1
|
Veeravalli KK. Implications of MMP-12 in the pathophysiology of ischaemic stroke. Stroke Vasc Neurol 2024; 9:97-107. [PMID: 37336584 PMCID: PMC11103161 DOI: 10.1136/svn-2023-002363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
This article focuses on the emerging role of matrix metalloproteinase-12 (MMP-12) in ischaemic stroke (IS). MMP-12 expression in the brain increases dramatically in animal models of IS, and its suppression reduces brain damage and promotes neurological, sensorimotor and cognitive functional outcomes. Thus, MMP-12 could represent a potential target for the management of IS. This article provides an overview of MMP-12 upregulation in the brain following IS, its deleterious role in the post-stroke pathogenesis (blood-brain barrier disruption, inflammation, apoptosis and demyelination), possible molecular interactions and mechanistic insights, its involvement in post-ischaemic functional deficits and recovery as well as the limitations, perspectives, challenges and future directions for further research. Prior to testing any MMP-12-targeted therapy in patients with acute IS, additional research is needed to establish the effectiveness of MMP-12 suppression against IS in older animals and in animals with comorbidities. This article also examines the clinical implications of suppressing MMP-12 alone or in combination with MMP-9 for extending the currently limited tissue plasminogen activator therapy time window. Targeting of MMP-12 is expected to have a profound influence on the therapeutic management of IS in the future.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| |
Collapse
|
2
|
Yue C, Feng J, Gao A. A network pharmacology and molecular docking investigation on the mechanisms of Shanyaotianhua decoction (STT) as a therapy for psoriasis. Medicine (Baltimore) 2023; 102:e34859. [PMID: 37653756 PMCID: PMC10470816 DOI: 10.1097/md.0000000000034859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease with a complex etiology involving environmental and genetic factors. Psoriasis patients often require long-term treatment. Shanyaotianua decoction (STT), a typical traditional Chinese medicine prescription, positively affects psoriasis, although its molecular targets remain unknown. To elucidate its molecular mechanisms, a combination of network pharmacology, bioinformatics analysis, and drug similarity comparisons were employed. Participants were separated into 3 groups: non-lesional (NL), lesions after medication (LM), and psoriasis lesion groups (LS). Based on the Gene Ontology/kyoto encyclopedia of genes and genomes enrichment analyses, the key targets were mainly enriched for biological processes (immuno-inflammatory responses, leukocyte differentiation, lipid metabolic disorders, and viral infection) with the relevant pathways (Janus kinase/signal transducers and activators of transcription and adipocytokine signaling and T-helper 17 cell differentiation), thus identifying the possible action mechanism of STT against psoriasis. Target prediction for 18 STT compounds that matched the screening criteria was performed. Then, the STT compounds were intersected with the differentially expressed genes of the psoriatic process, and 5 proteins were potential targets for STT. Based on the open-source toolkit RDKit and DrugBank database, and through molecular docking and drug similarity comparisons, spinasterol, diosgenin, and 24-Methylcholest-5-enyl-3belta-O-glucopyranoside_qt may be potential drugs for psoriasis.
Collapse
Affiliation(s)
- Chen Yue
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahao Feng
- The Seventh Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aili Gao
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Chen K, Xu M, Lu F, He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med 2023; 20:661-670. [PMID: 37160567 PMCID: PMC10352474 DOI: 10.1007/s13770-023-00536-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023] Open
Abstract
Extracellular matrix (ECM) components confer biomechanical properties, maintain cell phenotype and mediate tissue homeostasis. ECM remodeling is complex and plays a key role in both physiological and pathological processes. Matrix metalloproteinases (MMPs) are a group of enzymes responsible for ECM degradation and have been accepted as a key regulator in ECM remodeling. In this mini-review, we summarize MMPs categories, functions and the targeted substrates. We then discuss current understanding of the role of MMPs-mediated events, including inflammation reaction, angiogenesis, cellular activities, etc., in ECM remodeling in the context of regenerative medicine.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Chen Y, Yang X, Kitajima S, Quan L, Wang Y, Zhu M, Liu E, Lai L, Yan H, Fan J. Macrophage elastase derived from adventitial macrophages modulates aortic remodeling. Front Cell Dev Biol 2023; 10:1097137. [PMID: 36704203 PMCID: PMC9871815 DOI: 10.3389/fcell.2022.1097137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is pathologically characterized by intimal atherosclerosis, disruption and attenuation of the elastic media, and adventitial inflammatory infiltrates. Although all these pathological events are possibly involved in the pathogenesis of AAA, the functional roles contributed by adventitial inflammatory macrophages have not been fully documented. Recent studies have revealed that increased expression of matrix metalloproteinase-12 (MMP-12) derived from macrophages may be particularly important in the pathogenesis of both atherosclerosis and AAA. In the current study, we developed a carrageenan-induced abdominal aortic adventitial inflammatory model in hypercholesterolemic rabbits and evaluated the effect of adventitial macrophage accumulation on the aortic remodeling with special reference to the influence of increased expression of MMP-12. To accomplish this, we compared the carrageenan-induced aortic lesions of transgenic (Tg) rabbits that expressed high levels of MMP-12 in the macrophage lineage to those of non-Tg rabbits. We found that the aortic medial and adventitial lesions of Tg rabbits were greater in degree than those of non-Tg rabbits, with the increased infiltration of macrophages and prominent destruction of elastic lamellae accompanied by the frequent appearance of dilated lesions, while the intimal lesions were slightly increased. Enhanced aortic lesions in Tg rabbits were focally associated with increased dilation of the aortic lumens. RT-PCR and Western blotting revealed high levels of MMP-12 in the lesions of Tg rabbits that were accompanied by elevated levels of MMP-2 and -3, which was caused by increased number of macrophages. Our results suggest that adventitial inflammation constitutes a major stimulus to aortic remodeling and increased expression of MMP-12 secreted from adventitial macrophages plays an important role in the pathogenesis of vascular diseases such as AAA.
Collapse
Affiliation(s)
- Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Xiawen Yang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Longquan Quan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Wang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Maobi Zhu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Liangxue Lai
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haizhao Yan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Haizhao Yan, ; Jianglin Fan,
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan,*Correspondence: Haizhao Yan, ; Jianglin Fan,
| |
Collapse
|
5
|
Matrix metalloproteinase -12: A marker of preeclampsia? Placenta 2022; 129:36-42. [PMID: 36208531 DOI: 10.1016/j.placenta.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Enzymes, including matrix metalloproteinases (MMPs), play a significant role in trophoblast invasion - the cornerstone of preeclampsia pathogenesis. METHODS This study aimed to explore the dynamics of the MMP-12 concentration in blood serum during the gestational period at determined weeks in preeclampsia and physiological pregnancy to compare the results with the expression of MMP-12 in placental tissue and reveal the MMP-12 predicting role in preeclampsia. RESULTS Circulating serum MMP-12 was significantly decreased. The level of 0.5 ng/ml had high sensitivity and low false positivity at 11-13 weeks of pregnancy in women destined to develop pre-eclampsia in the case-control study. The dynamics curve of serum MMP-12 varied between study groups: a sharp decrease in MMP-12 concentration was found from the first trimester to the second trimester, followed by a slight increase in the third trimester of pregnancy in controls compared to the increase in concentration from the first trimester to the second trimester in pre-eclampsia. The absence of a significant difference in the concentration of MMP-12 in the II and III trimesters as well as no difference in the expression of MMP-12 protein in placental tissue in the third trimester indicates a decrease in its role after the end of placentation. DISCUSSION To our knowledge, this is the first study to show the dynamics of serum MMP-12 concentration during the gestational period and indicates a significant role for MMP-12 in the initial stages of placentation. The data obtained may pave the way to new early prediction strategies for preeclampsia.
Collapse
|
6
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
7
|
Li M, Zhou L, Li S, Fang L, Yang L, Wu X, Yang C, Bao Y, Lan S, Tong Z, Zheng S, Tang B, Zeng E, Xie S, Chen C, Hong T. MMP12 is a potential therapeutic target for Adamantinomatous craniopharyngioma: Conclusions from bioinformatics analysis and in vitro experiments. Oncol Lett 2021; 22:536. [PMID: 34084216 PMCID: PMC8161407 DOI: 10.3892/ol.2021.12797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Adamantinomatous craniopharyngioma (ACP) is considered a benign intracranial tumor, but it can also exhibit aggressive characteristics. Due to its unique location in the suprasellar, which brings it close to important nerves and vascular structures, ACP can often lead to significant neuroendocrine diseases. The current treatments primarily include surgical intervention, radiation therapy or a combination of the two, but these can lead to serious complications and adversely affect the quality of life of patients. Thus, it is important to identify effective and safe alternatives. Recently, studies have focused on the tumor genome, transcriptome and proteome in an attempt to identify potential therapeutic targets for clinical use. However, studies on this region of the CP are limited; thus, the present study focused on this region. The GSE94349 and GSE68015 datasets were downloaded from the Gene Expression Omnibus database and analyzed. In the in vitro studies, the effect of the matrix metalloproteinase (MMP)12 inhibitor, MMP408, on cell proliferation and protein expression was assessed. The results demonstrated that MMP408 effectively inhibited cell proliferation and migration of ACP cells, and decreased the expression levels of the related proteins. Thus, MMP12 may be used as a potential therapeutic target for the treatment of ACP.
Collapse
Affiliation(s)
- Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chenxing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sihai Lan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhigao Tong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cheng Chen
- Department of Rehabilitation Medicine, Lushan Sanatorium, Jiujiang, Jiangxi 332000, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Schutte SC, Evdokiou A, Satish L. Protease levels are significantly altered in pediatric burn wounds. Burns 2020; 46:1603-1611. [PMID: 32482377 DOI: 10.1016/j.burns.2020.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Burn wounds contain high levels of protease activity due to the need to remodel the damaged extracellular matrix proteins. While necessary, excessive protease activity can lead to improper wound healing and is associated with increased contraction and fibrosis. No studies to date have investigated the expression changes of all the collagenases and elastases in burn wounds. The present study compares gene expression changes and changes in collagenase and elastase activity between burn wound eschar and normal skin in a pediatric population. Deidentified pediatric tissues were used for these experiments. Burn wound tissue was excised as part of normal standard care within a week from injury; normal skin was removed during elective plastic surgery procedures. RNA-sequencing was performed and significant results were confirmed with qRT-PCR. Activity assays showed a significant increase in both collagenase and elastase activity in the burn wound tissue compared to the normal skin. Western blotting and substrate zymography of tissue homogenates evaluated the results at the protein levels. Four elastases and three collagenases were determined to be significantly upregulated in the wound tissues by both RNA-sequencing and qRT-PCR. Cathepsin V was the only protease that was significantly downregulated. All but one metalloproteinase studied was significantly upregulated. None of the serine proteases were significantly altered in the wound tissues. In conclusion, matrix metalloproteinases appear to be the most highly elevated proteases after a pediatric burn wound injury, at least within the first 3-7 days. The data warrant further investigation into the effects of MMPs on burn wound healing.
Collapse
Affiliation(s)
- Stacey C Schutte
- Department of Research, Shriners Hospitals for Children-Cincinnati, 3229 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Biomedical Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221, USA.
| | - Alexander Evdokiou
- Department of Research, Shriners Hospitals for Children-Cincinnati, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Latha Satish
- Department of Research, Shriners Hospitals for Children-Cincinnati, 3229 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati School of Medicine, 234 Goodman Street, Cincinnati, OH 45219, USA
| |
Collapse
|
9
|
Yang M, Zhang X, Liu Q, Niu T, Jiang L, Li H, Kuang J, Qi C, Zhang Q, He X, Wang L, Li J. Knocking out matrix metalloproteinase 12 causes the accumulation of M2 macrophages in intestinal tumor microenvironment of mice. Cancer Immunol Immunother 2020; 69:1409-1421. [PMID: 32242260 DOI: 10.1007/s00262-020-02538-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
MMP12 is mainly secreted by macrophages, is involved in macrophage development, and decomposes the extracellular matrix. Herein, we investigated whether macrophages would change in the intestinal tumor microenvironment after MMP12 knockout. ApcMin/+;MMP12-/-mice were obtained by crossbreeding ApcMin/+ mice with MMP12 knockout mice (MMP12-/- mice). The data showed that the number and volume of intestinal tumors were significantly increased in ApcMin/+;MMP12-/- mice compared with ApcMin/+ mice. Additionally, the tumor biomarkers CA19-9, CEA, and β-catenin appeared relatively early in intestinal tumors in ApcMin/+;MMP12-/- mice. The results demonstrated that knocking out MMP12 accelerated the tumor growth and pathological process. On further investigation of its mechanism, the proportions of M2 macrophages in the spleen and among peritoneal macrophages were significantly up-regulated in ApcMin/+;MMP12-/- mice. Expression of M2 macrophage-related genes was up-regulated in tumor and peritoneal macrophages. The M2-related cytokine levels of IL-4 and IL-13 were increased in the serum of ApcMin/+;MMP12-/-mice. In vitro, bone marrow-derived M2 macrophages were obtained by treating bone marrow cells with IL-4 and IL-13, and these M2 macrophages secreted cytokines being changed. This finding reveals the crucial role of MMP12 in macrophage development and provides a new target for the control of macrophage polarization. Knocking out MMP12 causes intestinal M2 macrophage accumulation in tumor microenvironment, promoting the growth of intestinal tumors in ApcMin/+ mice.
Collapse
Affiliation(s)
- Mingming Yang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaohan Zhang
- Department of Pathology, Zhuhai Branch of Traditional Chinese Medicine Hospital of Guangdong Province, Zhuhai, 519015, China
| | - Qing Liu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ting Niu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Lingbi Jiang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Haobin Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jianbiao Kuang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Cuiling Qi
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Abstract
Elastic fibers are found in the extracellular matrix (ECM) of tissues requiring resilience and depend on elasticity. Elastin and its degradation products have multiple roles in the oncologic process. In many malignancies, the remodeled ECM expresses high levels of the elastin protein which may have either positive or negative effects on tumor growth. Elastin cross-linking with other ECM components and the enzymes governing this process all have effects on tumorigenesis. Elastases, and specifically neutrophil elastase, are key drivers of invasion and metastasis and therefore are important targets for inhibition. Elastin degradation leads to the generation of bioactive fragments and elastin-derived peptides that further modulate tumor growth and spread. Interestingly, elastin-like peptides (ELP) and elastin-derived peptides (EDP) may also be utilized as nano-carriers to combat tumor growth. EDPs drive tumor development in a variety of ways, and specifically targeting EDPs and their binding proteins are major objectives for ongoing and future anti-cancer therapies. Research on both the direct anti-cancer activity and the drug delivery capabilities of ELPs is another area likely to result in novel therapeutic agents in the near future.
Collapse
|
11
|
Brankovic S, Hawthorne EA, Yu X, Zhang Y, Assoian RK. MMP12 preferentially attenuates axial stiffening of aging arteries. J Biomech Eng 2019; 141:2729818. [PMID: 30917195 DOI: 10.1115/1.4043322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Arterial stiffening is a hallmark of aging, but how aging affects the arterial response to pressure is still not completely understood, especially with regard to specific matrix metalloproteinases (MMPs). Here, we used pressure myography of carotid arteries from C57BL/6 mice to study the effects of age and MMP12, a major arterial elastase, on arterial biomechanics. Aging from 2 to 24 months leads to both circumferential and axial stiffening with stretch, and these changes are associated with an increased wall thickness, decreased inner radius, and a decreased in vivo axial stretch ratio (IVSR). Analysis of IVSR and stress-stretch curves with arteries from age- and sex-matched wild-type and MMP12-null arteries demonstrate that MMP12 deletion attenuates age-dependent arterial stiffening, mostly in the axial direction. MMP12 deletion also prevents the aging-associated decrease in the in vivo stretch ratio and, in general, leads to an axial mechanics phenotype characteristic of much younger mice. Circumferential arterial mechanics were much less affected by deletion of MMP12. We conclude that the induction of MMP12 during aging preferentially controls axial arterial mechanics.
Collapse
Affiliation(s)
- Sonja Brankovic
- Center for Engineering MechanoBiology and the Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Elizabeth A Hawthorne
- Center for Engineering MechanoBiology and the Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, Boston MA 02215
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston MA 02215
| | - Richard K Assoian
- Center for Engineering MechanoBiology and the Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Liu SL, Bajpai A, Hawthorne EA, Bae Y, Castagnino P, Monslow J, Puré E, Spiller KL, Assoian RK. Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight 2019; 4:e122742. [PMID: 30626744 PMCID: PMC6485356 DOI: 10.1172/jci.insight.122742] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Arterial stiffening is a consequence of aging and a cholesterol-independent risk factor for cardiovascular disease (CVD). Arterial stiffening and CVD show a sex bias, with men more susceptible than premenopausal women. How arterial stiffness and sex interact at a molecular level to confer risk of CVD is not well understood. Here, we used the sexual dimorphism in LDLR-null mice to show that the protective effect of female sex on atherosclerosis is linked to reduced aortic stiffness and reduced expression of matrix metalloproteinase-12 (MMP12) by lesional macrophages. Deletion of MMP12 in LDLR-null mice attenuated the male sex bias for both arterial stiffness and atherosclerosis, and these effects occurred despite high serum cholesterol. Mechanistically, we found that oxidized LDL stimulates secretion of MMP12 in human as well as mouse macrophages. Estrogen antagonizes this effect by downregulating MMP12 expression. Our data support cholesterol-independent causal relationships between estrogen, oxidized LDL-induced secretion of macrophage MMP12, and arterial stiffness that protect against atherosclerosis in females and emphasize that reduced MMP12 functionality can confer atheroprotection to males.
Collapse
Affiliation(s)
- Shu-lin Liu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anamika Bajpai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Hawthorne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology and
| | - Yongho Bae
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology and
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Richard K. Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology and
| |
Collapse
|
13
|
Elshimi E, Sakr MASM, Morad WS, Mohammad L. Optimizing the Diagnostic Role of Alpha-Fetoprotein and Abdominal Ultrasound by Adding Overexpressed Blood mRNA Matrix Metalloproteinase-12 for Diagnosis of HCV-Related Hepatocellular Carcinoma. Gastrointest Tumors 2019; 5:100-108. [PMID: 30976581 DOI: 10.1159/000495838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Matrix metalloproteinase-12 (MMP-12) is involved in tumor invasiveness and metastasis and significantly overexpressed in hepatocellular carcinoma (HCC) tissues. We aimed to investigate the diagnostic and prognostic value of blood mRNA MMP-12 overexpression in patients with HCC. Patients and Methods From January 2017 to June 2017, 100 patients with HCC (HCV-related cirrhosis) and 100 patients with HCV-related cirrhosis (without HCC) were included in this study. All patients were subjected to triphasic CT abdomen when indicated, liver profile, alpha-fetoprotein (AFP), and molecular characterization of metalloproteinase-12 expression. Results There were no statistically significant differences between both groups regarding CBC parameters and liver profile (p value > 0.05). There was a statistically significant difference between patients with and without HCC regarding blood mRNA MMP-12 overexpression (p value < 0.01), blood mRNA MMP-12, and/or AFP (sensitivity 84.0%, specificity 60.0%, PPV 51.2%, and NPP 88.2%). The accuracy of mRNA MMP-12 and/or AFP in detection of HCC was 68.0%. Conclusion Blood mRNA MMP-12 has a good sensitivity and a bad specificity but is accurate in HCC diagnosis. Adding blood mRNA MMP-12 to AFP optimizes the current screening program to improve early diagnosis of HCC and hence better prognosis.
Collapse
Affiliation(s)
- Esam Elshimi
- Hepatology Department, National Liver Institute, Menoufia University, Shebin Al-Kom, Egypt
| | | | - Wesam Saber Morad
- Community Department, National Liver Institute, Menoufia University, Shebin Al-Kom, Egypt
| | - Lobna Mohammad
- Genetic Engineering Institute, Sadat University, Sadat, Egypt
| |
Collapse
|
14
|
Interleukin-3 stimulates matrix metalloproteinase 12 production from macrophages promoting thoracic aortic aneurysm/dissection. Clin Sci (Lond) 2018. [PMID: 29523595 DOI: 10.1042/cs20171529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is due to degeneration of the aorta and causes a high mortality rate, while molecular mechanisms for the development of TAAD are still not completely understood. In the present study, 3-aminopropionitrile (BAPN) treatment was used to induce TAAD mouse model. Through transcriptome analysis, we found the expression levels of genes associated with interleukin-3 (IL-3) signaling pathway were up-regulated during TAAD development in mouse, which were validated by real-time PCR. IL-3 positive cells were increased in TAAD mouse aortas, especially for smooth muscle cells (SMCs). IL-3 deficiency reduced BAPN-induced TAAD formation. We then examined the matrix metalloproteinases (MMPs) expression during TAAD formation in both wild-type and IL-3 deficient mice, showing that MMP12 were significantly down-regulated in IL-3 deficient aortas. Mechanistically, we found recombinant IL-3 could increase MMP12 production and activity from macrophages in vitro Silencing of IL-3 receptor β, which was mainly expressed in macrophages but not SMCs, diminished the activation of c-Jun N terminal kinase (JNK)/extracellular-regulated protein kinases 1/2 (ERK1/2)/AP-1 signals, and decreased MMP12 expression in IL-3 stimulated macrophages. Moreover, both circulating and aortic inflammation were decreased in IL-3 deficient aortas. Taken together, our results demonstrated that IL-3 stimulated the production of MMP12 from macrophages by a JNK- and ERK1/2-dependent AP-1 pathway, contributing to TAAD formation. Thus, the IL-3/IL-3Rβ/MMP12 signals activation may be an important pathological mechanism for progression of TAAD.
Collapse
|
15
|
Influence of narrowband ultraviolet-B phototherapy on plasma concentration of matrix metalloproteinase-12 in psoriatic patients. Postepy Dermatol Alergol 2017; 34:328-333. [PMID: 28951707 PMCID: PMC5560180 DOI: 10.5114/ada.2017.69312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Matrix metalloproteinase-12 (MMP-12) may play an important role in the pathogenesis and spread of psoriatic disease. AIM To investigate plasma levels of the selected enzyme in plaque psoriasis patients before and after the course of narrowband UVB (NBUVB) therapy with respect to disease advancement. MATERIAL AND METHODS The cohort included 49 patients suffering from plaque psoriasis, divided into groups according to severity of the disease. The control group consisted of 40 healthy volunteers. Plasma levels of MMP-12 were determined using immunoenzyme assay (ELISA), while the Psoriasis Area and Severity Index (PASI) was used to define disease advancement. RESULTS The results have shown a significantly decreased plasma level of MMP-12 in the total psoriasis patient group compared to healthy individuals, declining with the increase in disease advancement. The NBUVB therapy caused a decrease in the concentration of the analyzed enzyme, but this change was not statistically significant in the total group of psoriatic patients, while a significant change was detected in patients with a mild advancement of the disease. CONCLUSIONS Decreased synthesis of MMP-12 may lead to the stimulation of the epidermal angiogenesis process, which results in the appearance and spread of psoriatic scales. Based on the obtained results, macrophage metalloelastase seems to be a negatively reacting plasma biomarker of the studied disease.
Collapse
|
16
|
Chelluboina B, Nalamolu KR, Klopfenstein JD, Pinson DM, Wang DZ, Vemuganti R, Veeravalli KK. MMP-12, a Promising Therapeutic Target for Neurological Diseases. Mol Neurobiol 2017; 55:1405-1409. [PMID: 28155200 DOI: 10.1007/s12035-017-0418-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/01/2022]
Abstract
The role of matrix metalloproteinase-12 (MMP-12) in the pathogenesis of several inflammatory diseases such as chronic obstructive pulmonary disease, emphysema, and asthma is well established. Several new studies and recent reports from our laboratory and others highlighted the detrimental role of MMP-12 in the pathogenesis of several neurological diseases. In this review, we discuss in detail the pathological role of MMP-12 and the possible underlying molecular mechanisms that contribute to disease pathogenesis in the context of central nervous system diseases such as stroke, spinal cord injury, and multiple sclerosis. The available information on the specific MMP-12 inhibitors used in several preclinical and clinical studies is also reviewed. Based on the reported studies to date, MMP-12 suppression could emerge as a promising therapeutic target for several CNS diseases that were discussed in this review.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Dr., Peoria, IL, 61605, USA
| | - Koteswara Rao Nalamolu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Dr., Peoria, IL, 61605, USA
| | - Jeffrey D Klopfenstein
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Dr., Peoria, IL, 61605, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Comprehensive Stroke Center, Illinois Neurological Institute, Peoria, IL, USA
| | - David M Pinson
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - David Z Wang
- Comprehensive Stroke Center, Illinois Neurological Institute, Peoria, IL, USA.,Department of Neurology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Dr., Peoria, IL, 61605, USA. .,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA. .,Department of Neurology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.
| |
Collapse
|
17
|
Liu SL, Bae YH, Yu C, Monslow J, Hawthorne EA, Castagnino P, Branchetti E, Ferrari G, Damrauer SM, Puré E, Assoian RK. Matrix metalloproteinase-12 is an essential mediator of acute and chronic arterial stiffening. Sci Rep 2015; 5:17189. [PMID: 26608672 PMCID: PMC4660439 DOI: 10.1038/srep17189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Arterial stiffening is a hallmark of aging and risk factor for cardiovascular
disease, yet its regulation is poorly understood. Here we use mouse modeling to show
that matrix metalloproteinase-12 (MMP12), a potent elastase, is essential for acute
and chronic arterial stiffening. MMP12 was induced in arterial smooth muscle cells
(SMCs) after acute vascular injury. As determined by genome-wide analysis, the
magnitude of its gene induction exceeded that of all other MMPs as well as those of
the fibrillar collagens and lysyl oxidases, other common regulators of tissue
stiffness. A preferential induction of SMC MMP12, without comparable effect on
collagen abundance or structure, was also seen during chronic arterial stiffening
with age. In both settings, deletion of MMP12 reduced elastin degradation and
blocked arterial stiffening as assessed by atomic force microscopy and
immunostaining for stiffness-regulated molecular markers. Isolated MMP12-null SMCs
sense extracellular stiffness normally, indicating that MMP12 causes arterial
stiffening by remodeling the SMC microenvironment rather than affecting the
mechanoresponsiveness of the cells themselves. In human aortic samples, MMP12 levels
strongly correlate with markers of SMC stiffness. We conclude that MMP12 causes
arterial stiffening in mice and suggest that it functions similarly in humans.
Collapse
Affiliation(s)
- Shu-Lin Liu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Yong Ho Bae
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher Yu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Elizabeth A Hawthorne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Giovanni Ferrari
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
18
|
Liao G, Wang Z, Lee E, Moreno S, Abuelnasr O, Baudry M, Bi X. Enhanced expression of matrix metalloproteinase-12 contributes to Npc1 deficiency-induced axonal degeneration. Exp Neurol 2015; 269:67-74. [PMID: 25864931 DOI: 10.1016/j.expneurol.2015.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/08/2015] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a genetic disorder associated with intracellular cholesterol accumulation in the brain and other organs, and neurodegeneration is generally believed to be the fatal cause of the disease. In view of the emerging role of matrix metalloproteinase-12 (MMP-12) in neuronal injury, we investigated its expression and potential roles in axonal degeneration in Npc1-/- mouse brain. Microarray and quantitative real-time reversed transcription PCR analysis indicated a marked increase in MMP-12 mRNA levels in cerebellum of 3 week-old Npc1-/- mice, as compared to wild-type littermates. Western blots showed that the ratio of mature MMP-12 over pro-MMP-12 was significantly increased in cerebellum of Npc1-/-, as compared to wild-type mice. Immunohistochemical studies confirmed that MMP-12 expression was increased, especially in the cell bodies of Purkinje neurons in Npc1-/- mice. Neuritic growth was significantly reduced by Npc1 siRNA knockdown in nerve growth factor-differentiated PC-12 cells, and this effect was completely reversed by treatment with an MMP-12 specific inhibitor. Furthermore, in vivo experiments showed that chronic treatment with the MMP-12 inhibitor ameliorated Npc1 deficiency-induced axonal pathology in the striatum. Our results indicate that abnormal neuronal expression of MMP-12 may contribute to axonal degeneration in NPC disease, thus providing a potential novel target for treatment.
Collapse
Affiliation(s)
- Guanghong Liao
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA
| | - Zhuangjun Wang
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA
| | - Erik Lee
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA
| | - Stephanie Moreno
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA
| | - Omar Abuelnasr
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA
| | - Xiaoning Bi
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
19
|
Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F, Kanwar YS, Sun L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem 2015; 21:3244-60. [PMID: 25039784 DOI: 10.2174/0929867321666140716092052] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 415800, China..
| |
Collapse
|
20
|
Stawski L, Haines P, Fine A, Rudnicka L, Trojanowska M. MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One 2014; 9:e109763. [PMID: 25302498 PMCID: PMC4193823 DOI: 10.1371/journal.pone.0109763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022] Open
Abstract
MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ+ cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3+) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1+) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31+) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1+ cells, whereas the number of Mac3+ cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1+ macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes.
Collapse
Affiliation(s)
- Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul Haines
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lidia Rudnicka
- Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Mezentsev A, Nikolaev A, Bruskin S. Matrix metalloproteinases and their role in psoriasis. Gene 2014; 540:1-10. [PMID: 24518811 DOI: 10.1016/j.gene.2014.01.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
This review summarizes the contribution of matrix metalloproteinases to the pathogenesis of psoriasis. In psoriasis, matrix metalloproteinases are involved in the structural changes of the epidermis via the modification of intracellular contacts and the composition of the extracellular matrix, promoting angiogenesis in the dermal blood vessels and the infiltration of immune cells. Moreover, some matrix metalloproteinases become differentially expressed during the disease eruption and their expression correlates with the clinical score. A separate section of the review is dedicated to the pharmacological approaches that are used to control matrix metalloproteinases, such as oral metalloproteinase inhibitors, such as azasugars and phosphonamides. The aim of this manuscript is to assess the role of matrix metalloproteinases in the physiological processes that accompany the disease. Moreover, it is especially important to evaluate progress in this field and characterize recently appeared medicines. Because any experimental drugs that target matrix metalloproteinases are involved in active clinical trials, this manuscript also reviews the latest experimental data regarding distribution and expression of matrix metalloproteinases in healthy skin and lesional skin. Therefore, the performed analysis highlights potential problems associated with the use of metalloproteinase inhibitors in clinical studies and suggests simple and easy understandable criteria that future innovative metalloproteinase inhibitors shall satisfy.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| | - Alexander Nikolaev
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| |
Collapse
|
22
|
Song Y, Xie Y, Liu F, Zhao C, Yu R, Ban S, Ye Q, Wen J, Wan H, Li X, Ma R, Meng Z. Expression of matrix metalloproteinase-12 in aortic dissection. BMC Cardiovasc Disord 2013; 13:34. [PMID: 23642232 PMCID: PMC3660235 DOI: 10.1186/1471-2261-13-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aortic dissection(AD) is an acute process of large blood vessels characterized by dangerous pathogenic conditions and high disability and high mortality. The pathogenesis of AD remains debated. Matrix metalloproteinase-12 (MMP-12) participates in many pathological processes such as abdominal aortic aneurysm, atherosclerosis, emphysema and cancer. However, this elastase has rarely been assessed in the presence of AD. The aim of the present study was to investigate the expression of MMP-12 in aortic tissue so as to offer a better understanding of the possible mechanisms of AD. METHODS The protein expression levels of MMP-12 were analyzed and compared in aorta tissue and the blood serum samples by reverse transcription polymerase chain reaction(RT-PCR), Western blotting, immuno-histochemistry, fluorescence resonance energy transfer ( FRET ) activity assay and enzyme-linked immuno sorbent assay ( ELISA ), respectively. Ascending aorta tissue specimens were obtained from 12 patients with an acute Stanford A-dissection at the time of aortic replacement, and from 4 patients with coronary artery disease (CAD) undergoing coronary artery bypass surgery. Meanwhile, serum samples were harvested from 15 patients with an acute Stanford A-dissection and 10 healthy individuals who served as the control group. RESULTS MMP-12 activity could be detected in both AD and CAD groups, but the level in the AD group was higher than those in the CAD group (P < 0.05). MMP-12 proteolysis existed in both serum samples of the AD and healthy groups, and the activity level in the AD group was clearly higher than in the healthy group (P < 0.05). For AD patients, MMP-12 activity in serum was higher than in the aorta wall (P < 0.05). MMP-12 activity in the aortic wall tissue can be inhibited by MMP inhibitor v (P < 0.05). CONCLUSION The present study directly demonstrates that MMP-12 proteolytic activity exists within the aorta specimens and blood samples from aortic dissection patients. MMP-12 might be of potential relevance as a clinically diagnostic tool and therapeutic target in vascular injury and repair.
Collapse
Affiliation(s)
- Yi Song
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
- The Department of Cardiovascular Surgery, The Second Hospital of Yunnan Province, Kunming, 650032, China
| | - Yuehui Xie
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
- Department of Computer Science, The Faculty of Basic Medicine, Kunming Medical University, Kunming, 650031, China
| | - Feng Liu
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Chong Zhao
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Rui Yu
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Shao Ban
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Qiufang Ye
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Jianxion Wen
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Haibo Wan
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| | - Xiang Li
- The Department of Cardiovascular Surgery, The Second Hospital of Yunnan Province, Kunming, 650032, China
| | - Runwei Ma
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
- The Department of Cardiovascular Surgery, The Second Hospital of Yunnan Province, Kunming, 650032, China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology; The First Affiliated Hospital Of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
23
|
Nury C, Bregant S, Czarny B, Berthon F, Cassar-Lajeunesse E, Dive V. Detection of endogenous matrix metalloprotease-12 active form with a novel broad spectrum activity-based probe. J Biol Chem 2012; 288:5636-44. [PMID: 23271741 DOI: 10.1074/jbc.m112.419499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteases (MMPs) have attracted considerable attention as critical mediators of pathological tissue remodeling processes. However it remains an unresolved challenge to detect their active forms in biological samples. To prove the efficacy of a recently developed MMP activity-based probe, we examined the content in MMP active forms of bronchoalveolar lavage fluids (BALf) from male C57BL/6 mice exposed to ultrafine carbon black nanoparticles, a model of chronic obstructive pulmonary disease. This probe was shown to label proteins, mostly expressed in BALf of mice exposed to nanoparticles. Using competition assays with a selective MMP-12 inhibitor as well as MMP-12 knock-out mice, one of these proteins was identified as the active form of the catalytic domain of MMP-12. This new probe can detect the active form of MMP-12 down to a threshold of 1 fmol. Radioactive counting showed the concentration of the active form of MMP-12 to be around 1 fmol/μl in BALf from nanoparticle-treated mice. A less sensitive probe would therefore not have detected MMP-12. As the probe can detect other MMPs in the femtomolar range, it is a potentially powerful tool for monitoring the levels of MMP active forms in various diseases.
Collapse
Affiliation(s)
- Catherine Nury
- CEA (Commissariat à l'Energie Atomique), iBiTec-S, Service d'Ingénierie Moléculaire de Protéines (SIMOPRO), CE-Saclay, 91191 Gif /Yvette, Cedex, France
| | | | | | | | | | | |
Collapse
|
24
|
Gasparoto TH, de Oliveira CE, de Freitas LT, Pinheiro CR, Ramos RN, da Silva AL, Garlet GP, da Silva JS, Campanelli AP. Inflammatory events during murine squamous cell carcinoma development. JOURNAL OF INFLAMMATION-LONDON 2012; 9:46. [PMID: 23176085 PMCID: PMC3542019 DOI: 10.1186/1476-9255-9-46] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 11/06/2012] [Indexed: 01/04/2023]
Abstract
Background Squamous cell carcinoma (SCC) is one of the most common human cancers worldwide. In SCC, tumour development is accompanied by an immune response that leads to massive tumour infiltration by inflammatory cells, and consequently, local and systemic production of cytokines, chemokines and other mediators. Studies in both humans and animal models indicate that imbalances in these inflammatory mediators are associated with cancer development. Methods We used a multistage model of SCC to examine the involvement of elastase (ELA), myeloperoxidase (MPO), nitric oxide (NO), cytokines (IL-6, IL-10, IL-13, IL-17, TGF-β and TNF-α), and neutrophils and macrophages in tumour development. ELA and MPO activity and NO, IL-10, IL −17, TNF-α and TGF-β levels were increased in the precancerous microenvironment. Results ELA and MPO activity and NO, IL-10, IL −17, TNF-α and TGF-β levels were increased in the precancerous microenvironment. Significantly higher levels of IL-6 and lower levels of IL-10 were detected at 4 weeks following 7,12-Dimethylbenz(a)anthracene (DMBA) treatment. Similar levels of IL-13 were detected in the precancerous microenvironment compared with control tissue. We identified significant increases in the number of GR-1+ neutrophils and F4/80+/GR-1- infiltrating cells in tissues at 4 and 8 weeks following treatment and a higher percentage of tumour-associated macrophages (TAM) expressing both GR-1 and F4/80, an activated phenotype, at 16 weeks. We found a significant correlation between levels of IL-10, IL-17, ELA, and activated TAMs and the lesions. Additionally, neutrophil infiltrate was positively correlated with MPO and NO levels in the lesions. Conclusion Our results indicate an imbalance of inflammatory mediators in precancerous SCC caused by neutrophils and macrophages and culminating in pro-tumour local tissue alterations.
Collapse
Affiliation(s)
- Thais Helena Gasparoto
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gordon GM, Austin JS, Sklar AL, Feuer WJ, LaGier AJ, Fini ME. Comprehensive gene expression profiling and functional analysis of matrix metalloproteinases and TIMPs, and identification of ADAM-10 gene expression, in a corneal model of epithelial resurfacing. J Cell Physiol 2011; 226:1461-70. [PMID: 20625997 DOI: 10.1002/jcp.22306] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study provides a comprehensive expression analysis for the entire matrix metalloproteinase (MMP) gene family during the process of epithelial resurfacing following corneal abrasion injury in the mouse. The mRNA levels for all known MMP genes expressed in mouse, the related enzyme ADAM-10, and the known tissue inhibitors of metalloproteinases (TIMPs) were determined semi-quantitatively by reverse transcriptase-polymerase chain reaction (RT-PCR) in the uninjured epithelium, and in the epithelial tissue resurfacing the abraded area or residing in its periphery at two time points: during the epithelial migration phase and immediately following wound closure. The mRNA levels for MMP-1a, -1b, -9, -10, -12, and -13 as well as TIMP-1 were significantly up-regulated in the migrating corneal epithelium. After wound resurfacing, the mRNA levels for all of these MMPs were down-regulated, although MMP-1a, -1b, and -13 remained significantly elevated in comparison to the uninjured epithelium. The only gene found to be down-regulated was TIMP-3, which occurred throughout the wound-healing process. During resurfacing, MMP-9 was localized to the front of the migrating epithelium, MMP-10 and -13 were localized throughout the migrating epithelium, and MMP-13 could also be found in the periphery. Following epithelial closure, immunoreactive MMPs-9 and -10 became undetectable, but MMP-13 continued to be found throughout the epithelium. Functional analysis of MMP-10 revealed no effects on epithelial migration or cell proliferation. In conclusion, distinct MMP temporal-spatial profiles define the uninjured corneal epithelium and the corneal epithelium at different stages of regeneration. An extensive review of the literature is also provided in the discussion.
Collapse
Affiliation(s)
- Gabriel M Gordon
- Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90089-9034, USA
| | | | | | | | | | | |
Collapse
|
26
|
He J, Turino GM, Lin YY. Characterization of peptide fragments from lung elastin degradation in chronic obstructive pulmonary disease. Exp Lung Res 2011; 36:548-57. [PMID: 20815658 DOI: 10.3109/01902148.2010.489143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study presents a method for detecting and characterizing peptides of elastin that result from lung matrix injury in chronic obstructive pulmonary disease (COPD). Lung elastin degradation was studied by two representative in vivo elastases, human neutrophil elastase (HNE) and macrophage metalloproteinase (MMP12). The resulting peptide mixtures were analyzed by high-performance liquid chromatography/electrospray tandem mass spectrometry (LC/MSMS) to characterize 40 elastin-derived peptides (EDPs), 24 from HNE and 16 from MMP12 digestions. The peptides constitute major EDPs that are solubilized by the enzymatic digestion. Using the selected reaction monitoring (SRM) from LC/MSMS analysis, the transition ions of the peptides were used to investigate the presence of the peptides in selected body fluids of chronic obstructive pulmonary disease (COPD) patients. Four peptides, GYPI, APGVGV, GLGAFPA, and VGVLPGVPT, were detected in plasma or sputum of some COPD patients but not in normal controls. A hexapeptide VGVAPG, which had been widely studied for its chemotactic activity for a possible pathogenic role in COPD, was not detected in lung EDPs by HNE or MMP12 digestion, but only by porcine pancreatic elastase (PPE) digestion. This study demonstrates a practical methodology to study peptides from matrix degradations in pulmonary disease and a means of investigating their pathogenesis.
Collapse
Affiliation(s)
- Jiangtao He
- Department of Medicine, St. Luke's Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, New York 10019, USA
| | | | | |
Collapse
|
27
|
Abstract
Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the 'MMP nomenclature' and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
Collapse
|
28
|
Shimokawa KI, Nagase H. Purification of MMPs and TIMPs. Methods Mol Biol 2010; 622:123-155. [PMID: 20135280 DOI: 10.1007/978-1-60327-299-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A number of matrix metalloproteinases (MMPs) and their endogenous inhibitors called tissue inhibitors of metalloproteinases (TIMPs) from natural sources have been identified. This chapter describes the purification methods of MMPs-1, -2, -3, -7, -8, -9, -10, -12, and -13 and TIMPs-1 and -2. The sources of the proteins and assay methods to detect their activities are also described.
Collapse
Affiliation(s)
- Ken-Ichi Shimokawa
- Department of Physical Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | | |
Collapse
|
29
|
Abstract
Sustained hemodynamic stresses, especially high blood flow, result in flow-induced outward vascular remodeling. Our previous study showed that macrophage depletion reduced flow-induced outward remodeling of the rat common carotid artery, indicating that macrophages are critical in flow-induced outward vascular remodeling. Macrophage is known to release proteinases, including matrix metalloproteinases (MMPs). Degradation and loosening of extracellular matrix by MMPs may facilitate vascular remodeling. Therefore, we assessed the functions of MMPs in flow-induced outward vascular remodeling by using the flow-augmented common carotid artery model in mice. We validated that ligation of the left common carotid artery increased blood flow and luminal diameter of the right common carotid artery without significant change in blood pressure of mice. To assess the functions of MMPs in flow-induced outward vascular remodeling, we used doxycycline (broad-spectrum MMP inhibitor), SB-3CT (selective MMP inhibitor), MMP-9 knockout mice, and MMP-12 knockout mice. Although there was only a trend for doxycycline treatment to reduce flow-induced outward vascular remodeling, SB-3CT treatment significantly reduced flow-induced outward vascular remodeling. In addition, flow-induced outward vascular remodeling was significantly reduced in MMP-9 knockout mice, but not in MMP-12 knockout mice. These data revealed that MMPs, especially MMP-9, are critical in flow-induced outward vascular remodeling.
Collapse
|
30
|
Iwanami H, Ishizaki M, Fukuda Y, Takahashi H. Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing. Curr Eye Res 2009; 34:207-14. [PMID: 19274528 DOI: 10.1080/02713680802687809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of this study was to determine the expression of MMP-12 by myofibroblasts during the healing of alkali-burned rabbit corneas (ARC), thus implicating its role in ECM remodeling. METHODS Rabbit corneas during alkali burn were examined for MMP-12 mRNA expression by RT-PCR. Immunohistochemistry was used to determine the presence of alpha-SMA, MMP-12 protein, and macrophages. In situ hybridization was performed to identify MMP-12 mRNA expressing cells. RESULTS RT-PCR showed that MMP-12 mRNA was expressed in the alkali-burned corneas from one week after the injury. Immunohistochemistry showed myofibroblasts positive for MMP-12 expression. In situ hybridization revealed that MMP-12 mRNA was expressed by myofibroblasts. CONCLUSION Our results indicate that, in alkali-burned corneas, myofibroblasts express both MMP-12 mRNA and protein. We suggest that MMP-12 may disintegrate some components of the ECM released after severe alkali burn, which may be involved in the ECM remodeling.
Collapse
Affiliation(s)
- Haruhi Iwanami
- Department of Ophthalmology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Oh H, Yang S, Park M, Chun JS. Matrix metalloproteinase (MMP)-12 regulates MMP-9 expression in interleukin-1beta-treated articular chondrocytes. J Cell Biochem 2009; 105:1443-50. [PMID: 18980250 DOI: 10.1002/jcb.21963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Limited information is available on the expression and role of matrix metalloproteinase (MMP)-12 in chondrocytes. We characterized the expression mechanism of MMP-12 and possible function in chondrocytes. Interleukin (IL)-1beta induced the expression and activation of MMP-12 in primary culture chondrocytes and cartilage explants via mitogen-activated protein (MAP) kinase signaling pathways. Among MAP kinases, extracellular signal-regulated kinase and p38 kinase are necessary for MMP-12 expression, whereas c-jun N-terminal kinase is required for the activation of MMP-12. The possibility that MMP-12 acts as a modulator of other MMP was examined. MMP-12 alone did not affect other MMP expressions. However, MMP-12 enhanced expression and activation of MMP-9 in the presence of IL-1beta. Our results indicate that IL-1beta in chondrocytes induces the expression and activation of MMP-12, which, in turn, augments MMP-9 expression and activation.
Collapse
Affiliation(s)
- Hwanhee Oh
- Department of Life Science, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | |
Collapse
|
32
|
The expression of macrophage and neutrophil elastases in rat periradicular lesions. J Endod 2009; 34:1072-6. [PMID: 18718368 DOI: 10.1016/j.joen.2008.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/21/2008] [Accepted: 06/25/2008] [Indexed: 11/20/2022]
Abstract
Macrophage elastase and neutrophil elastase are involved in tissue destruction in periradicular lesions. The purpose of this study was to examine these elastases immunohistochemically during development of periradicular lesions induced in rat mandibular first molar by pulpal exposure for 7, 14, 21, 28, and 42 days. Histologically, periapical inflammation developed from 7 to 21 days and then subsided after 28 days. The area of these lesions gradually increased from 7 to 28 days and subsequently decreased at 42 days. Macrophage elastase was first detected at 7 days and predominantly shown from 14 to 28 days, whereas neutrophil elastase gradually increased from 14 to 28 days. Macrophage elastase was significantly greater than neutrophil elastase from 7 to 21 days. These results suggest that macrophage elastase was enhanced from an early stage during the development of these lesions and that neutrophil elastase was related to the expansion of periapical tissue destruction including bone resorption.
Collapse
|
33
|
Souissi IJ, Billiet L, Cuaz-Pérolin C, Slimane MN, Rouis M. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages. Exp Cell Res 2008; 314:3405-14. [PMID: 18823978 DOI: 10.1016/j.yexcr.2008.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 11/24/2022]
Abstract
MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1beta, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARalpha and PPARgamma, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARalpha and gamma isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1beta-treated macrophages only in the presence of a specific PPARalpha agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1beta-stimulated peritoneal macrophages isolated from PPARalpha(-/-) mice and treated with the PPARalpha agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by approximately 50% in IL-1beta-stimulated PPARalpha-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1beta effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at -81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARalpha and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARalpha agonists may be used therapeutically, not only for lipid disorders, but also to prevent inflammation and atheromatous plaque rupture, where their ability to inhibit MMP-12 expression in HMDM may be beneficial.
Collapse
Affiliation(s)
- Imen Jguirim Souissi
- Research Laboratory on Atherosclerotic Biological and Genetic Factors, Faculty of Medicine, Monastir TN-5019, Tunisia
| | | | | | | | | |
Collapse
|
34
|
Yamada S, Wang KY, Tanimoto A, Fan J, Shimajiri S, Kitajima S, Morimoto M, Tsutsui M, Watanabe T, Yasumoto K, Sasaguri Y. Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1419-29. [PMID: 18403602 DOI: 10.2353/ajpath.2008.070604] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whether fatty streaks are directly followed by fibrous plaque formation in atherosclerosis remains controversial. Disruption of the basement membrane and elastic layers is thought to be essential for this process. Matrix metalloproteinase 12 (MMP-12) can degrade a broad spectrum of substrates, but the role of MMP-12 in the early stage of atherosclerosis is unclear. To investigate MMP-12 function in the initiation and progression of atherosclerosis, we investigated macrophage migration and elastolysis in relation to fatty streaks in human MMP-12 transgenic (hMMP-12 Tg) rabbits. Fatty streaks in hMMP-12 Tg rabbits fed a 1% cholesterol diet for 6 weeks (cholesterol-induced model of atherosclerosis) were more pronounced and were associated with more significant degradation of the internal elastic layer compared with wild-type (WT) animals. Numbers of infiltrating macrophages and smooth muscle cells in the lesions were increased in hMMP-12 Tg compared with WT animals. In both cuff- and ligation-induced models of atherosclerosis, smooth muscle cell-predominant atherosclerotic lesions were elevated with significant elastolysis of the internal elastic lamina in Tg compared with WT animals; "microelastolytic sites" were recognized before formation of the neointima in the cuff model only. These results indicate that MMP-12 may be critical to the initiation and progression of atherosclerosis via degradation of the elastic layers and/or basement membrane. Therefore, a specific MMP-12 inhibitor might prove useful for the treatment of progressive atherosclerosis.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Van Roy M, Van Lint P, Van Laere I, Wielockx B, Wilson C, López-Otin C, Shapiro S, Libert C. Involvement of specific matrix metalloproteinases during tumor necrosis factor/IFNγ–based cancer therapy in mice. Mol Cancer Ther 2007; 6:2563-71. [PMID: 17876053 DOI: 10.1158/1535-7163.mct-07-0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potent antitumor activity of tumor necrosis factor (TNF) in combination with IFN-gamma can only be applied in local regimens due to their strong proinflammatory properties. It has been shown that the broad-spectrum matrix metalloproteinase (MMP) inhibitor BB-94 protects against TNF/IFNgamma-induced toxicity without blocking the antitumor effect. Here, we tried to explain this protective role of BB-94 and sought to assign roles to specific MMPs in TNF/IFNgamma-induced toxicity. By studying the expression of MMP genes in different organs and in the tumor, we observed that the expression levels of MMP-7, MMP-8, MMP-9, and MMP-12 and tissue inhibitor of metalloproteinase-4 are clearly up-regulated in the liver during therapy. MMP-8 and MMP-9 are also up-regulated in the lung and kidney, respectively. In the tumor, most MMP genes are expressed, but only MMP-3 is up-regulated during TNF/IFNgamma treatment. Using MMP-deficient or double-deficient mice, we have shown a mediating role for MMP-3 during TNF/IFNgamma treatment in tumor-free and B16BL6 melanoma-bearing mice. By contrast, MMP-12 seemed to have some protective role in both models. However, because most phenotypes were not extremely outspoken, we have to conclude, based on the set of MMP-deficient mice we have studied, that inhibition of a single MMP will probably not increase the therapeutic value of TNF/IFNgamma, but that rather, broad-spectrum MMP inhibitors will be required.
Collapse
Affiliation(s)
- Maarten Van Roy
- Department of Molecular Biomedical Research, VIB, Ghent University, Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Akizuki M, Fukutomi T, Takasugi M, Takahashi S, Sato T, Harao M, Mizumoto T, Yamashita JI. Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia 2007; 9:260-4. [PMID: 17401466 PMCID: PMC1838583 DOI: 10.1593/neo.06808] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/25/2007] [Accepted: 01/25/2007] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE We have measured the concentration of immunoreactive neutrophil elastase (ir-NE) in the tumor extracts of 313 primary human breast cancers. Sufficient time has elapsed, and we are now ready to analyze its prognostic value in human breast cancer. METHODS ir-NE concentration in tumor extracts was determined with an enzyme-linked immunosorbent assay that enables a rapid measurement of both free-form ir-NE and the A1-protease inhibitor-complexed form of ir-NE. We analyzed the prognostic value of this enzyme in human breast cancer in univariate and multivariate analyses. RESULTS Patients with breast cancer tissue containing a high concentration of ir-NE had poor survival compared to those with a low concentration of ir-NE at the cutoff point of 9.0 microg/100 mg protein (P = .0012), which had been previously determined in another group of 49 patients. Multivariate stepwise analysis selected lymph node status (P = .0004; relative risk = 1.46) and ir-NE concentration (P = .0013; relative risk = 1.43) as independent prognostic factors for recurrence. CONCLUSIONS Tumor ir-NE concentration is an independent prognostic factor in patients with breast cancer who undergo curative surgery. This enzyme may play an active role in tumor progression that leads to metastasis in human breast cancer.
Collapse
Affiliation(s)
- Miwa Akizuki
- Department of Breast and Endocrine Surgery, Aichi Medical University, Nagakute 21, Aichi 480-1195, Japan
| | - Takashi Fukutomi
- Department of Breast and Endocrine Surgery, Aichi Medical University, Nagakute 21, Aichi 480-1195, Japan
| | - Miyuki Takasugi
- Department of Breast and Endocrine Surgery, Aichi Medical University, Nagakute 21, Aichi 480-1195, Japan
| | - Satoshi Takahashi
- Department of Breast Oncology, Okazaki City Medical Association Public Health Center, Tatsumi-Nishi 1-9-1, Okazaki 444-0875, Japan
| | - Takashi Sato
- Department of Otolaryngology, Aichi-Gakuin University, Suemori-dori 2-11, Chikusa-ku, Aichi 464-8651, Japan
| | - Michiko Harao
- Department of Digestive Surgery, Kumamoto University Medical School, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Takao Mizumoto
- Department of Digestive Surgery, Kumamoto University Medical School, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Jun-ichi Yamashita
- Department of Breast Oncology, Okazaki City Medical Association Public Health Center, Tatsumi-Nishi 1-9-1, Okazaki 444-0875, Japan
| |
Collapse
|
37
|
Sato T, Takahashi S, Mizumoto T, Harao M, Akizuki M, Takasugi M, Fukutomi T, Yamashita JI. Neutrophil elastase and cancer. Surg Oncol 2007; 15:217-22. [PMID: 17320378 DOI: 10.1016/j.suronc.2007.01.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/05/2007] [Accepted: 01/10/2007] [Indexed: 01/31/2023]
Abstract
This mini-review summarizes our recent experimental and clinical studies on neutrophil elastase (NE) and cancer based on our original view point. Neoplasms metastasize as a result of a complex series of events. This process requires various degradative enzymes including proteases. NE has broad substrate specificity under physiological conditions, and excessive NE results in digestion of not only elastin, but also other extracellular matrix proteins. Several cell lines from human breast cancer and human lung cancer produce immunoreactive NE. The amount of immunoreactive NE in tumor tissue is an independent prognostic indicator of patients with breast cancer and lung cancer. Furthermore, a specific NE inhibitor completely suppressed growth of cancer cells transplanted into severe combined immunodeficiency mice. The use of NE inhibitor would seem to be a promising way to prevent the invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Otolaryngology, Aichi-Gakuin University, Suemori-dori 2-11, Chikusa-ku 464-8651, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 2007; 87:69-98. [PMID: 17237343 PMCID: PMC2656382 DOI: 10.1152/physrev.00022.2006] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The matrix metalloproteinases (MMPs), a family of 25 secreted and cell surface-bound neutral proteinases, process a large array of extracellular and cell surface proteins under normal and pathological conditions. MMPs play critical roles in lung organogenesis, but their expression, for the most part, is downregulated after generation of the alveoli. Our knowledge about the resurgence of the MMPs that occurs in most inflammatory diseases of the lung is rapidly expanding. Although not all members of the MMP family are found within the lung tissue, many are upregulated during the acute and chronic phases of these diseases. Furthermore, potential MMP targets in the lung include all structural proteins in the extracellular matrix (ECM), cell adhesion molecules, growth factors, cytokines, and chemokines. However, what is less known is the role of MMP proteolysis in modulating the function of these substrates in vivo. Because of their multiplicity and substantial substrate overlap, MMPs are thought to have redundant functions. However, as we explore in this review, such redundancy most likely evolved as a necessary compensatory mechanism given the critical regulatory importance of MMPs. While inhibition of MMPs has been proposed as a therapeutic option in a variety of inflammatory lung conditions, a complete understanding of the biology of these complex enzymes is needed before we can reasonably consider them as therapeutic targets.
Collapse
Affiliation(s)
- Kendra J Greenlee
- Departments of Medicine and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
39
|
Manika-saizonou B, Bostancioglu K, Mealet C, Favre-bonvin G, Wallach JM. Comparison of Different Assay Methods for Determination of Elastase Activity. ANAL LETT 2006. [DOI: 10.1080/00032718508066186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Ulrich R, Baumgärtner W, Gerhauser I, Seeliger F, Haist V, Deschl U, Alldinger S. MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J Neuropathol Exp Neurol 2006; 65:783-93. [PMID: 16896312 DOI: 10.1097/01.jnen.0000229990.32795.0d] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Theiler murine encephalomyelitis (TME) represents a highly relevant viral model for multiple sclerosis. Matrix metalloproteinases (MMPs) degrade extracellular matrix molecules and are involved in demyelination processes. To elucidate their impact on demyelination in TME, spinal cords of TME virus (TMEV)-infected SJL/J mice were taken at 9 different time points postinfection (pi) ranging from 1 hour to 196 days pi and investigated for the expression of TMEV, MMP-2, -3, -7, -9, -10, -11, -12, -13, -14, -15, -24, and TIMP-1 to -4 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). High TMEV RNA levels were detectable throughout the observation period using RT-qPCR. In addition, TMEV RNA was visualized within demyelinated lesions by in situ hybridization. MMP-3 mRNA was significantly upregulated at 1 day pi and again in the late phase of infection. TIMP-1 mRNA was significantly elevated throughout the observation period. MMP-12 mRNA was most prominently upregulated in the late phase of infection and MMP-12 protein was localized in intralesional microglia/macrophages and astrocytes by immunohistochemistry. In summary, in early TMEV infection, MMP-3 and TIMP-1 mRNA upregulation might be directly virus-induced, whereas persistent TMEV infection directly or indirectly stimulated MMP-12 production in microglia/macrophages and astrocytes and might account for ongoing demyelination in TME.
Collapse
Affiliation(s)
- Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Jimenez F, Mitts TF, Liu K, Wang Y, Hinek A. Ellagic and tannic acids protect newly synthesized elastic fibers from premature enzymatic degradation in dermal fibroblast cultures. J Invest Dermatol 2006; 126:1272-80. [PMID: 16601672 DOI: 10.1038/sj.jid.5700285] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progressive proteolytic degradation of cutaneous elastic fibers, that cannot be adequately replaced or repaired by adult dermal fibroblasts, constitutes a major feature of aging skin. Our present investigations, employing monolayer cultures of human dermal fibroblasts and organ cultures of skin biopsies, were aimed at testing whether the hydrophilic tannic acid (TA) and lipophilic ellagic acid (EA) would protect dermal elastin from exogenous and endogenous enzymatic degradation. Results from both culture systems indicated that dermal fibroblasts, maintained with TA or EA, deposit significantly more elastic fibers than untreated control cultures despite the fact that neither polyphenol enhanced transcription of elastin mRNA or cellular proliferation. Results of a pulse and chase experiment showed that pretreatment with both polyphenols enhanced biostability of tropoelastin and newly deposited elastin. Results of in vitro assays indicated that both polyphenols bound to purified elastin and significantly decreased its proteolytic degradation by elastolytic enzymes belonging to the serine proteinase, cysteine proteinase, and metallo-proteinase families. Importantly, both polyphenols also synergistically enhanced elastogenesis induced by selected elastogenic compounds in cultures of dermal fibroblasts. We propose that EA and TA may be useful for preventing proteolytic degradation of existing dermal elastic fibers and for enhancing more efficient elastogenesis in aged skin.
Collapse
Affiliation(s)
- Felipe Jimenez
- Research Department, Human Matrix Sciences, LLC, Visalia, California, USA
| | | | | | | | | |
Collapse
|
42
|
Liang J, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, Morimoto M, Hatakeyama K, Asada Y, Watanabe T, Sasaguri Y, Watanabe S, Fan J. Macrophage Metalloelastase Accelerates the Progression of Atherosclerosis in Transgenic Rabbits. Circulation 2006; 113:1993-2001. [PMID: 16636188 DOI: 10.1161/circulationaha.105.596031] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Macrophage metalloelastase (matrix metalloproteinase [MMP]-12) is upregulated in atherosclerotic lesions and aneurysm; thus, increased MMP-12 activity may play an important role in the pathogenesis of atherosclerosis. However, the pathological roles of MMP-12 in the initiation and progression of atherosclerosis have not been defined. METHODS AND RESULTS We compared the susceptibility of MMP-12 transgenic (Tg) rabbits to cholesterol-rich diet-induced atherosclerosis with that of non-Tg littermate rabbits. The rabbits were maintained at either relatively lower levels of hypercholesterolemia for shorter periods or higher levels of hypercholesterolemia for longer periods through a diet containing different amounts of cholesterol. We found no significant difference in the aortic atherosclerotic lesion size or quality between Tg and non-Tg rabbits at lower hypercholesterolemia. At higher hypercholesterolemia for longer periods, however, Tg rabbits developed more extensive atherosclerosis in the aortas and coronary arteries than did non-Tg rabbits. Histological examinations revealed that atherosclerotic lesions of Tg rabbits contained prominent macrophage infiltration associated with marked disruption of the elastic lamina in the tunica media with occasional formation of aneurysm-like lesions. Furthermore, increased expression of MMP-12 derived from macrophages was associated with elevated expression of MMP-3, suggesting that MMP-12 may play a pivotal role in the cascade activation of other MMPs, thereby exacerbating extracellular matrix degradation during the progression of atherosclerosis. CONCLUSIONS Overexpression of MMP-12 causes accelerated atherosclerosis in Tg rabbits. These results suggest that macrophage-derived MMP-12 participates in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jingyan Liang
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lian X, Qin Y, Hossain SA, Yang L, White A, Xu H, Shipley JM, Li T, Senior RM, Du H, Yan C. Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury. THE JOURNAL OF IMMUNOLOGY 2005; 174:7250-6. [PMID: 15905571 DOI: 10.4049/jimmunol.174.11.7250] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute lung injury is a side effect of therapy with a high concentration of inspired oxygen in patients. The molecular mechanism underlining this effect is poorly understood. In this study, we report that overexpression of Stat3C, a constitutive active form of STAT3, in respiratory epithelial cells of a doxycycline-controlled double-transgenic mouse system protects lung from inflammation and injury caused by hyperoxia. In this mouse line, >50% of transgenic mice survived exposure to 95% oxygen at day 7, compared with 0% survival of wild-type mice. Overexpression of STAT3C delays acute capillary leakage and neutrophil infiltration into the alveolar region. This protection is mediated at least partially through inhibition of hyperoxia-induced synthesis and release of matrix metalloproteinase (MMP)-9 and MMP-12 by neutrophils and alveolar resident cells. In some MMP-9(-/-) mice, prolonged survival was observed under hyperoxic condition. The finding supports a concept that activation of the Stat3 pathway plays a role to prevent hyperoxia-induced inflammation and injury in the lung.
Collapse
Affiliation(s)
- Xuemei Lian
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lapière CM. Tadpole collagenase, the single parent of such a large family. Biochimie 2005; 87:243-7. [PMID: 15781311 DOI: 10.1016/j.biochi.2004.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/07/2004] [Indexed: 11/28/2022]
Abstract
This editorial review comments the development of the field of the matrix metalloproteinases that was initiated by the demonstration of the tadpole collagenase in 1962.
Collapse
Affiliation(s)
- Ch M Lapière
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium.
| |
Collapse
|
45
|
Fan J, Wang X, Wu L, Matsumoto SI, Liang J, Koike T, Ichikawa T, Sun H, Shikama H, Sasaguri Y, Watanabe T. Macrophage-specific overexpression of human matrix metalloproteinase-12 in transgenic rabbits. Transgenic Res 2005; 13:261-9. [PMID: 15359603 DOI: 10.1023/b:trag.0000034717.70729.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increased matrix metalloproteinase-12 (MMP-12) has been implicated in atherosclerosis and many other inflammatory processes. To define MMP-12 functions in vivo, we generated transgenic rabbits that expressed human (h) MMP-12 gene under the control of a macrophage-specific promoter, the human scavenger receptor promoter. Two transgenic founder rabbits were found to have hMMP-12 transgene integration by Southern blot analysis. hMMP-12 mRNA was expressed in peritoneal and alveolar macrophages, and in tissues enriched in macrophages in transgenic rabbits. High levels of hMMP-12 protein were detected in the conditioned media of cultured peritoneal and alveolar macrophages from transgenic rabbits. Zymography showed that hMMP-12 secreted from macrophages possessed enzymatic activity toward beta-casein. To evaluate the expression of hMMP-12 in inflammatory sites, we used carrageenan-induced granulomas as an in vivo model for tissue macrophages and foam cells. Granuloma size in transgenic rabbits was significantly increased compared to that in control rabbits, and histological examination revealed that granulomas of transgenic rabbits were enriched in macrophages associated with increased hMMP-12 expression. We believe that this transgenic rabbit model with increased expression of hMMP-12 may become a useful model for further mechanistic studies of MMP-12 in inflammatory diseases and cancer invasion; it is also an ideal model for testing the in vivo action of MMP-12 inhibitors.
Collapse
Affiliation(s)
- Jianglin Fan
- Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Warner RL, Lukacs NW, Shapiro SD, Bhagarvathula N, Nerusu KC, Varani J, Johnson KJ. Role of metalloelastase in a model of allergic lung responses induced by cockroach allergen. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:1921-30. [PMID: 15579436 PMCID: PMC1618712 DOI: 10.1016/s0002-9440(10)63244-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our laboratory and others have shown an important role of metalloelastase (MMP-12) in the pathogenesis of acute and chronic lung injury. Because chronic asthma is characterized by airway inflammation and alterations in the airway extracellular matrix, we explored the role of metalloelastase in a model of allergic airway inflammation induced by cockroach antigen (CRA). Using MMP-12-deficient mice we found a significant reduction in CRA-induced inflammatory injury, as evidenced by fewer peribronchial leukocytes, significantly less protein in the bronchoalveolar lavage (BAL) fluid, and a significant reduction in the number of infiltrating neutrophils, eosinophils, and macrophages, relative to wild-type mice. Although we did not find a significant reduction in the number of T cells in the injured MMP-12-deficient animals as compared to controls, levels of the chemotactic factors interleukin-5, macrophage inflammatory protein-1 alpha, monocyte chemoattractant protein-1, thymus activation regulated chemokine, and the proinflammatory cytokine tumor necrosis factor-alpha were significantly reduced in the bronchoalveolar lavage fluid of CRA-challenged MMP-12-deficient mice, relative to CRA-challenged control animals. These studies indicate that MMP-12 plays an important proinflammatory role in the development of allergic inflammation in the CRA model. Alterations in the levels of chemotactic factors and other proinflammatory cytokines in the MMP-12-deficient mice may underlie the decrease in leukocyte recruitment into inflamed lungs.
Collapse
Affiliation(s)
- Roscoe L Warner
- Department of Pathology, The University of Michigan, 1301 Catherine Rd., Box 0602, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Wells JEA, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D. Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 2005; 21:187-96. [PMID: 15654856 DOI: 10.1111/j.1460-9568.2004.03829.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigated the role of matrix metalloproteinases (MMPs) in a mouse model of intracerebral haemorrhage (ICH). Transcripts encoding nine of the 23 known mammalian MMPs were measured. MMP-12 levels were the most elevated. To evaluate the role of MMP-12 in ICH, haemorrhages were induced in wild-type (WT) and MMP-12 null mice. The results show that MMP-12 null mice exhibited significant functional recovery of forelimb reaching and reduced dependence on the ipsilateral forelimb compared to WT mice. There was also a trend for improved sensory function in the tape removal test. With respect to single pellet skilled reaching, MMP-12 null mice recovered to a level that was not significantly different from sham at 14 and 28 days post-ICH. In contrast, WT animals demonstrated a persistent impairment relative to sham controls throughout the survival period (P < 0.05). The cylinder task revealed a lesion-induced reliance on the ipsilateral forelimb that was apparent at day 7 in both MMP-12 null and WT mice (P < 0.05), but only persisted in WT mice at 14 days post-ICH (P < 0.05). Differences in functional outcome could not be explained by tissue sparing. However, Iba1 immunostaining indicated that more cells bearing macrophage morphology were recruited to the lesion area in WT mice. This is the first study to profile the expression patterns of a number of the known MMPs following ICH in mice. The data indicate that MMP-12 expression following haemorrhagic stroke is deleterious and contributes to the development of secondary injury in this disease.
Collapse
Affiliation(s)
- Jennifer E A Wells
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Arikan MC, Shapiro SD, Mariani TJ. Induction of macrophage elastase (MMP-12) gene expression by statins. J Cell Physiol 2005; 204:139-45. [PMID: 15605420 DOI: 10.1002/jcp.20271] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The statins (including mevastatin and lovastatin) are a widely prescribed class of serum-cholesterol lowering drugs that function by inhibiting 3-hydroxymethylglutaryl coenzyme A (HMG CoA) reductase activity and cellular sterol synthesis. Statins are also widely being appreciated for their inhibitory effects upon inflammation, primarily mediated through direct regulation of inflammatory gene expression. Here we report that statins are also capable of increasing the expression of macrophage elastase (MMP-12). The induction of MMP-12 in mouse macrophages by statins is specific for HMG CoA reductase inhibition, rescued by mevalonate and not observed after inhibition of subsequent steps in the cholesterol biosynthetic pathway. Modulation of cholesterol metabolism may lead to changes in MMP-12 expression and subsequent impacts during physiological and pathophysiological states. We conclude that statins, in addition to their previously described anti-inflammatory properties, may promote the production of some proteinases from activated macrophages.
Collapse
Affiliation(s)
- Meltem C Arikan
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
49
|
Liu M, Sun H, Wang X, Koike T, Mishima H, Ikeda K, Watanabe T, Ochiai N, Fan J. Association of increased expression of macrophage elastase (matrix metalloproteinase 12) with rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:3112-7. [PMID: 15476203 DOI: 10.1002/art.20567] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Increased enzymatic activity of matrix metalloproteinases (MMPs) may promote the progression of rheumatoid arthritis (RA). We undertook this study to investigate the expression and localization of human macrophage elastase (MMP-12) in synovial tissue from RA patients and to compare MMP-12 levels in the synovial tissue and synovial fluid of RA patients with the corresponding levels in patients with osteoarthritis (OA). METHODS We obtained synovial tissues from 23 RA patients and 29 OA patients and analyzed MMP-12 expression using immunohistochemistry, Western and Northern blotting analyses, and zymography. Furthermore, we quantified MMP-12 levels in synovial fluid by Western blotting and zymography. RESULTS Northern blotting analysis demonstrated that RA synovial tissue contained higher levels of MMP-12 messenger RNA than did OA synovial tissue. Western blotting revealed that MMP-12 proteins were consistently and markedly increased in RA synovial tissue compared with OA synovial tissue. A greater amount of immunoreactive proteins corresponding to catalytic forms of MMP-12 was present in RA synovial tissue and synovial fluid, and the MMP-12 proteins exhibited caseinolytic activity in vitro. Immunohistochemical staining showed that the major cells expressing MMP-12 were synovial lining cells, many of which were inflammatory macrophages. CONCLUSION These results establish a possible mechanism by which macrophage-derived MMP-12 may play an important role in the destructive process in RA. Inhibition of MMP-12 may be a potential modality for the treatment of RA.
Collapse
Affiliation(s)
- Mozhen Liu
- Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen YE. MMP-12, an old enzyme plays a new role in the pathogenesis of rheumatoid arthritis? THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1069-70. [PMID: 15466374 PMCID: PMC1618647 DOI: 10.1016/s0002-9440(10)63368-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yuqing E Chen
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA 30310, USA.
| |
Collapse
|