1
|
Massimo G, Khambata RS, Chapman T, Birchall K, Raimondi C, Shabbir A, Dyson N, Rathod KS, Borghi C, Ahluwalia A. Natural mutations of human XDH promote the nitrite (NO 2-)-reductase capacity of xanthine oxidoreductase: A novel mechanism to promote redox health? Redox Biol 2023; 67:102864. [PMID: 37713777 PMCID: PMC10511815 DOI: 10.1016/j.redox.2023.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023] Open
Abstract
Several rare genetic variations of human XDH have been shown to alter xanthine oxidoreductase (XOR) activity leading to impaired purine catabolism. However, XOR is a multi-functional enzyme that depending upon the environmental conditions also expresses oxidase activity leading to both O2·- and H2O2 and nitrite (NO2-) reductase activity leading to nitric oxide (·NO). Since these products express important, and often diametrically opposite, biological activity, consideration of the impact of XOR mutations in the context of each aspect of the biochemical activity of the enzyme is needed to determine the potential full impact of these variants. Herein, we show that known naturally occurring hXDH mutations do not have a uniform impact upon the biochemical activity of the enzyme in terms of uric acid (UA), reactive oxygen species (ROS) and nitric oxide ·NO formation. We show that the His1221Arg mutant, in the presence of xanthine, increases UA, O2·- and NO generation compared to the WT, whilst the Ile703Val increases UA and ·NO formation, but not O2·-. We speculate that this change in the balance of activity of the enzyme is likely to endow those carrying these mutations with a harmful or protective influence over health that may explain the current equipoise underlying the perceived importance of XDH mutations. We also show that, in presence of inorganic NO2-, XOR-driven O2·- production is substantially reduced. We suggest that targeting enzyme activity to enhance the NO2--reductase profile in those carrying such mutations may provide novel therapeutic options, particularly in cardiovascular disease.
Collapse
Affiliation(s)
- G Massimo
- William Harvey Research Institute, Barts & the London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - R S Khambata
- William Harvey Research Institute, Barts & the London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - T Chapman
- LifeArc, Accelerator Building Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - K Birchall
- LifeArc, Accelerator Building Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - C Raimondi
- William Harvey Research Institute, Barts & the London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - A Shabbir
- William Harvey Research Institute, Barts & the London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Nicki Dyson
- William Harvey Research Institute, Barts & the London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - K S Rathod
- William Harvey Research Institute, Barts & the London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - C Borghi
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Via Massarenti, N.9, 40138, Italy
| | - A Ahluwalia
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Via Massarenti, N.9, 40138, Italy.
| |
Collapse
|
2
|
Hille R. Xanthine Oxidase-A Personal History. Molecules 2023; 28:1921. [PMID: 36838909 PMCID: PMC9966888 DOI: 10.3390/molecules28041921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
A personal perspective is provided regarding the work in several laboratories, including the author's, that has established the reaction mechanism of xanthine oxidase and related enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Hille R, Niks D. Application of EPR and related methods to molybdenum-containing enzymes. Methods Enzymol 2022; 666:373-412. [PMID: 35465925 DOI: 10.1016/bs.mie.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA, United States.
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, CA, United States
| |
Collapse
|
4
|
Enemark JH. {Moco}n, (n = 0–8): A general formalism for describing the highly covalent molybdenum cofactor of sulfite oxidase and related Mo enzymes,. J Inorg Biochem 2022; 231:111801. [DOI: 10.1016/j.jinorgbio.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
|
5
|
Lakatos RK, Dobolyi Á, Kovács Z. Uric acid and allopurinol aggravate absence epileptic activity in Wistar Albino Glaxo Rijswijk rats. Brain Res 2018; 1686:1-9. [PMID: 29457994 DOI: 10.1016/j.brainres.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/05/2018] [Accepted: 02/10/2018] [Indexed: 11/18/2022]
Abstract
Uric acid has a role in several physiological and pathophysiological processes. For example, uric acid may facilitate seizure generalization while reducing uric acid level may evoke anticonvulsant/antiepileptic effects. Allopurinol blocks the activity of xanthine oxidase, by which allopurinol inhibits catabolism of hypoxanthine to xanthine and uric acid and, as a consequence, decreases the level of uric acid. Although the modulation of serum uric acid level is a widely used strategy in the treatment of certain diseases, our knowledge regarding the effects of uric acid on epileptic activity is far from complete. Thus, the main aim of this study was the investigation of the effect of uric acid on absence epileptic seizures (spike-wave discharges: SWDs) in a model of human absence epilepsy, the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat. We investigated the influence of intraperitoneally (i.p.) injected uric acid (100 mg/kg and 200 mg/kg), allopurinol (50 mg/kg and 100 mg/kg), a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) and inosine (500 mg/kg) alone and the combined application of allopurinol (50 mg/kg) with uric acid (100 mg/kg) or inosine (500 mg/kg) as well as indomethacin (10 mg/kg) with uric acid (100 mg/kg) and inosine (500 mg/kg) with uric acid (100 mg/kg) on absence epileptic activity. We demonstrated that both uric acid and allopurinol alone significantly increased the number of SWDs whereas indomethacin abolished the uric acid-evoked increase in SWD number. Our results suggest that uric acid and allopurinol have proepileptic effects in WAG/Rij rats.
Collapse
Affiliation(s)
- Renáta Krisztina Lakatos
- Institute of Biology, University of Pécs, Pécs, Hungary; Savaria Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Szombathely, Hungary.
| | - Árpád Dobolyi
- Laboratory of Neuromorphology and Human Brain Tissue Bank, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - Zsolt Kovács
- Savaria Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Szombathely, Hungary.
| |
Collapse
|
6
|
Khambata RS, Ghosh SM, Ahluwalia A. "Repurposing" of Xanthine Oxidoreductase as a Nitrite Reductase: A New Paradigm for Therapeutic Targeting in Hypertension. Antioxid Redox Signal 2015; 23:340-53. [PMID: 25714611 DOI: 10.1089/ars.2015.6254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE In contrast to nitric oxide (NO), which has well-established, important effects in regulation of cardiovascular homeostasis, its oxidative metabolite nitrite has, until recently, been considered to be of minor functional significance. RECENT ADVANCES However, this view of nitrite has been radically revised over the past 10 years with evidence now supporting a critical role for this anion as a storage form of NO. CRITICAL ISSUES Importantly, while hypoxia and acidosis have been shown to play a pivotal role in the generation of nitrite to NO, a number of mammalian nitrite reductases have been identified that facilitate the reduction of nitrite. Critically, these nitrite reductases have been demonstrated to operate under physiological pH conditions and in normoxia, extending the functional remit of this anion from an ischemic mediator to an important regulator of physiology. One particular nitrite reductase that has been shown to operate under a wide range of environmental conditions is the enzyme xanthine oxidoreductase (XOR). FUTURE DIRECTIONS In this review, we discuss the evidence supporting a role for XOR as a nitrite reductase while focusing particularly on its function in hypertension. In addition, we discuss the potential merit in exploiting this activity of XOR in the therapeutics of hypertension.
Collapse
Affiliation(s)
- Rayomand S Khambata
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| | - Suborno M Ghosh
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| |
Collapse
|
7
|
Stein BW, Kirk ML. Electronic structure contributions to reactivity in xanthine oxidase family enzymes. J Biol Inorg Chem 2015; 20:183-94. [PMID: 25425163 PMCID: PMC4867223 DOI: 10.1007/s00775-014-1212-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
We review the xanthine oxidase (XO) family of pyranopterin molybdenum enzymes with a specific emphasis on electronic structure contributions to reactivity. In addition to xanthine and aldehyde oxidoreductases, which catalyze the two-electron oxidation of aromatic heterocycles and aldehyde substrates, this mini-review highlights recent work on the closely related carbon monoxide dehydrogenase (CODH) that catalyzes the oxidation of CO using a unique Mo-Cu heterobimetallic active site. A primary focus of this mini-review relates to how spectroscopy and computational methods have been used to develop an understanding of critical relationships between geometric structure, electronic structure, and catalytic function.
Collapse
Affiliation(s)
- Benjamin W. Stein
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 300 Terrace St. NE, Albuquerque, NM 87131
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 300 Terrace St. NE, Albuquerque, NM 87131
| |
Collapse
|
8
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
9
|
|
10
|
Dietzel U, Kuper J, Doebbler JA, Schulte A, Truglio JJ, Leimkühler S, Kisker C. Mechanism of Substrate and Inhibitor Binding of Rhodobacter capsulatus Xanthine Dehydrogenase. J Biol Chem 2009; 284:8768-76. [PMID: 19109249 PMCID: PMC2659235 DOI: 10.1074/jbc.m808114200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/19/2008] [Indexed: 11/06/2022] Open
Abstract
Rhodobacter capsulatus xanthine dehydrogenase (XDH) is an (alphabeta)(2) heterotetrameric cytoplasmic enzyme that resembles eukaryotic xanthine oxidoreductases in respect to both amino acid sequence and structural fold. To obtain a detailed understanding of the mechanism of substrate and inhibitor binding at the active site, we solved crystal structures of R. capsulatus XDH in the presence of its substrates hypoxanthine, xanthine, and the inhibitor pterin-6-aldehyde using either the inactive desulfo form of the enzyme or an active site mutant (E(B)232Q) to prevent substrate turnover. The hypoxanthine- and xanthine-bound structures reveal the orientation of both substrates at the active site and show the importance of residue Glu(B)-232 for substrate positioning. The oxygen atom at the C-6 position of both substrates is oriented toward Arg(B)-310 in the active site. Thus the substrates bind in an orientation opposite to the one seen in the structure of the reduced enzyme with the inhibitor oxypurinol. The tightness of the substrates in the active site suggests that the intermediate products must exit the binding pocket to allow first the attack of the C-2, followed by oxidation of the C-8 atom to form the final product uric acid. Structural studies of pterin-6-aldehyde, a potent inhibitor of R. capsulatus XDH, contribute further to the understanding of the relative positioning of inhibitors and substrates in the binding pocket. Steady state kinetics reveal a competitive inhibition pattern with a K(i) of 103.57 +/- 18.96 nm for pterin-6-aldehyde.
Collapse
Affiliation(s)
- Uwe Dietzel
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- M Dixon
- The Biochemical Laboratory, Cambridge
| |
Collapse
|
12
|
Cook RP, Alcock RS. The effect of hydrogen ion concentration on some oxidations by B. coli communis. Biochem J 2006; 25:523-33. [PMID: 16744615 PMCID: PMC1260668 DOI: 10.1042/bj0250523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- R P Cook
- The Biochemical Laboratory, Cambridge
| | | |
Collapse
|
13
|
Affiliation(s)
- E A Roberts
- The Bavarian Academy of Natural Sciences, Munich, and the Department of Biochemistry, Oxford
| |
Collapse
|
14
|
Green DE, Dixon M. Studies on xanthine oxidase: Xanthine oxidase and lactoflavine. Biochem J 2006; 28:237-43. [PMID: 16745358 PMCID: PMC1253177 DOI: 10.1042/bj0280237] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- D E Green
- The Biochemical Laboratory, Cambridge
| | | |
Collapse
|
15
|
Affiliation(s)
- B Woolf
- The Biochemical Laboratory, Cambridge
| |
Collapse
|
16
|
Barry G, Bunbury E, Kennaway EL. The effect of arsenic upon some oxidation-reduction systems. Biochem J 2006; 22:1102-11. [PMID: 16744105 PMCID: PMC1252228 DOI: 10.1042/bj0221102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- G Barry
- The Cancer Hospital Research Institute, London
| | | | | |
Collapse
|
17
|
|
18
|
Bernheim F. The specificity of the dehydrases: The separation of the citric acid dehydrase from liver and of the lactic acid dehydrase from yeast. Biochem J 2006; 22:1178-92. [PMID: 16744129 PMCID: PMC1252243 DOI: 10.1042/bj0221178] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Dixon M, Thurlow S. Studies on Xanthine Oxidase. VI: A Cell Oxidation System independent of Iron. Biochem J 2006; 19:672-5. [PMID: 16743559 PMCID: PMC1259240 DOI: 10.1042/bj0190672] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- M Dixon
- The Biochemical Laboratory, Cambridge
| | | |
Collapse
|
20
|
Affiliation(s)
- E Baldwin
- The Biochemical Laboratory, Cambridge
| |
Collapse
|
21
|
Affiliation(s)
- R Lemberg
- The Charles Kolling Institute for Medical Research, Royal North Shore Hospital, Sydney
| | | |
Collapse
|
22
|
Bailey K, Webb EC. Purification and properties of yeast pyrophosphatase. Biochem J 2006; 38:394-8. [PMID: 16747821 PMCID: PMC1258115 DOI: 10.1042/bj0380394] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- K Bailey
- Biochemical Laboratory, Cambridge
| | | |
Collapse
|
23
|
|
24
|
Corran HS, Dewan JG, Gordon AH, Green DE. Xanthine oxidase and milk flavoprotein: With an Addendum by J. St L. Philpot. Biochem J 2006; 33:1694-708. [PMID: 16747086 PMCID: PMC1264634 DOI: 10.1042/bj0331694] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Affiliation(s)
- Russ Hille
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 333 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210‐1218, USA
| |
Collapse
|
26
|
BRAY RC. The chemistry of xanthine oxidase. 6. Variations in stability and the presence of an inhibitor in certain preparations. Biochem J 1998; 73:690-4. [PMID: 13804055 PMCID: PMC1197121 DOI: 10.1042/bj0730690] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Abstract
It was stated by Dixon and Thurlow (1925) that xanthine oxidase is not inhibited by cyanide. They found that concentrations of cyanide up to M/100 did not produce any inhibition of either the uptake of oxygen or the reduction of methylene blue by hypoxanthine in presence of the enzyme. Some inhibition was, however, observed with higher concentrations of cyanide. During the course of some other work on xanthine oxidase, Dixon and Lemberg, using the methylene blue technique, observed in 1931 (unpublished) that even small concentrations of cyanide completely inactivated the oxidase, provided that it was incubated with the cyanide for some time at 37° before testing. Similar results were later obtained by Keilin (unpublished) for O
2
uptake. A reinvestigation of the action of cyanide on the xanthine oxidase was therefore desirable, and the results obtained are described in the present paper. It has been found that the action of cyanide on this oxidase shows a number of peculiar features which distinguish it from the other cases of cyanide inhibition hitherto known.
Collapse
|
28
|
WALTER C, FRIEDEN E. THE PREVALENCE AND SIGNIFICANCE OF THE PRODUCT INHIBITION OF ENZYMES. ACTA ACUST UNITED AC 1996; 25:167-274. [PMID: 14149677 DOI: 10.1002/9780470122709.ch4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
29
|
Kooij A. A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. ACTA ACUST UNITED AC 1995. [PMID: 7896566 DOI: 10.1007/bf02388567] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Xanthine oxidoreductase is an enzyme which has the unusual property that it can exist in a dehydrogenase form which uses NAD+ and an oxidase form which uses oxygen as electron acceptor. Both forms have a high affinity for hypoxanthine and xanthine as substrates. In addition, conversion of one form to the other may occur under different conditions. The exact function of the enzyme is still unknown but it seems to play a role in purine catabolism, detoxification of xenobiotics and antioxidant capacity by producing urate. The oxidase form produces reactive oxygen species and, therefore, the enzyme is thought to be involved in various pathological processes such as tissue injury due to ischaemia followed by reperfusion, but its role is still a matter of debate. The present review summarizes information that has become available about the enzyme. Interpretations of contradictory findings are presented in order to reduce confusion that still exists with respect to the role of this enzyme in physiology and pathology.
Collapse
Affiliation(s)
- A Kooij
- Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
30
|
Rubbo H, Radi R, Prodanov E. Substrate inhibition of xanthine oxidase and its influence on superoxide radical production. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1074:386-91. [PMID: 1653611 DOI: 10.1016/0304-4165(91)90089-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The influence of substrate inhibition on xanthine oxidase-intramolecular electron transport was studied by steady-state kinetic analysis. Experiments with hypoxanthine and xanthine up to 900 microM indicated an inhibition pattern which fitted an equation of the general form nu 0 = nu max . [S]/(Km + a[S] + b[S]2/Ki). Univalent electron flux to oxygen was favored at substrate concentrations above 50 microM. This augmentation of univalent flux percentage that appeared at a high substrate concentration was greater for hypoxanthine that xanthine and at pH 8.3 than at 9.5. Our results support a mechanism of inhibition in which a substrate-reduced enzyme, non-productive Michaelis complex was formed. It is possible that this non-productive complex favored the univalent pathway of enzyme reoxidation (superoxide production) by increasing the midpoint redox potential of the molybdenum active site.
Collapse
Affiliation(s)
- H Rubbo
- Department of Biochemistry, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | | | | |
Collapse
|
31
|
|
32
|
Morpeth FF. Studies on the specificity toward aldehyde substrates and steady-state kinetics of xanthine oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 744:328-34. [PMID: 6687810 DOI: 10.1016/0167-4838(83)90207-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aldehyde specificity of xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2) has been reinvestigated. The biogenic aldehydes and succinate semialdehyde are reasonable substrates for xanthine oxidase. Pyrophosphate, which binds to xanthine oxidase, does not seem to affect significantly the enzyme's catalytic activity. The steady-state parameters for the oxidation of several substrates by xanthine oxidase and oxygen have been determined. Formaldehyde differs from xanthine and other aldehydes in phi 2, the parameter describing the reaction with oxygen. Substrate inhibition has been studied at high concentrations of xanthine with oxygen as the electron acceptor. The inhibition is hyperbolic and uncompetitive with respect to oxygen. This is possibly due to rate-limiting product release from molybdenum(IV) being slower than from molybdenum(VI).
Collapse
|
33
|
|
34
|
Lyerla TA, Fournier PC. Xanthine dehydrogenase activity in the clawed frog, Xenopus laevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1983; 76:497-502. [PMID: 6580098 DOI: 10.1016/0305-0491(83)90282-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Xanthine dehydrogenase (XDH; EC 1.2.1.37) activity in the clawed frog, Xenopus laevis, was detected in kidney tissue homogenates, but not in skin, liver, ovaries or gut tissues. The enzyme migrated as a single band of activity on both polyacrylamide and starch gel electropherograms, exhibited substrate inhibition, and did not appear developmentally until feeding larval stages. The tissue specificity, post-fertilization stage of appearance and single isozymic form make this a useful enzyme marker for further study concerning its developmental appearance and maintenance as a kidney-specific protein.
Collapse
|
35
|
Yildiz S, Pekin B. Determination of Xanthine Oxidase by Microcalorimetric Method. ANAL LETT 1982. [DOI: 10.1080/00032718208064392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Substrate inhibition as a problem of non-linear steady state kinetics with monomeric enzymes. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/0304-5102(80)80082-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Goodman PA, Meany JE. Substrate and product inhibition in the xanthine oxidase catalyzed oxidation of acetaldehyde. Biochemistry 1974; 13:3254-7. [PMID: 4366471 DOI: 10.1021/bi00713a011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Jezewska MM. Xanthine accumulation during hypoxanthine oxidation by milk xanthine oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1973; 36:385-90. [PMID: 4740970 DOI: 10.1111/j.1432-1033.1973.tb02923.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Priest DG, Fisher JR. Substrate activation with a xanthine oxidase reaction. An alternative to dismutation as an explanation in the chicken liver system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1969; 10:439-44. [PMID: 5348071 DOI: 10.1111/j.1432-1033.1969.tb00708.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
|
41
|
Busch E, Von Borcke I, Martinez B. Abbauwege und Abbaumuster der Purinnucleotide in Herz-, Leber-, und Nierengewebe von Kaninchen nach Kreislaufstillstand. ACTA ACUST UNITED AC 1968. [DOI: 10.1016/0005-2787(68)90242-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
|
43
|
|
44
|
Gudnason G, Shipe W. Factors Affecting the Apparent Activity and Heat Sensitivity of Xanthine Oxidase in Milk. J Dairy Sci 1962. [DOI: 10.3168/jds.s0022-0302(62)89653-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
|
46
|
WOHLRAB F. Histochemische Untersuchungen zur Frage der Reduktion von Tetrazoliumverbindungen im Xanthindehydrogenase-System. Histochem Cell Biol 1961; 2:359-71. [PMID: 14007852 DOI: 10.1007/bf00848041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Bradshaw W, Barker H. Purification and Properties of Xanthine Dehydrogenase from Clostridium cylindrosporum. J Biol Chem 1960. [DOI: 10.1016/s0021-9258(18)64519-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Aurand L, Woods A. Role of Xanthine Oxidase in the Development of Spontaneously Oxidized Flavor in Milk. J Dairy Sci 1959. [DOI: 10.3168/jds.s0022-0302(59)90703-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
|
50
|
|