration, together with an increase in its nuclear localization. Similar variations were detected in the primary tumor and in the metastatic tissues from a follicular TC. FAM83B knock down experiments confirmed its role in thyroid differentiation and cell migration, as demonstrated by the reduction of markers of thyroid differentiation and the increase of the mesenchymal marker vimentin. Moreover, the silencing of FAM83B significantly increased cells migration abilities, while not affecting the oncogenic RAS/MAPK/PI3K pathways. Our data indicate for the first time a role for FAM83B in TC cell differentiation and migration. Its expression is reduced in dedifferentiated tumors and its nuclear re-localization could favour distant migration, suggesting that FAM83B should be considered a possible diagnostic and prognostic biomarker.
Collapse
|
33
|
Hetman M, Slomnicki L, Hodges E, Ohri SS, Whittemore SR. Role of circadian rhythms in pathogenesis of acute CNS injuries: Insights from experimental studies. Exp Neurol 2022; 353:114080. [DOI: 10.1016/j.expneurol.2022.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
34
|
Repositioning of Etravirine as a Potential CK1ε Inhibitor by Virtual Screening. Pharmaceuticals (Basel) 2021; 15:ph15010008. [PMID: 35056065 PMCID: PMC8778358 DOI: 10.3390/ph15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
CK1ε is a key regulator of WNT/β-catenin and other pathways that are linked to tumor progression; thus, CK1ε is considered a target for the development of antineoplastic therapies. In this study, we performed a virtual screening to search for potential CK1ε inhibitors. First, we characterized the dynamic noncovalent interactions profiles for a set of reported CK1ε inhibitors to generate a pharmacophore model, which was used to identify new potential inhibitors among FDA-approved drugs. We found that etravirine and abacavir, two drugs that are approved for HIV infections, can be repurposed as CK1ε inhibitors. The interaction of these drugs with CK1ε was further examined by molecular docking and molecular dynamics. Etravirine and abacavir formed stable complexes with the target, emulating the binding behavior of known inhibitors. However, only etravirine showed high theoretical binding affinity to CK1ε. Our findings provide a new pharmacophore for targeting CK1ε and implicate etravirine as a CK1ε inhibitor and antineoplastic agent.
Collapse
|
35
|
Manni S, Fregnani A, Quotti Tubi L, Spinello Z, Carraro M, Scapinello G, Visentin A, Barilà G, Pizzi M, Dei Tos AP, Vianello F, Zambello R, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK1α Sustains B-Cell Receptor Signaling in Mantle Cell Lymphoma. Front Oncol 2021; 11:733848. [PMID: 34722279 PMCID: PMC8551451 DOI: 10.3389/fonc.2021.733848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is still an incurable B-cell malignancy characterized by poor prognosis and frequent relapses. B Cell Receptor (BCR) signaling inhibitors, in particular of the kinases BTK and PI3Kγ/δ, have demonstrated clinically meaningful anti-proliferative effects in B cell tumors. However, refractoriness to these drugs may develop, portending a dismal prognosis. Protein kinase CK1α is an emerging pro-growth enzyme in B cell malignancies. In multiple myeloma, this kinase sustains β-catenin and AKT-dependent survival and is involved in the activation of NF-κB in B cells. In this study, we analyzed the role of CK1α on MCL cell survival and proliferation, on the regulation of BCR-related BTK, NF-κB, PI3K/AKT signaling cascades and the effects of CK1α chemical inhibition or gene silencing in association with the BTK inhibitor Ibrutinib or the PI3Kγ/δ inhibitor Duvelisib. CK1α was found highly expressed in MCL cells as compared to normal B cells. The inactivation/loss of CK1α caused MCL cell apoptosis and proliferation arrest. CK1α sustained BCR signaling, in particular the NF-κB, AKT and BTK pathways by modulating the phosphorylation of Ser 652 on CARD11, Ser 536 p65 on NF-κB, Ser 473 on AKT, Tyr 223 on BTK, as well as the protein levels. We also provided evidence that CK1α-mediated regulation of CARD11 and BTK likely implicates a physical interaction. The combination of CK1α inhibition with Ibrutinib or Duvelisib synergistically increased cytotoxicity, leading to a further decrease of the activation of BCR signaling pathways. Therefore, CK1α sustains MCL growth through the regulation of BCR-linked survival signaling cascades and protects from Ibrutinib/Duvelisib-induced apoptosis. Thus, CK1α could be considered as a rational molecular target for the treatment of MCL, in association with novel agents.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Carraro
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Visentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Pizzi
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
| | - Renato Zambello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
36
|
Peterson JJ, Tocheny CE, Prajapati G, LaMunyon CW, Shakes DC. Subcellular patterns of SPE-6 localization reveal unexpected complexities in Caenorhabditis elegans sperm activation and sperm function. G3 (BETHESDA, MD.) 2021; 11:jkab288. [PMID: 34849789 PMCID: PMC8527485 DOI: 10.1093/g3journal/jkab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022]
Abstract
To acquire and maintain directed cell motility, Caenorhabditis elegans sperm must undergo extensive, regulated cellular remodeling, in the absence of new transcription or translation. To regulate sperm function, nematode sperm employ large numbers of protein kinases and phosphatases, including SPE-6, a member of C. elegans' highly expanded casein kinase 1 superfamily. SPE-6 functions during multiple steps of spermatogenesis, including functioning as a "brake" to prevent premature sperm activation in the absence of normal extracellular signals. Here, we describe the subcellular localization patterns of SPE-6 during wild-type C. elegans sperm development and in various sperm activation mutants. While other members of the sperm activation pathway associate with the plasma membrane or localize to the sperm's membranous organelles, SPE-6 surrounds the chromatin mass of unactivated sperm. During sperm activation by either of two semiautonomous signaling pathways, SPE-6 redistributes to the front, central region of the sperm's pseudopod. When disrupted by reduction-of-function alleles, SPE-6 protein is either diminished in a temperature-sensitive manner (hc187) or is mislocalized in a stage-specific manner (hc163). During the multistep process of sperm activation, SPE-6 is released from its perinuclear location after the spike stage in a process that does not require the fusion of membranous organelles with the plasma membrane. After activation, spermatozoa exhibit variable proportions of perinuclear and pseudopod-localized SPE-6, depending on their location within the female reproductive tract. These findings provide new insights regarding SPE-6's role in sperm activation and suggest that extracellular signals during sperm migration may further modulate SPE-6 localization and function.
Collapse
Affiliation(s)
| | - Claire E Tocheny
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
37
|
Sergeeva O, Abakumova T, Kurochkin I, Ialchina R, Kosyreva A, Prikazchikova T, Varlamova V, Shcherbinina E, Zatsepin T. Level of Murine DDX3 RNA Helicase Determines Phenotype Changes of Hepatocytes In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22136958. [PMID: 34203429 PMCID: PMC8269429 DOI: 10.3390/ijms22136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo—deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60–65%) showed discordant results in vitro and in vivo—similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Correspondence: ; Tel.: +7-926-388-0865
| | - Tatiana Abakumova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Ilia Kurochkin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Renata Ialchina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Anna Kosyreva
- Research Institute of Human Morphology, 117418 Moscow, Russia;
| | - Tatiana Prikazchikova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Varvara Varlamova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Evgeniya Shcherbinina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
38
|
Carneiro TNR, Bim LV, Buzatto VC, Galdeno V, Asprino PF, Lee EA, Galante PAF, Cerutti JM. Evidence of Cooperation between Hippo Pathway and RAS Mutation in Thyroid Carcinomas. Cancers (Basel) 2021; 13:2306. [PMID: 34065786 PMCID: PMC8151534 DOI: 10.3390/cancers13102306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Thyroid cancer incidences have been steadily increasing worldwide and are projected to become the fourth leading cancer diagnosis by 2030. Improved diagnosis and prognosis predictions for this type of cancer depend on understanding its genetic bases and disease biology. RAS mutations have been found in a wide range of thyroid tumors, from benign to aggressive thyroid carcinomas. Based on that and in vivo studies, it has been suggested that RAS cooperates with other driver mutations to induce tumorigenesis. This study aims to identify genetic alterations or pathways that cooperate with the RAS mutation in the pathogenesis of thyroid cancer. From a cohort of 120 thyroid carcinomas, 11 RAS-mutated samples were identified. The samples were subjected to RNA-Sequencing analyses. The mutation analysis in our eleven RAS-positive cases uncovered that four genes that belong to the Hippo pathway were mutated. The gene expression analysis revealed that this pathway was dysregulated in the RAS-positive samples. We additionally explored the mutational status and expression profiling of 60 RAS-positive papillary thyroid carcinomas (PTC) from The Cancer Genome Atlas (TCGA) cohort. Altogether, the mutational landscape and pathway enrichment analysis (gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genome (KEGG)) detected the Hippo pathway as dysregulated in RAS-positive thyroid carcinomas. Finally, we suggest a crosstalk between the Hippo and other signaling pathways, such as Wnt and BMP.
Collapse
Affiliation(s)
- Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Vanessa Galdeno
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Paula Fontes Asprino
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, CLS (Center for Life Science) Building 15th Floor, Office 15020 | Lab 15072, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| |
Collapse
|
39
|
Spinello Z, Fregnani A, Quotti Tubi L, Trentin L, Piazza F, Manni S. Targeting Protein Kinases in Blood Cancer: Focusing on CK1α and CK2. Int J Mol Sci 2021; 22:ijms22073716. [PMID: 33918307 PMCID: PMC8038136 DOI: 10.3390/ijms22073716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of “druggable” kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells’ dependency on these proteins resembles the phenomenon of “non-oncogene” addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.
Collapse
Affiliation(s)
- Zaira Spinello
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| | - Sabrina Manni
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| |
Collapse
|
40
|
Gao HS, Lin SY, Han X, Xu HZ, Gao YL, Qin ZY. Casein kinase 1 (CK1) promotes the proliferation and metastasis of glioma cells via the phosphatidylinositol 3 kinase-matrix metalloproteinase 2 (AKT-MMP2) pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:659. [PMID: 33987357 PMCID: PMC8106055 DOI: 10.21037/atm-21-935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Glioma is a type of tumor that usually occurs in the adult central nervous system. Protein kinases have become important targets for oncotherapy since they are closely correlated with signal transduction. The role of the casein kinase 1 (CK1) gene in glioma remains to be fully elucidated. Methods The mRNA and protein expression of CK1 were analyzed by Realtime PCR, Western blot and immunohistochemistry. The cell behavior was assayed by MTT, Transwell and cell scratch methods. Cell cycle and cell apoptosis were performed by flow cytometer. Construction of stable cell line was completed by lentivirus infection. The nude mouse model was used for in vivo analysis on the role of CK1 by injecting the cells into subcutaneous tissue, tail vein and cerebral cortex. The prognostic role of CK1 in glioma was evaluated using Kaplan-Meier and Cox regression analyses. Results immunohistochemical staining demonstrated that the expression of CK1 in glioma samples was correlated with the grade of glioma. Survival analysis using Kaplan-Meier and multivariate analysis by Cox regression indicated that CK1 could be used as an independent prognostic marker for glioma. The methyl thiazolyl tetrazolium (MTT), transwell, and cell scratch assays demonstrated that the CK1 gene promoted cell proliferation and invasion through the phosphatidylinositol 3 kinase/matrix metalloproteinase 2 (AKT-MMP2) signaling pathway. In vivo experiments in mice also confirmed the ability of CK1 to enhance tumor proliferation and metastasis, with the metastatic site being the small intestine. Conclusions the expression of CK1 was correlated with glioma grade and patient survival and it may enhance glioma proliferation and metastasis via AKT-MMP2 pathway.
Collapse
Affiliation(s)
- Hua-Song Gao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - She-Yu Lin
- Department of Biological Sciences, School of Life Sciences, Nantong University, Nantong, China
| | - Xi Han
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Zhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhi-Yong Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell 2021; 81:1133-1146. [PMID: 33545069 DOI: 10.1016/j.molcel.2021.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.
Collapse
Affiliation(s)
- Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|