1
|
Bergstrom JD. The lipogenic enzyme acetoacetyl-CoA synthetase and ketone body utilization for denovo lipid synthesis, a review. J Lipid Res 2023; 64:100407. [PMID: 37356666 PMCID: PMC10388205 DOI: 10.1016/j.jlr.2023.100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
Acetoacetyl-CoA synthetase (AACS) is the key enzyme in the anabolic utilization of ketone bodies (KBs) for denovo lipid synthesis, a process that bypasses citrate and ATP citrate lyase. This review shows that AACS is a highly regulated, cytosolic, and lipogenic enzyme and that many tissues can readily use KBs for denovo lipid synthesis. AACS has a low micromolar Km for acetoacetate, and supply of acetoacetate should not limit its activity in the fed state. In many tissues, AACS appears to be regulated in conjunction with the need for cholesterol, but in adipose tissue, it seems tied to fatty acid synthesis. KBs are readily utilized as substrates for lipid synthesis in lipogenic tissues, including liver, adipose tissue, lactating mammary gland, skin, intestinal mucosa, adrenals, and developing brain. In numerous studied cases, KBs served several-fold better than glucose as substrates for lipid synthesis, and when present, KBs suppressed the utilization of glucose for lipid synthesis. Here, it is hypothesized that a physiological role for the utilization of KBs for lipid synthesis is a metabolic process of lipid interconversion. Fatty acids are converted to KBs in liver, and then, the KBs are utilized to synthesize cholesterol and other long-chain fatty acids in liver and nonhepatic tissues. The conversion of fatty acids to cholesterol via the KBs may be a particularly important example of lipid interconversion. Utilizing KBs for lipid synthesis is glucose sparing and probably is important with low carbohydrate diets. Metabolic situations and tissues where this pathway may be important are discussed.
Collapse
|
2
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Switching off the furnace: brown adipose tissue and lactation. Mol Aspects Med 2019; 68:18-41. [DOI: 10.1016/j.mam.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
|
4
|
Yuzhik EI, Proskurnyak LP, Nazarova GG. Dynamics of morphophysiological charateristics in female water voles (Arvicola amphibius L.) during pregnancy. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhang XY, Wang DH. Different physiological roles of serum leptin in the regulation of energy intake and thermogenesis between pregnancy and lactation in primiparous Brandt's voles (Lasiopodomys brandtii). Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:390-400. [PMID: 18321785 DOI: 10.1016/j.cbpc.2008.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 01/26/2023]
Abstract
Reproduction, especially lactation, is associated with major metabolic adaptive changes. In this study, we investigated the metabolic changes and the roles of leptin during different periods of reproduction in primiparous Brandt's voles (Lasiopodomys brandtii). Energy intake, thermogenic capacity and serum leptin levels were examined in non-reproductive, mid pregnant, late pregnant, early lactating and peak lactating voles. Voles increased body mass by nearly 70% during late pregnancy compared to the non-breeding controls. The increase in body mass was mainly due to the increase in body fat mass which increased by 56%, and the growth of the reproductive tissues and digestive organs. Lactating voles decreased body fat by nearly 27% at peak lactation compared to the controls, and 53% compared to late pregnant voles. At the same time they increased food intake significantly. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) decreased significantly at peak lactation. Serum leptin increased significantly in the mid pregnancy, at a time when there was no increase in body fat, and remained at this high level in late pregnancy. Leptin levels decreased after parturition and reached a nadir at peak lactation. Serum leptin was negatively correlated with energy intake during lactation, but not during pregnancy. These data suggest that Brandt's voles adjust energy intake, thermogenic capacity and body reserves to match the high energy demands for reproduction. Hyperleptinemia, without decreased energy intake suggests a state of leptin resistance during pregnancy, and hypoleptinemia during lactation might act as a signal to stimulate energy intake.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datun Lu, Chaoyang, Beijing 100101, China
| | | |
Collapse
|
6
|
Abstract
Life-history trade-offs between components of fitness arise because reproduction entails both gains and costs. Costs of reproduction can be divided into ecological and physiological costs. The latter have been rarely studied yet are probably a dominant component of the effect. A deeper understanding of life-history evolution will only come about once these physiological costs are better understood. Physiological costs may be direct or indirect. Direct costs include the energy and nutrient demands of the reproductive event, and the morphological changes that are necessary to facilitate achieving these demands. Indirect costs may be optional 'compensatory costs' whereby the animal chooses to reduce investment in some other aspect of its physiology to maximize the input of resource to reproduction. Such costs may be distinguished from consequential costs that are an inescapable consequence of the reproductive event. In small mammals, the direct costs of reproduction involve increased energy, protein and calcium demands during pregnancy, but most particularly during lactation. Organ remodelling is necessary to achieve the high demands of lactation and involves growth of the alimentary tract and associated organs such as the liver and pancreas. Compensatory indirect costs include reductions in thermogenesis, immune function and physical activity. Obligatory consequential costs include hyperthermia, bone loss, disruption of sleep patterns and oxidative stress. This is unlikely to be a complete list. Our knowledge of these physiological costs is currently at best described as rudimentary. For some, we do not even know whether they are compensatory or obligatory. For almost all of them, we have no idea of exact mechanisms or how these costs translate into fitness trade-offs.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), School of Biological Sciences, University of Aberdeen, UK.
| |
Collapse
|
7
|
Speakman JR, Król E. Limits to sustained energy intake IX: a review of hypotheses. J Comp Physiol B 2005; 175:375-94. [PMID: 16047178 DOI: 10.1007/s00360-005-0013-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/08/2005] [Accepted: 05/03/2005] [Indexed: 02/01/2023]
Abstract
Several lines of evidence indicate that animals in the wild may be limited in their maximal rates of energy intake by their intrinsic physiology rather than food availability. Understanding the limits to sustained energy intake is important because this defines an envelope within which animals must trade-off competing activities. In the first part of this review, we consider the initial ideas that propelled this area and experimental evidence connected with them. An early conceptual advance in this field was the idea that energy intake could be centrally limited by aspects of the digestive process, or peripherally limited at the sites of energy utilisation. A model system that has been widely employed to explore these ideas is lactation in small rodents. Initial studies in the late 1980s indicated that energy intake might be centrally limited, but work by Hammond and colleagues in the 1990s suggested that it was more likely that the limits were imposed by capacity of the mammary glands, and other works tended to support this view. This consensus, however, was undermined by studies that showed milk production was higher in mice at low temperatures, suggesting that the capacity of the mammary gland is not a limiting factor. In the second part of the review we consider some additional hypotheses that might explain these conflicting data. These include the heat dissipation limits hypothesis, the seasonal investment hypothesis and the saturated neural control hypothesis. Current evidence with respect to these hypotheses is also reviewed. The limited evidence presently available does not unambiguously support any one of them.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy Regulation and Obesity, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | | |
Collapse
|
8
|
Brito MN, Brito NA, Brito SR, Moura MA, Kawashita NH, Kettelhut IC, Migliorini RH. Brown adipose tissue triacylglycerol synthesis in rats adapted to a high-protein, carbohydrate-free diet. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1003-9. [PMID: 10198378 DOI: 10.1152/ajpregu.1999.276.4.r1003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adaptation of rats to a high-protein, carbohydrate-free (HP) diet induced a marked reduction of brown adipose tissue (BAT) fatty acid (FA) synthesis from both 3H2O and [14C]glucose in vivo, with pronounced decreases in the activities of four enzymes associated with lipogenesis: glucose-6-phosphate dehydrogenase, malic enzyme, citrate lyase, and acetyl-CoA carboxylase. In both HP-adapted and control rats, in vivo incorporation of 3H2O and [14C]glucose into BAT glyceride-glycerol was much higher than into FA. It could be estimated that most of the glycerol synthetized was used to esterify preformed FA. Glycerol synthesis from nonglucose sources (glyceroneogenesis) was increased in BAT from HP rats, as evidenced by an increased capacity of tissue fragments to incorporate [1-14C]pyruvate into glycerol and by a fourfold increase in the activity of phosphoenolpyruvate carboxykinase activity, a key glyceroneogenic enzyme. The data suggest that high rates of glyceroneogenesis and of esterification of preformed FA in BAT from HP-adapted rats are essential for preservation of tissue lipid stores, necessary for heat generation when BAT is recruited in nonshivering thermogenesis.
Collapse
Affiliation(s)
- M N Brito
- Departments of Biochemistry and Physiology, School of Medicine, University of São Paulo, Ribeirão Preto, 14049-900 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Barber MC, Clegg RA, Travers MT, Vernon RG. Lipid metabolism in the lactating mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:101-26. [PMID: 9295156 DOI: 10.1016/s0005-2760(97)00079-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Abstract
The ability to store substantial amounts of energy as lipid in adipose tissue has allowed development of a variety of strategies in wild animals to meet the considerable metabolic challenge of lactation. The ability to use adipose tissue energy has also been critical for development of the exceptional rates of milk production achieved in the dairy cow. Lactation thus results in profound changes in adipose tissue metabolism, the molecular bases of which are beginning to be resolved in domestic ruminants and laboratory rodents. In addition to its role as an energy store, adipose tissue has a variety of other functions (e.g., modulation of mammary development, appetite, immune system function), some of which are important for lactation.
Collapse
Affiliation(s)
- R G Vernon
- Hannah Research Institute, Ayr, Scotland, United Kingdom
| | | |
Collapse
|
11
|
Griggio MA, Luz J, Gorgulho AA, Sucasas CM. The influence of food restriction during different periods of pregnancy. Int J Food Sci Nutr 1997; 48:129-34. [PMID: 9135776 DOI: 10.3109/09637489709006972] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considering that the energy balance can be affected by factors such as pregnancy and food restriction and that the development of foetuses is different during different periods of pregnancy, the aim of this paper was to study the effects on the maternal and offspring energy balance of food restriction imposed at different periods of pregnancy. Pregnant and non-pregnant rats were subjected to four food intake treatments. Control groups received food ad libitum during the 20 days of the experiment. The other three groups were food restricted by receiving 50% of the control group food intake during the first half, the second half, or the whole experimental period. Food restriction imposed during the first half of the experimental period permitted a recuperation of energy intake, but compared to the control group, the rats gained less energy in the body. The offspring parameters studied were not affected by food restriction during the first half of the experimental period. Food restriction during the second half was more deleterious to the dams and to the offspring, which were born with less energy and weight. When food restriction was applied during the whole experimental period, the impairment in energy balance of offspring was similar to the one observed when food restriction occurred during the second half of pregnancy added to a decreased number of offspring. The dams, however, were more deeply affected than when food restriction was applied during the first half of the experimental period.
Collapse
Affiliation(s)
- M A Griggio
- Disciplina de Fisiologia Renal e Termometabologia, Universidade Federal de São Paulo (Escola Paulista de Medicina), Brasil
| | | | | | | |
Collapse
|
12
|
López-Soriano J, Argilés JM, López-Soriano FJ. Lipid metabolism in rats bearing the Yoshida AH-130 ascites hepatoma. Mol Cell Biochem 1996; 165:17-23. [PMID: 8974077 DOI: 10.1007/bf00229741] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rats bearing the Yoshida AH-130 ascites hepatoma showed important changes in lipid metabolism. The presence of this rapidly growing tumour induced a significant reduction in the intestinal absorption of an oral [14C]triolein load but without changes in whole body oxidation of the tracer to CO2. Both white (WAT) and brown (BAT) adipose tissue lipoprotein lipase (LPL) activities were increased at day 4 of tumour growth, changes that seem to be related with those observed in [14C]lipid accumulation; however, heart LPL activity was increased at day 7 but there was no change at day 4. In addition, there was a marked hyperlipemia in the tumour-bearing animals, whereas the blood ketone body concentrations were lower in these animals in comparison with the corresponding pair-fed group. The in vivo lipogenic rate was increased in liver of the tumour-bearing animals (day 4); conversely, it was decreased in WAT and skeletal muscle (day 4) and IBAT (day 7) of the AH-130-bearing rats. It may be suggested that the increased liver lipogenic rate associated with tumour burden is the main factor contributing to the hyperlipidaemia present in the Yoshida AH-130 bearing rats.
Collapse
Affiliation(s)
- J López-Soriano
- Departament de Bioquimica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
13
|
López-Soriano FJ, Williamson DH. Acute effects of endotoxin (lipopolysaccharide) on tissue lipid metabolism in the lactating rat. The role of delivery of intestinal glucose. Mol Cell Biochem 1994; 141:113-20. [PMID: 7891668 DOI: 10.1007/bf00926174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this study was to compare the effects of endotoxin on lipid metabolism and, in particular, lipogenesis in virgin and lactating rats. Intraperitoneal administration of bacterial endotoxin (lipopolysaccharide, LPS; 3 mg/kg body wt.) to fed virgin rats caused a 4-fold increase in lipogenic rate in liver in vivo. The stimulatory effect was not seen when glucose (6 mmol) was administered either orally or intraperitoneally to increase the basal rate. In contrast, the rate of lipogenesis in interscapular brown adipose tissue was inhibited, after LPS, and this was relieved by intraperitoneal glucose. In the lactating rat there were no significant changes in hepatic lipogenesis after the administration of endotoxin. However, LPS decreased the lipogenic rate in mammary gland of lactating rats and intraperitoneal glucose administration, but not oral, was able to restore the rate. In both virgin and lactating rats, LPS decreased glucose removal from the intestinal tract. In lactating rats, LPS induced a rise in blood concentrations of lactate, and plasma triacylglycerols and non-esterified fatty acids, similar to those in endotoxin-treated virgin rats. The administration of LPS did not decrease the accumulation of radioactivity in lipid in either liver or in mammary gland after injection of 3H-oleate. In contrast, LPS decreased the accumulation of radioactivity in mammary gland after injection of 3H-chylomicrons and increased it in liver and plasma. These changes were accompanied by a decrease in mammary gland activity of lipoprotein lipase. Intraperitoneal glucose partially reversed these changes in chylomicron disposition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F J López-Soriano
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | |
Collapse
|
14
|
Williamson DH, Lund P. Cellular mechanisms for the regulation of adipose tissue lipid metabolism in pregnancy and lactation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 352:45-70. [PMID: 7832059 DOI: 10.1007/978-1-4899-2575-6_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D H Williamson
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, United Kingdom
| | | |
Collapse
|
15
|
Mitchell JR, Saggerson ED. The response of brown adipose tissue mitochondrial glycerolphosphate acyltransferase to cold-exposure in hypothyroidism, after adrenalectomy and after treatment with cycloheximide. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:67-72. [PMID: 8138050 DOI: 10.1016/0020-711x(94)90197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Exposure to cold has previously been shown to considerably increase the activity of the mitochondrial form of glycerolphosphate acyltransferase (GPAT) in brown adipose tissue (A. C. Darnley, C. A. Carpenter and E. D Saggerson, Biochem. J. 253, 351-355, 1988; J. R. D. Mitchell and E. D. Saggerson. Biochem. J. 277, 665-669, 1991). 2. Both adrenalectomy and chemically-induced hypothyroidism increased mitochondrial GPAT activity in rats maintained at 21 degrees C. This increase was similar to that caused by exposing rats to the cold (4 degrees C) for three days. Whereas exposure of hypothyroid rats to cold (4 degrees C) resulted in a further increase in GPAT activity, no further increase in activity was observed after exposure of adrenalectomized rats to the cold. 3. Administration of triiodothyronine (T3) to rats maintained at 21 degrees C had no effect on mitochondrial GPAT activity. 4. Prior treatment with cycloheximide abolished 60-70% of the increase in GPAT activity caused by cold-exposure.
Collapse
Affiliation(s)
- J R Mitchell
- Department of Biochemistry & Molecular Biology, University College London, England
| | | |
Collapse
|
16
|
Kochan Z, Bukato G, Swierczynski J. Inhibition of lipogenesis in rat brown adipose tissue by clofibrate. Biochem Pharmacol 1993; 46:1501-6. [PMID: 8240402 DOI: 10.1016/0006-2952(93)90118-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of clofibrate (Atromid S, ethyl-2-(4-chlorophenoxy)-2-methylpropionate) administration for 7 days to rats on lipogenesis and on some lipogenic enzyme activities in brown adipose tissue (BAT), liver and white adipose tissue (WAT) was examined. As compared to control rats the rate of lipogenesis in BAT in the clofibrate-treated animals was significantly decreased. The rate of liver lipogenesis increased slightly, whereas lipogenesis in the WAT was not affected by clofibrate. In BAT, the drug treatment resulted in depression of fatty acid synthase, ATP-citrate lyase, malic enzyme, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities. The activity of liver fatty acid synthase did not change, ATP-citrate lyase activity slightly decreased, whereas the activity of malic enzyme significantly increased in this organ after clofibrate feeding. The ATP-citrate lyase activity in WAT decreased, while fatty acid synthase and other lipogenic enzymes were not changed after clofibrate feeding. Clofibrate treatment did not influence the activity of NADP-linked isocitrate dehydrogenase and malate dehydrogenase (enzymes not linked directly to lipogenesis), either in BAT, liver or WAT. The data presented suggest that the hypolipidaemic effect of clofibrate in the rat may be due (possibly among other mechanisms) to reduction of the rate of fatty acid synthesis in BAT but not in the liver and WAT.
Collapse
Affiliation(s)
- Z Kochan
- Department of Biochemistry, Academic Medical School, Gdansk, Poland
| | | | | |
Collapse
|
17
|
Mercer SW, Denton RM, Taberner PV. The development of resistance to the lipogenic effects of insulin in brown and white adipose tissue of spontaneously type II diabetic male CBA/Ca mice. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:941-4. [PMID: 1612184 DOI: 10.1016/0020-711x(92)90101-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Lipogenesis in brown adipose tissue and white adipose tissue (WAT) was measured in vivo in spontaneously type II diabetic male CBA/Ca mice. 2. Lipogenic rates rose sharply in brown adipose tissue between the third and fourth month of life, concomitant with the onset of hyperinsulinaemia. However, lipogenic rates fell between the fourth and fifth month of age, and remained low, despite increasing circulating insulin concentrations. 3. Lipogenesis in white adipose tissue showed a modest response to hyperinsulinaemia followed by increasing resistance to elevated insulin concentrations after 5 months of age. 4. Studies involving either the injection of insulin or the intubation of glucose provided further evidence for the development of insulin resistance in both brown and white adipose tissue.
Collapse
Affiliation(s)
- S W Mercer
- Department of Biochemistry, University of Bristol Medical School, U.K
| | | | | |
Collapse
|
18
|
Abstract
A complete reproductive cycle of ovulation, conception, pregnancy, and lactation is one of the most energetically expensive activities that a female mammal can undertake. A reproductive attempt at a time when calories are not sufficiently available can result in a reduced return on the maternal energetic investment or even in the death of the mother and her offspring. Numerous physiological and behavioral mechanisms link reproduction and energy metabolism. Reproductive attempts may be interrupted or deferred when food is scarce or when other physiological processes, such as thermoregulation or fattening, make extraordinary energetic demands. Food deprivation suppresses both ovulation and estrous behavior. The neural mechanisms controlling pulsatile release of gonadotropin-releasing hormone (GnRH) and, consequently, luteinizing hormone secretion and ovarian function appear to respond to minute-to-minute changes in the availability of metabolic fuels. It is not clear whether GnRH-secreting neurons are able to detect the availability of metabolic fuels directly or whether this information is relayed from detectors elsewhere in the brain. Although pregnancy is less affected by fuel availability, both lactational performance and maternal behaviors are highly responsive to the energy supply. When a reproductive attempt is made, changes in hormone secretion have dramatic effects on the partitioning and utilization of metabolic fuels. During ovulatory cycles and pregnancy, the ovarian steroids, estradiol and progesterone, induce coordinated changes in the procurement, ingestion, metabolism, storage, and expenditure of metabolic fuels. Estradiol can act in the brain to alter regulatory behaviors, such as food intake and voluntary exercise, as well as adenohypophyseal and autonomic outputs. At the same time, ovarian hormones act on peripheral tissues such as adipose tissue, muscle, and liver to influence the metabolism, partitioning and storage of metabolic fuels. During lactation, the peptide hormones, prolactin and growth hormone, rather than estradiol and progesterone, are the principal hormones controlling partitioning and utilization of metabolic fuels. The interactions between metabolic fuels and reproduction are reciprocal, redundant, and ubiquitous; both behaviors and physiological processes play vital roles. Although there are species differences in the particular physiological and behavioral mechanisms mediating nutrition-reproduction interactions, two findings are consistent across species: 1) Reproductive physiology and behaviors are sensitive to the availability of oxidizable metabolic fuels. 2) When reproductive attempts are made, ovarian hormones play a major role in the changes in ingestion, partitioning, and utilization of metabolic fuels.
Collapse
Affiliation(s)
- G N Wade
- Department of Psychology and Neuroscience, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
19
|
Davenport M, Morton JL, Beloff-Chain A, Dunmore SJ, Cawthorne MA. The effects of insulin and the pituitary peptide beta-cell tropin on the incorporation of D-3-3H-glucose into lipid in brown adipocytes from lactating and non-lactating rats. Biochem Biophys Res Commun 1991; 181:1437-41. [PMID: 1662498 DOI: 10.1016/0006-291x(91)92100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lactating and non-lactating rat brown adipocytes were used to study the dose-dependent stimulation of lipogenesis by Beta-cell tropin (BCT) and insulin. In non-lactating animals BCT increased lipogenesis approximately 2-fold compared to a 3-fold stimulation with insulin; however BCT was effective at a substantially lower molar concentration than insulin. In lactating animals resistance was observed to both BCT and insulin action.
Collapse
Affiliation(s)
- M Davenport
- Clore Laboratory for the Biological Sciences, University of Buckingham, Bucks, U.K
| | | | | | | | | |
Collapse
|
20
|
Mitchell JR, Saggerson ED. Activities of enzymes of glycerolipid synthesis in brown adipose tissue after treatment of rats with the adrenergic agonists BRL 26830A and phenylephrine, after exposure to cold and in streptozotocin-diabetes. Biochem J 1991; 277 ( Pt 3):665-9. [PMID: 1678597 PMCID: PMC1151294 DOI: 10.1042/bj2770665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Measurements were made, relative to tissue DNA, of the activities of enzymes of glycerolipid synthesis in homogenates of interscapular brown adipose tissue. These were: mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), Mg(2+)-dependent phosphatidate phosphohydrolase (PPH) and fatty acyl-CoA synthetase (FAS). 2. In normal animals, 3 days of cold-exposure (4 degrees C) increased all activities. The increase in mitochondrial GPAT activity was particularly pronounced (5-fold). Administration of the beta-adrenergic agonist BRL 26830A mimicked the effect of cold on microsomal GPAT activity. Mitochondrial GPAT, PPH and FAS activities were unresponsive to BRL 26830A. The alpha-adrenergic agonist phenylephrine significantly decreased activities of GPAT and PPH. 3. Streptozotocin-diabetes decreased mitochondrial GPAT activity, but did not abolish the effect of cold to increase this activity or the activity of microsomal GPAT. Diabetes abolished the effect of cold on PPH and FAS activities. 4. The findings are relevant to signals that drive early events in mitochondriogenesis and cell proliferation in brown adipose tissue on exposure to cold.
Collapse
Affiliation(s)
- J R Mitchell
- Department of Biochemistry and Molecular Biology, University College London, U.K
| | | |
Collapse
|
21
|
López-Soriano EJ, Carbó N, Argilés JM. Lipid metabolism in the obese Zucker rat. Disposal of an oral [14C]triolein load and lipoprotein lipase activity. Biochem J 1991; 274 ( Pt 3):651-6. [PMID: 2012594 PMCID: PMC1149961 DOI: 10.1042/bj2740651] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation in vivo of [14C]triolein to 14CO2 was significantly lower in obese (fa/fa) Zucker rats as compared with their lean (+/?) controls. In response to a 24 h starvation period, both lean and obese rats showed an enhanced rate of [14C]triolein oxidation. There were, however, no changes in the rate of intestinal absorption of [14C]triolein between the lean and obese animals. Conversely, the total tissular [14C]lipid accumulation was significantly higher in white adipose tissue, carcass and plasma in the obese animals, whereas that of brown adipose tissue was lower. This was associated with a marked hyperinsulinaemia and hypertriglyceridaemia in the fa/fa animals. Starvation dramatically decreased [14C]lipid accumulation in white adipose tissue of the lean Zucker rats, but had no effect in the obese rats. The lipogenic rate of the obese rats was significantly higher than that of lean rats in liver, white adipose tissue, skeletal muscle and carcass. Lipoprotein lipase activity (per g of tissue) was significantly lower in both white and brown adipose tissue of obese versus lean rats; however, total activity was higher in both tissues. Starvation significantly lowered perigenital-adipose-tissue lipoprotein lipase activity in the lean groups, and had no effect in the obese ones. These results demonstrate that the tissue capacity of exogenous lipid uptake is involved, but cannot be the only factor influencing the maintenance of obesity in these animals. Thus, in the adult fa/fa rat, the large increase in obesity is not solely dependent on a deviation of energy-producing substrate metabolism towards the storage of lipids in white fat. Other factors, such as a low rate of oxidation, a high lipogenic rate and decreased brown-adipose-tissue activity are involved in the perseverance of the obesity syndrome.
Collapse
Affiliation(s)
- E J López-Soriano
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
22
|
Holness MJ, Sugden MC. Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem J 1990; 268:77-81. [PMID: 2188650 PMCID: PMC1131393 DOI: 10.1042/bj2680077] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The percentages of pyruvate dehydrogenase complex (PDH) in the active form (PDHa) in two lipogenic tissues (liver and brown adipose tissue) in the fed state were 12.0% and 13.4% respectively. After acute (0.5 h) insulin treatment, PDHa activities had increased by 77% in liver and by 234% in brown fat. Significant decreases in PDHa activities were observed in both tissues by 5 h after the removal of food. The patterns of decline in PDHa activities in the two lipogenic tissues were similar in that the major decreases in activities were observed within the first 7 h of starvation. The significant decreases in PDHa activities observed after starvation for 6 h were accompanied by decreased rates of lipogenesis. Hepatic and brown-fat PDHa activities after acute (30 min) exposure to exogenous insulin were less in 6 h-starved than in fed rats, but the absolute increases in PDHa activities over the 30 min exposure period were similar in fed and 6 h-starved rats. Increases in PDHa activities were paralleled by increases in lipid synthesis in both tissues. Re-activation of PDH in response to insulin treatment or chow re-feeding after 48 h starvation occurred more rapidly in brown adipose tissue than in liver. The results are discussed in relation to the importance of the activity of the PDH complex as a determinant of the total rate of lipogenesis during the fed-to-starved transition and after insulin challenge or re-feeding.
Collapse
Affiliation(s)
- M J Holness
- Department of Biochemistry, London Hospital Medical College, U.K
| | | |
Collapse
|
23
|
Burnol AF, Ebner S, Kandé J, Girard J. Insulin resistance of glucose metabolism in isolated brown adipocytes of lactating rats. Evidence for a post-receptor defect in insulin action. Biochem J 1990; 265:511-7. [PMID: 2154191 PMCID: PMC1136913 DOI: 10.1042/bj2650511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanism responsible for the insulin resistance described in vivo in brown adipose tissue (BAT) of lactating rats was investigated. The effect of insulin on glucose metabolism was studied on isolated brown adipocytes of non-lactating and lactating rats. Insulin stimulation of total glucose metabolism is 50% less in brown adipocytes from lactating than from non-lactating rats. This reflects a decreased effect of insulin on glucose oxidation and lipogenesis. However, the effect of noradrenaline (8 microM) on glucose metabolism was preserved in brown adipocytes from lactating rats as compared with non-lactating rats. The number of insulin receptors is similar in BAT of lactating and non-lactating rats. The insulin-receptor tyrosine kinase activity is not altered during lactation, for receptor autophosphorylation as well as tyrosine kinase activity towards the synthetic peptide poly(Glu4-Tyr1). The defect in the action of insulin is thus localized at a post-receptor level. The insulin stimulation of pyruvate dehydrogenase activity during euglycaemic/hyperinsulinaemic clamps is 2-fold lower in BAT from lactating than from non-lactating rats. However, the percentage of active form of pyruvate dehydrogenase is similar in non-lactating and lactating rats (8.6% versus 8.9% in the basal state, and 37.0% versus 32.3% during the clamp). A decrease in the amount of pyruvate dehydrogenase is likely to be involved in the insulin resistance described in BAT during lactation.
Collapse
Affiliation(s)
- A F Burnol
- Centre de Recherche sur la Nutrition du CNRS, Meudon-Bellevue, France
| | | | | | | |
Collapse
|
24
|
Sugden MC, Holness MJ, Palmer TN. Fuel selection and carbon flux during the starved-to-fed transition. Biochem J 1989; 263:313-23. [PMID: 2688629 PMCID: PMC1133432 DOI: 10.1042/bj2630313] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M C Sugden
- Department of Biochemistry and Chemical Pathology, London Hospital Medical College, U.K
| | | | | |
Collapse
|
25
|
Krief S, Bazin R, Dupuy F, Lavau M. Role of brown adipose tissue in glucose utilization in conscious pre-obese Zucker rats. Biochem J 1989; 263:305-8. [PMID: 2604703 PMCID: PMC1133426 DOI: 10.1042/bj2630305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In 16-day-old conscious Zucker rats, at a time when pre-obese fa/fa rats were not yet hyperinsulinaemic compared with their lean Fa/fa littermates, the whole-body glucose-metabolism rate was decreased by 10% in pre-obese compared with lean pups. The markedly decreased glucose utilization found in brown adipose tissue (BAT) of pre-obese compared with lean pups accounted for at least 70% of the difference in whole-body glucose metabolism observed between the two genotypes. In pre-obese fa/fa rats, the 20% decrease in noradrenaline content of BAT reported in this study is consistent with the diminished glucose utilization by this tissue, and further supports the hypothesis of a defect in the sympathetic-nervous-system regulation of BAT metabolism as one of the primary causes for this genetic obesity.
Collapse
Affiliation(s)
- S Krief
- Institut National de la Santé et de la Recherche Médicale, Unité 177, Paris, France
| | | | | | | |
Collapse
|
26
|
Tedstone AE, Tedoldi B, Ilic V, Williamson DH. Polymyxin B diminishes blood flow to brown adipose tissue and lactating mammary gland in the rat. Possible mechanism of its action to decrease the stimulation of lipogenesis on refeeding. Biochem J 1989; 261:445-50. [PMID: 2549972 PMCID: PMC1138846 DOI: 10.1042/bj2610445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymyxin B, a cyclic decapeptide antibiotic, increased blood glucose and lactate, and inhibited the stimulation of lipogenesis in interscapular brown adipose tissue and lactating mammary gland of starved-refed virgin and lactating rats respectively. Lipogenesis was not inhibited in white adipose tissue or liver. The antibiotic increased the haematocrit. The relative blood flow to brown adipose tissue and lactating mammary gland was decreased by polymyxin B, and this was accompanied by a decrease in tissue ATP content. In vitro polymyxin B did not affect glucose utilization or conversion into lipid, nor the stimulation by insulin of these processes in brown-adipose-tissue slices. Treatment of rats in vivo with polymyxin B resulted in decreased utilization of glucose in vitro in brown-adipose-tissue slices. Similarly, acini from mammary glands of polymyxin B-treated lactating rats had decreased rates of conversion of [1-14C]glucose to lipid. It is concluded that the effects of polymyxin B may be brought about by decreases in tissue blood flow. The possibility that these effects are secondary to inhibition of glucose utilization cannot be ruled out.
Collapse
Affiliation(s)
- A E Tedstone
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
27
|
Argilés JM, Lopez-Soriano FJ, Evans RD, Williamson DH. Interleukin-1 and lipid metabolism in the rat. Biochem J 1989; 259:673-8. [PMID: 2658976 PMCID: PMC1138571 DOI: 10.1042/bj2590673] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intravenous administration of a single dose (20 micrograms) of recombinant interleukin-1-beta to virgin, lactating and litter-removed rats rapidly decreased intestinal lipid absorption in all groups. In vivo, oxidation of [14C]triolein to 14CO2 was also significantly decreased by interleukin-1. In addition, the cytokine decreased [14C]lipid accumulation in the mammary gland of lactating rats and in the adipose tissue of virgin and litter-removed rats. The decrease in lipid uptake in the interleukin-treated rats was accompanied by hypertriglyceridaemia; however, there was no significant decrease in tissue lipoprotein lipase activity, except in heart from lactating rats. In contrast, interleukin-1 administration had no effect on lipogenesis in liver, white or brown adipose tissue of virgin rats fed on glucose. These results suggest that interleukin-1 profoundly affects lipid metabolism by delaying intestinal absorption and decreasing tissue uptake.
Collapse
Affiliation(s)
- J M Argilés
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
28
|
Wilson S. Effect of the beta-adrenoceptor agonist BRL 26830 on fatty acid synthesis and on the activities of pyruvate dehydrogenase and acetyl-CoA carboxylase in adipose tissues of the rat. Biosci Rep 1989; 9:111-7. [PMID: 2566340 DOI: 10.1007/bf01117517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BRL 26830 is a thermogenic beta-adrenoceptor agonist which stimulates lipolysis and fatty acid oxidation in vivo. It also stimulates insulin secretion, and hence promotes glucose utilisation in vivo. The effect of this agent on white and brown adipose tissue of the rat was investigated. BRL 26830 increased the rate of fatty acid synthesis in vivo in white adipose tissue by 135% but reduced the rate of fatty acid synthesis in vivo in brown adipose tissue by 78%. The increase was abolished in white adipose tissue of streptozotocin-diabetic rats, indicating that the effect involved a rise in circulating insulin levels. The reduction in fatty acid synthesis in brown adipose tissues was associated with a reduction in the activity of acetyl-CoA carboxylase in the tissue consistent with a direct beta-adrenoceptor-mediated effect. BRL 26830 also increased the proportion of pyruvate dehydrogenase in its active form in vivo in brown adipose tissue and this increase was abolished in streptozotocin-diabetic rats. These findings illustrate different sensitivities of white and brown adipose tissues to combined beta-adrenergic and insulin stimulation.
Collapse
Affiliation(s)
- S Wilson
- Beecham Pharmaceuticals Research Division, Biosciences Research Centre, Epsom, Surrey
| |
Collapse
|
29
|
Abstracts of Communications. Proc Nutr Soc 1989. [DOI: 10.1079/pns19890018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Affiliation(s)
- J Himms-Hagen
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Chakrabarty K, Radhakrishnan J, Sharifi R, Mozes MF, Manaligod JR, Jeffay H. Lipogenic activity and brown fat content of human perirenal adipose tissue. Clin Biochem 1988; 21:249-54. [PMID: 3409527 DOI: 10.1016/s0009-9120(88)80009-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The incorporation of 3H2O and/or 14C-glycerol into lipids and the specific activities of the enzymes acetyl CoA carboxylase and lipoprotein lipase were measured in the perirenal and subcutaneous adipose tissue of human subjects. The perirenal adipose tissue of younger subjects with higher brown adipocyte content had higher rates of lipogenesis and enzyme activities per gram tissue than the corresponding subcutaneous tissue. However, in individual specimens, the perirenal/subcutaneous ratios of all but one of the above parameters failed to show a correlation with the brown adipocyte content of the perirenal adipose tissue. One parameter, namely 3H2O incorporation into fatty acids per adipocyte, did relate to the brown adipocyte content of the perirenal adipose tissue in four normal-weight patients only.
Collapse
Affiliation(s)
- K Chakrabarty
- Department of Biological Chemistry, University of Illinois, Chicago 60612
| | | | | | | | | | | |
Collapse
|
32
|
Darnley AC, Carpenter CA, Saggerson ED. Changes in activities of some enzymes of glycerolipid synthesis in brown adipose tissue of cold-acclimated rats. Biochem J 1988; 253:351-5. [PMID: 3178717 PMCID: PMC1149305 DOI: 10.1042/bj2530351] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Measurements were made of the activities of the following enzymes of glycerolipid synthesis in homogenates of interscapsular brown adipose tissue obtained from rats subjected to a 4 degrees C environment for time periods of 6 h up to 12 days: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), monoacylglycerolphosphate acyltransferase (MGPAT) and Mg2+-dependent phosphatidate phosphohydrolase (PPH). 2. Relative to tissue DNA content, the activities of mitochondrial GPAT, MGPAT and Mg2+-dependent PPH were significantly increased after 1 day of exposure to cold, and continued to increase thereafter. By contrast, FAS and microsomal GPAT activities were unchanged relative to tissue DNA. 3. The time profile of the increase in MGPAT activity correlated well with a concomitant increase in the microsomal marker NADP+-cytochrome c reductase. Changes in mitochondrial GPAT and in Mg2+-dependent PPH activities were larger in amplitude than that of MGPAT. 4. It is proposed that these selective changes in enzyme activity may be associated with the onset of brown-adipose-tissue hyperplasia or possibly with an increase in triacylglycerol synthesis during cold-acclimation.
Collapse
Affiliation(s)
- A C Darnley
- Department of Biochemistry, University College London, U.K
| | | | | |
Collapse
|
33
|
Saggerson ED, McAllister TW, Baht HS. Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes. Biochem J 1988; 251:701-9. [PMID: 3137922 PMCID: PMC1149061 DOI: 10.1042/bj2510701] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Brown adipocytes were isolated from the interscapular depot of male rats maintained at approx. 21 degrees C. In some experiments parallel studies were made with white adipocytes from the epididymal depot. 2. Insulin increased and noradrenaline decreased [U-14C]glucose incorporation into fatty acids by brown adipocytes. Brown adipocytes differed from white adipocytes in that exogenous fatty acid (palmitate) substantially decreased fatty acid synthesis from glucose. Both noradrenaline and insulin increased lactate + pyruvate formation by brown adipocytes. Brown adipocytes converted a greater proportion of metabolized glucose into lactate + pyruvate and a smaller proportion into fatty acids than did white adipocytes. 3. In brown adipocytes, when fatty acid synthesis from [U-14C]glucose was decreased by noradrenaline or palmitate, incorporation of 3H2O into fatty acids was also decreased to an extent which would not support proposals for extensive recycling into fatty acid synthesis of acetyl-CoA derived from fatty acid oxidation. 4. In the absence of glucose, [U-14C]lactate was a poor substrate for lipogenesis in brown adipocytes, but its use was facilitated by glucose. When brown adipocytes were incubated with 1 mM-lactate + 5 mM-glucose, lactate-derived carbon generally provided at least 50% of the precursor for fatty acid synthesis. 5. Both insulin and noradrenaline increased [U-14C]glucose conversion into CO2 by brown adipocytes (incubated in the presence of lactate) and, in combination, stimulation of glucose oxidation by these two agents showed synergism. Rates of 14CO2 formation from glucose by brown adipocytes were relatively small compared with maximum rates of oxygen consumption by these cells, suggesting that glucose is unlikely to be a major substrate for thermogenesis. 6. Brown adipocytes from 6-week-old rats had considerably lower maximum rates of fatty acid synthesis, relative to cell DNA content, than white adipocytes. By contrast, rates of fatty acid synthesis from 3H2O in vivo were similar in the interscapular and epididymal fat depots. Expressed relative to activities of fatty acid synthase or ATP citrate lyase, however, brown adipocytes synthesized fatty acids as effectively as did white adipocytes. It is suggested that the cells most active in fatty acid synthesis in the brown adipose tissue are not recovered fully in the adipocyte fraction during cell isolation. Differences in rates of fatty acid synthesis between brown and white adipocytes were less apparent at 10 weeks of age.
Collapse
Affiliation(s)
- E D Saggerson
- Department of Biochemistry, University College London, U.K
| | | | | |
Collapse
|
34
|
Mercer SW, Williamson DH. The influence of starvation and natural refeeding on the rate of triacylglycerol/fatty acid substrate cycling in brown adipose tissue and different white adipose sites of the rat in vivo. The role of insulin and the sympathetic nervous system. Biosci Rep 1988; 8:147-53. [PMID: 3044460 DOI: 10.1007/bf01116459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Triacylglycerol/fatty acid substrate cycling was measured in vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.
Collapse
Affiliation(s)
- S W Mercer
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, UK
| | | |
Collapse
|
35
|
Baht HS, Saggerson ED. Comparison of triacylglycerol synthesis in rat brown and white adipocytes. Effects of hypothyroidism and streptozotocin-diabetes on enzyme activities and metabolic fluxes. Biochem J 1988; 250:325-33. [PMID: 3355527 PMCID: PMC1148859 DOI: 10.1042/bj2500325] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Adipocytes were isolated from the interscapular brown fat and the epididymal white fat of normal, streptozotocin-diabetic and hypothyroid rats. 2. Measurements were made of the maximum rate of triacylglycerol synthesis by monitoring the incorporation of [U-14C]glucose into acylglycerol glycerol in the presence of palmitate (1 mM) and insulin (4 nM) and of the activities of the following triacylglycerol-synthesizing enzymes: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), dihydroxyacetonephosphate acyltransferase (DHAPAT), monoacylglycerol phosphate acyltransferase (MGPAT), Mg2+-dependent phosphatidate phosphohydrolase (PPH) and diacylglycerol acyltransferase (DGAT). 3. FAS activity in brown adipocytes was predominantly localized in the mitochondrial fraction, whereas a microsomal localization of this enzyme predominated in white adipocytes. Subcellular distributions of the other enzyme activities in brown adipocytes were similar to those shown previously with white adipocytes [Saggerson, Carpenter, Cheng & Sooranna (1980) Biochem. J. 190, 183-189]. 4. Relative to cell DNA, brown adipocytes had lower activities of triacylglycerol-synthesizing enzymes and showed lower rates of metabolic flux into acylglycerols than did white adipocytes isolated from the same animals. 5. Diabetes decreased both metabolic flux into acylglycerols and the activities of triacylglycerol-synthesizing enzymes in white adipocytes. By contrast, although diabetes decreased metabolic flux into brown-adipocyte acylglycerols by 80%, there were no decreases in the activities of triacylglycerol-synthesizing enzymes, and the activity of PPH was significantly increased. 6. Hypothyroidism increased metabolic flux into acylglycerols in both cell types, and increased activities of all triacylglycerol-synthesizing enzymes in brown adipocytes. By contrast, in white adipocytes, although hypothyroidism increased the activities of FAS, microsomal GPAT and DGAT, this condition decreased the activities of mitochondrial GPAT and PPH. 7. It was calculated that the maximum capabilities for fatty acid oxidation and esterification are approximately equal in brown adipocytes. In white adipocytes esterification is predominant by approx. 100-fold. 8. Diabetes almost abolished incorporation of [U-14C]glucose into fatty acids in both adipocyte types. Hypothyroidism increased fatty acid synthesis in white and brown adipocytes by 50% and 1000% respectively.
Collapse
Affiliation(s)
- H S Baht
- Department of Biochemistry, University College London, U.K
| | | |
Collapse
|
36
|
Ebner S, Burnol AF, Ferre P, de Saintaurin MA, Girard J. Effects of insulin and norepinephrine on glucose transport and metabolism in rat brown adipocytes. Potentiation by insulin of norepinephrine-induced glucose oxidation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 170:469-74. [PMID: 3319619 DOI: 10.1111/j.1432-1033.1987.tb13723.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glucose is an important fuel for rat brown adipose tissue in vivo and its utilization is highly sensitive to insulin. In this study, the different glucose metabolic pathways and their regulation by insulin and norepinephrine were examined in isolated rat brown adipocytes, using [6-14C]glucose as a tracer. Glucose utilization was stimulated for insulin concentrations in the range of 40-1000 microU/ml. Furthermore, the addition of adenosine deaminase (200 mU/ml) or adenosine (10 microM) did not alter insulin sensitivity of glucose metabolism. The major effect of insulin (1 mU/ml) was a respective 7-fold and 5-fold stimulation of lipogenesis and lactate synthesis, whereas glucose oxidation remained very low. The 5-fold stimulation of total glucose metabolism by 1 mU/ml of insulin was accompanied by an 8-fold increase in glucose transport. In the presence of norepinephrine (8 microM), total glucose metabolism was increased 2-fold. This was linked to a 7-fold increase of glucose oxidation, whereas lipogenesis was greatly inhibited (by 72%). In addition, norepinephrine alone did not modify glucose transport. The addition of insulin to adipocytes incubated with norepinephrine, induced a potentiation of glucose oxidation, while lipogenesis remained very low. In conclusion, in the presence of insulin and norepinephrine glucose is a oxidative substrate for brown adipose tissue. However the quantitative importance of glucose as oxidative fuel remains to be determined.
Collapse
Affiliation(s)
- S Ebner
- Centre de Recherches sur la Nutrition du Centre National de la Recherche Scientifique, Meudon-Bellevue, France
| | | | | | | | | |
Collapse
|
37
|
Trayhurn P, Jennings G. Functional atrophy of brown adipose tissue during lactation in mice. Effects of lactation and weaning on mitochondrial GDP binding and uncoupling protein. Biochem J 1987; 248:273-6. [PMID: 2829824 PMCID: PMC1148530 DOI: 10.1042/bj2480273] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The thermogenic activity and capacity of brown adipose tissue were determined in mice during lactation and after weaning. There was a marked fall during lactation in the mitochondrial content of the tissue, and in GDP binding and the specific mitochondrial concentration of uncoupling protein. The lactation-induced functional atrophy of brown adipose tissue was fully reversible after weaning; mitochondrial content and the mitochondrial concentration of uncoupling protein were both restored, although GDP binding was not normalized.
Collapse
Affiliation(s)
- P Trayhurn
- Dunn Nutrition Laboratory, Medical Research Council, Cambridge, U.K
| | | |
Collapse
|
38
|
Thompson MP, Grigor MR. The effects of meal-feeding and the diurnal cycle on lipogenesis in brown adipose tissue of rats. Biosci Rep 1987; 7:871-9. [PMID: 3329535 DOI: 10.1007/bf01119478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A significant diurnal variation in the rates of lipogenesis in vivo in brown adipose tissue occurred in both virgin and lactating rats. On a meal-feeding regime of either a chow, high-sucrose, or high-lipid diet, there was a very large increase in BAT lipogenesis following the meal. The rates observed after the sucrose meal are the highest so far reported. There was no significant difference in BAT lipogenesis between lactating and virgin rats, contrary to previous reports by others. The pattern of stimulation of BAT lipogenesis by these feeding regimes was different from that for white adipose tissue and liver and was not correlated with plasma insulin levels.
Collapse
Affiliation(s)
- M P Thompson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
39
|
Monfar M, Prats E, Argilés J, Alemany M. A 24-hour fast-induced loss of energetic substrates in the interscapular brown adipose tissue of ‘cafeteria’ rats. Nutr Res 1987. [DOI: 10.1016/s0271-5317(87)80152-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Buckley MG, Rath EA. Regulation of fatty acid synthesis and malonyl-CoA content in mouse brown adipose tissue in response to cold-exposure, starvation or re-feeding. Biochem J 1987; 243:437-42. [PMID: 2888457 PMCID: PMC1147874 DOI: 10.1042/bj2430437] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.
Collapse
|
41
|
Kilgour E, Vernon RG. Tissue-specific changes in the ability of insulin and noradrenaline to activate pyruvate dehydrogenase in vivo during lactation in the rat. Biochem J 1987; 243:69-74. [PMID: 3300640 PMCID: PMC1147815 DOI: 10.1042/bj2430069] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Changes are described in the total pyruvate dehydrogenase (PDH) activity, the proportion of PDH in the active state and its control by insulin and noradrenaline in vivo, in white adipose tissue, liver, skeletal muscle and mammary gland with pregnancy, lactation and on weaning. Lactation resulted in a decrease in total PDH in white adipose tissue and an increase in the mammary gland, whereas the proportion in the active state decreased in muscle and increased in the mammary gland. The ability of insulin to activate PDH of white adipose tissue was lost during lactation, whereas it was retained by the other tissues. The ability of noradrenaline to activate PDH was decreased in white adipose tissue but increased in liver during lactation. These various adaptations should limit the use of glucose and lactate carbon by adipose tissue and skeletal muscle during lactation and thereby facilitate their preferential utilization by the mammary gland.
Collapse
|
42
|
Holness MJ, Sugden MC. Regulation of renal and hepatic pyruvate dehydrogenase complex on carbohydrate re-feeding after starvation. Possible mechanisms and a regulatory role for thyroid hormone. Biochem J 1987; 241:421-5. [PMID: 3297032 PMCID: PMC1147577 DOI: 10.1042/bj2410421] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The work investigated the mechanisms for modulation of renal and hepatic pyruvate dehydrogenase complex (PDH) activities after carbohydrate re-feeding of 48 h-starved rats, and identified a regulatory role for tri-iodothyronine. Glucose re-feeding decreased blood concentrations of lipid fuels in both euthyroid and hyperthyroid rats. This treatment was not associated with re-activation of hepatic PDH in either group of rats, or of renal PDH in hyperthyroid rats (where activity was already high), but it increased renal PDH in euthyroid rats. Dichloroacetate (DCA), an activator of PDH kinase, increased renal PDH activities in euthyroid rats, but not hyperthyroid rats, and effects of glucose re-feeding or hyperthyroidism were no longer apparent. These treatments therefore exert their effects on renal PDH through changes in PDH kinase. DCA re-activation of hepatic PDH was more marked in hyperthyroid than in euthyroid rats, suggesting that, under conditions of inhibited kinase activity, PDH phosphatase is more active in livers of hyperthyroid rats. The limited effect of DCA on hepatic PDH in euthyroid rats was potentiated by glucose re-feeding or insulin, but not by inhibition of lipolysis, demonstrating a direct effect of insulin to increase hepatic PDH phosphatase. Glucose re-feeding, inhibition of lipolysis or insulin administration did not increase hepatic PDH in DCA-treated hyperthyroid rats, indicating that effects of hyperthyroidism and of insulin on PDH phosphatase are not additive.
Collapse
|
43
|
Moore BJ, Gerardo-Gettens T, Horwitz BA, Stern JS. Hyperprolactinemia stimulates food intake in the female rat. Brain Res Bull 1986; 17:563-9. [PMID: 3779456 DOI: 10.1016/0361-9230(86)90226-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lactation in the rat is marked by extreme hyperphagia. The present study examined the possibility that elevated prolactin levels contribute to this increase. It also evaluated the effects of hyperprolactinemia on brown adipose tissue and carcass composition. Virgin Osborne-Mendel rats were made hyperprolactinemic via ectopic pituitary transplants (PIT, n = 9) or were sham-operated (SHAM, n = 8). Eight lactating rats (LACT) served as additional controls. Food intake, body weight and rectal temperature were recorded daily. Eleven days postsurgery (or 11-12 days postpartum), the rats were sacrificed, and brown fat (scapular, axillary, cervical and thoracic) was excised, weighed, and assayed for GDP binding, one indicator of thermogenic capacity. Carcasses were subjected to body composition analysis. Although prior to surgery, PIT and SHAM rats weighed the same, PIT rats gained significantly more weight during the experiment than did SHAMs. Percent body fat and food intake (both total intake and intake relative to metabolic body size) were significantly elevated in the PIT rats. GDP binding in both PIT and LACT rats was significantly less than in SHAMs. This was true whether GDP binding was expressed per mg mitochondrial protein or per total amount of mitochondrial protein recovered. These data confirm that brown fat thermogenic capacity is suppressed during lactation. They also demonstrate that elevations of serum prolactin, to levels that are well within physiological limits, are capable of stimulating food intake and white fat deposition in the female rat. It is presently unclear whether these results are a direct or an indirect effect of hyperprolactinemia.
Collapse
|
44
|
Lorenzo M, Roncero C, Benito M. The role of prolactin and progesterone in the regulation of lipogenesis in maternal and foetal rat liver in vivo and in isolated hepatocytes during the last day of gestation. Biochem J 1986; 239:135-9. [PMID: 3800972 PMCID: PMC1147250 DOI: 10.1042/bj2390135] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The administration of progesterone on day 21 of gestation increases the rates of lipogenesis in the liver in vivo and in hepatocytes isolated from rats on day 22 of pregnancy. Bromocriptine administration increases the rates of hepatic lipogenesis in vivo, but has no effect on lipid synthesis in hepatocytes under the same treatment conditions. Concurrently, the administration of progesterone or bromocriptine on day 21 to the mother increases the rates of lipogenesis in the foetal liver in vivo on day 22. The rates of lipid synthesis in foetal isolated hepatocytes are increased by progesterone administration, but remain unchanged by bromocriptine.
Collapse
|
45
|
Villarroya F, Felipe A, Mampel T. Sequential changes in brown adipose tissue composition, cytochrome oxidase activity and GDP binding throughout pregnancy and lactation in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 882:187-91. [PMID: 3011113 DOI: 10.1016/0304-4165(86)90154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The sequential appearance of changes in interscapular brown adipose tissue composition, cytochrome oxidase activity and GDP binding was studied throughout pregnancy and lactation in the rat. Brown adipose tissue was hypertrophied during pregnancy because of progressive lipid accumulation, whereas its mitochondrial component and GDP binding to brown fat mitochondria were unchanged. In early lactation (day 5) there was a decrease in the overall GDP binding to brown fat only because of the lower mitochondrial protein content. In late stages of lactation (days 10 and 15), the amount of tissue and its mitochondrial protein content were minimal and the GDP binding per mitochondrial protein decreased substantially. Scatchard analysis in day-15-lactating rats indicated a large decrease in GDP binding sites without any changes in affinity. It is concluded that the diminished thermogenic activity of brown fat in lactation is attained through changes at different structural levels of the tissue occurring in a characteristic sequential trend; first a reduction in its mitochondrial component, and only later, at mid-lactation, a decrease in the specific mitochondrial proton conductance pathway activity.
Collapse
|
46
|
Holness MJ, French TJ, Sugden MC. Hepatic glycogen synthesis on carbohydrate re-feeding after starvation. A regulatory role for pyruvate dehydrogenase in liver and extrahepatic tissues. Biochem J 1986; 235:441-5. [PMID: 3741401 PMCID: PMC1146706 DOI: 10.1042/bj2350441] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucose administration to 48 h-starved rats increased hepatic glucose, lactate, pyruvate and glycogen concentrations and re-activated PDH (pyruvate dehydrogenase complex) in kidney, but not in heart or liver. Dichloroacetate together with glucose re-activated PDH in all three tissues, decreased hepatic lactate and pyruvate concentrations and impaired glycogen resynthesis. Thus on re-feeding, delayed PDH re-activation is important for provision of precursors for hepatic glyconeogenesis.
Collapse
|
47
|
Roberts JL, Ashwell M, Enser M. Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: in situ and in transplants. Lipids 1986; 21:195-201. [PMID: 3702613 DOI: 10.1007/bf02534821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triacylglycerols of white adipose tissue (WAT) from animals with high rates of lipogenesis, such as obese hyperglycemic mice or hypothalamically lesioned rats, contain high proportions of palmitoleic acid (16:1) and low proportions of linoleic acid (18:2). These differences appear to result from dilution of dietary 18:2 by synthesized fatty acids, particularly 16:1. To test this we have investigated the triacylglycerol fatty acid composition of brown and white adipose tissue of lean and obese mice, as brown adipose tissue (BAT) has a higher lipogenic rate than WAT and lipogenesis is faster in obese than in lean mice. Between three and eight weeks of age the proportions of fatty acids in the tissues changed, with a marked fall in milk-derived lauric and myristic acids. From 8 to 16 weeks they were more stable and the proportions of 16:1 and 18:2 in the different tissues were as expected, with the highest and lowest proportions, respectively, in BAT from obese mice. When BAT from obese mice was transplanted under the kidney capsule of lean mice, or vice versa, for one month, the fatty acid composition of the grafts changed toward that of the host BAT. The proportions of 18:2 and, to a lesser extent, 16:1 were slightly higher in the grafts than in the hosts but since this also occurred in lean-to-lean and obese-to-obese grafts it was probably a transplantation artifact. Overall, the results confirm that the physiological environment, rather than the source of the adipose tissue, is the major determinant of its fatty acid composition.
Collapse
|
48
|
Histomorphology, adipocyte size and total fat cell number in the interscapular brown adipose tissue of pregnant and lactating rats. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf03179356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Ferré P, Burnol AF, Leturque A, Terretaz J, Penicaud L, Jeanrenaud B, Girard J. Glucose utilization in vivo and insulin-sensitivity of rat brown adipose tissue in various physiological and pathological conditions. Biochem J 1986; 233:249-52. [PMID: 3513758 PMCID: PMC1153011 DOI: 10.1042/bj2330249] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brown-adipose-tissue glucose utilization rate and its insulin-sensitivity were measured in vivo in the anaesthetized rat by a 2-deoxy[1-3H]glucose technique. Glucose utilization can be increased 60-fold by insulin, to reach extremely high rates. Glucose utilization and its insulin-sensitivity are modulated in accordance with physiological or pathological conditions.
Collapse
|
50
|
Adels LE, Leon M. Thermal control of mother-young contact in Norway rats: factors mediating the chronic elevation of maternal temperature. Physiol Behav 1986; 36:183-96. [PMID: 3952180 DOI: 10.1016/0031-9384(86)90094-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chronically elevated heat production of lactating Norway rats makes them vulnerable to acute hyperthermia during pup contact and thereby limits the duration of such interactions. High lactational levels of progesterone and corticosterone may act in concert to increase maternal heat load. Specifically, progesterone appears to increase maternal thermal set point and corticosterone is necessary for the increase in maternal heat production. Thyroid hormones and brown adipose tissue do not seem to contribute to the chronic increase in maternal heat production. While mammary tissue does contribute to maternal heat load, it is no more hypermetabolic than other maternal tissues.
Collapse
|