1
|
Drakopoulos A, Koszegi Z, Seier K, Hübner H, Maurel D, Sounier R, Granier S, Gmeiner P, Calebiro D, Decker M. Design, Synthesis, and Characterization of New δ Opioid Receptor-Selective Fluorescent Probes and Applications in Single-Molecule Microscopy of Wild-Type Receptors. J Med Chem 2024; 67:12618-12631. [PMID: 39044606 PMCID: PMC11386433 DOI: 10.1021/acs.jmedchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The delta opioid receptor (δOR or DOR) is a G protein-coupled receptor (GPCR) showing a promising profile as a drug target for nociception and analgesia. Herein, we design and synthesize new fluorescent antagonist probes with high δOR selectivity that are ideally suited for single-molecule microscopy (SMM) applications in unmodified, untagged receptors. Using our new probes, we investigated wild-type δOR localization and mobility at low physiological receptor densities for the first time. Furthermore, we investigate the potential formation of δOR homodimers, as such a receptor organization might exhibit distinct pharmacological activity, potentially paving the way for innovative pharmacological therapies. Our findings indicate that the majority of δORs labeled with these probes exist as freely diffusing monomers on the cell surface in a simple cell model. This discovery advances our understanding of OR behavior and offers potential implications for future therapeutic research.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology, Julius-Maximilians University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Harald Hübner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Peter Gmeiner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Li Y, Zhang R, Wang C, Forouhar F, Clarke OB, Vorobiev S, Singh S, Montelione GT, Szyperski T, Xu Y, Hunt JF. Oligomeric interactions maintain active-site structure in a noncooperative enzyme family. EMBO J 2022; 41:e108368. [PMID: 35801308 DOI: 10.15252/embj.2021108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022] Open
Abstract
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chi Wang
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Cryo-Electron Microscopy Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Farhad Forouhar
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics and Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Vorobiev
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Shikha Singh
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Chemistry & Chemical Biology and Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - John F Hunt
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
5
|
Anwar M, Amin MR, Balaji Ragunathrao VA, Matsche J, Karginov A, Minshall RD, Mo GCH, Komarova Y, Mehta D. Tyrosine phosphorylation of S1PR1 leads to chaperone BiP-mediated import to the endoplasmic reticulum. J Cell Biol 2021; 220:212707. [PMID: 34652421 PMCID: PMC8562845 DOI: 10.1083/jcb.202006021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Cell surface G protein–coupled receptors (GPCRs), upon agonist binding, undergo serine–threonine phosphorylation, leading to either receptor recycling or degradation. Here, we show a new fate of GPCRs, exemplified by ER retention of sphingosine-1-phosphate receptor 1 (S1PR1). We show that S1P phosphorylates S1PR1 on tyrosine residue Y143, which is associated with recruitment of activated BiP from the ER into the cytosol. BiP then interacts with endocytosed Y143-S1PR1 and delivers it into the ER. In contrast to WT-S1PR1, which is recycled and stabilizes the endothelial barrier, phosphomimicking S1PR1 (Y143D-S1PR1) is retained by BiP in the ER and increases cytosolic Ca2+ and disrupts barrier function. Intriguingly, a proinflammatory, but non-GPCR agonist, TNF-α, also triggered barrier-disruptive signaling by promoting S1PR1 phosphorylation on Y143 and its import into ER via BiP. BiP depletion restored Y143D-S1PR1 expression on the endothelial cell surface and rescued canonical receptor functions. Findings identify Y143-phosphorylated S1PR1 as a potential target for prevention of endothelial barrier breakdown under inflammatory conditions.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Md Ruhul Amin
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vijay Avin Balaji Ragunathrao
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrei Karginov
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Richard D Minshall
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Anesthesiology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Gary C H Mo
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Yulia Komarova
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
6
|
Hattori M, Sugiura N, Wazawa T, Matsuda T, Nagai T. Ratiometric Bioluminescent Indicator for a Simple and Rapid Measurement of Thrombin Activity Using a Smartphone. Anal Chem 2021; 93:13520-13526. [PMID: 34570461 DOI: 10.1021/acs.analchem.1c02396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemostasis is an essential function that repairs tissues and maintains the survival of living organisms. To prevent diseases caused by the abnormality of the blood coagulation mechanism, it is important to carry out a blood test periodically by a method that is convenient and less burdensome for examiners. Thrombin is a protease that catalyzes the conversion of fibrinogen, and its cleavage activity can be an index of coagulation activity. Here, we developed a ratiometric bioluminescent indicator, Thrombastor (thrombin activity sensing indicator), which reflects the thrombin cleavage activity in blood by changing the emission color from green to blue. Compared to the current thrombin activity indicator, the rapid color change of the emission indicated a 2.5-fold decrease in the Km for thrombin, and the cleavage rate was more than two times faster. By improving the absolute bioluminescence intensity, detection from a small amount of plasma could be achieved with a smartphone camera. Using Thrombastor and a versatile device, an effective diagnosis for preventing coagulation disorders can be provided.
Collapse
Affiliation(s)
- Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Nae Sugiura
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
7
|
Kappa but not delta or mu opioid receptors form homodimers at low membrane densities. Cell Mol Life Sci 2021; 78:7557-7568. [PMID: 34657173 PMCID: PMC8629795 DOI: 10.1007/s00018-021-03963-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/03/2022]
Abstract
Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.
Collapse
|
8
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
9
|
Bagher AM, Young AP, Laprairie RB, Toguri JT, Kelly MEM, Denovan-Wright EM. Heteromer formation between cannabinoid type 1 and dopamine type 2 receptors is altered by combination cannabinoid and antipsychotic treatments. J Neurosci Res 2020; 98:2496-2509. [PMID: 32881145 DOI: 10.1002/jnr.24716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
The cannabinoid type 1 (CB1 ) receptor and the dopamine type 2 (D2 ) receptor are co-localized on medium spiny neuron terminals in the globus pallidus where they modulate neural circuits involved in voluntary movement. Physical interactions between the two receptors have been shown to alter receptor signaling in cell culture. The objectives of the current study were to identify the presence of CB1 /D2 heteromers in the globus pallidus of C57BL/6J male mice, define how CB1 /D2 heteromer levels are altered following treatment with cannabinoids and/or antipsychotics, and determine if fluctuating levels of CB1 /D2 heteromers have functional consequences. Using in situ proximity ligation assays, we observed CB1 /D2 heteromers in the globus pallidus of C57BL/6J mice. The abundance of the heteromers increased following treatment with the nonselective cannabinoid receptor agonist, CP55,940. In contrast, treatment with the typical antipsychotic haloperidol reduced the number of CB1 /D2 heteromers, whereas the atypical antipsychotic olanzapine treatment had no effect. Co-treatment with CP55,940 and haloperidol had similar effects to haloperidol alone, whereas co-treatment with CP55,940 and olanzapine had similar effects to CP55,940. The observed changes were found to have functional consequences as the differential effects of haloperidol and olanzapine also applied to γ-aminobutyric acid release in STHdhQ7/Q7 cells and motor function in C57BL/6J male mice. This work highlights the clinical relevance of co-exposure to cannabinoids and different antipsychotics over acute and prolonged time periods.
Collapse
Affiliation(s)
- Amina M Bagher
- Department of Pharmacology and Toxicology, King AbdulAziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - James T Toguri
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
10
|
Kremer M, Megat S, Bohren Y, Wurtz X, Nexon L, Ceredig RA, Doridot S, Massotte D, Salvat E, Yalcin I, Barrot M. Delta opioid receptors are essential to the antiallodynic action of Β 2-mimetics in a model of neuropathic pain. Mol Pain 2020; 16:1744806920912931. [PMID: 32208806 PMCID: PMC7097867 DOI: 10.1177/1744806920912931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adrenergic system, because of its reported implication in pain mechanisms, may be a potential target for chronic pain treatment. We previously demonstrated that β2-adrenoceptors (β2-ARs) are essential for neuropathic pain treatment by antidepressant drugs, and we showed that agonists of β2-ARs, that is, β2-mimetics, had an antiallodynic effect per se following chronic administration. To further explore the downstream mechanism of this action, we studied here the role of the opioid system. We used behavioral, genetic, and pharmacological approaches to test whether opioid receptors were necessary for the antiallodynic action of a short acting (terbutaline) and a long-acting (formoterol) β2-mimetic. Using the Cuff model of neuropathic pain in mice, we showed that chronic treatments with terbutaline (intraperitoneal) or formoterol (orally) alleviated mechanical hypersensitivity. We observed that these β2-mimetics remained fully effective in μ-opioid and in κ-opioid receptor deficient mice, but lost their antiallodynic action in δ-opioid receptor deficient mice, either female or male. Accordingly, we showed that the δ-opioid receptor antagonist naltrindole induced an acute relapse of allodynia in mice with neuropathic pain chronically treated with the β2-mimetics. Such relapse was also observed following administration of the peripheral opioid receptor antagonist naloxone methiodide. These data demonstrate that the antiallodynic effect of long-term β2-mimetics in a context of neuropathic pain requires the endogenous opioid system, and more specifically peripheral δ-opioid receptors.
Collapse
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Salim Megat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Yohann Bohren
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Xavier Wurtz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Laurent Nexon
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Rhian Alice Ceredig
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Doridot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Chronobiotron, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Eric Salvat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
11
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Bery N, Cruz-Migoni A, Bataille CJ, Quevedo CE, Tulmin H, Miller A, Russell A, Phillips SE, Carr SB, Rabbitts TH. BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions. eLife 2018; 7:37122. [PMID: 29989546 PMCID: PMC6039175 DOI: 10.7554/elife.37122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
The RAS family of proteins is amongst the most highly mutated in human cancers and has so far eluded drug therapy. Currently, much effort is being made to discover mutant RAS inhibitors and in vitro screening for RAS-binding drugs must be followed by cell-based assays. Here, we have developed a robust set of bioluminescence resonance energy transfer (BRET)-based RAS biosensors that enable monitoring of RAS-effector interaction inhibition in living cells. These include KRAS, HRAS and NRAS and a variety of different mutations that mirror those found in human cancers with the major RAS effectors such as CRAF, PI3K and RALGDS. We highlighted the utility of these RAS biosensors by showing a RAS-binding compound is a potent pan-RAS-effector interactions inhibitor in cells. The RAS biosensors represent a useful tool to investigate and characterize the potency of anti-RAS inhibitors in cells and more generally any RAS protein-protein interaction (PPI) in cells. A group of proteins known as the RAS family plays a critical role in controlling animal cell growth and division. RAS proteins are normally active only some of the time, but genetic mutations can create permanently active forms of the proteins. These constantly interact with other proteins called effectors. In response, cells multiply uncontrollably and give rise to cancers. In an attempt to find new cancer treatments, researchers across the globe are trying to develop inhibitor drugs that prevent RAS and effector proteins from interacting. New drugs are often tested in laboratory experiments that directly apply the drugs to the proteins that they are designed to work on. But in some cases a drug may work wellin the laboratory but fail to work when used in cells. Unfortunately, there are few ways to judge how well inhibitor drugs work inside living cells. Bery et al. have now developed RAS biosensors – a collection of proteins that bind to RAS and produce light more brightly when RAS interacts with effector proteins in living cells. Tests on cells treated with an antibody that works inside cells and is known to prevent interactions between RAS and effector proteins confirmed that the RAS biosensors work well. Bery et al. then used the RAS biosensors to show that a new RAS inhibitor works in human cancer cells. The RAS biosensors are available upon request to researchers across the globe. They should form an important tool for testing potential treatments for cancers that contain mutated RAS proteins.
Collapse
Affiliation(s)
- Nicolas Bery
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Abimael Cruz-Migoni
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Camilo E Quevedo
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanna Tulmin
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ami Miller
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Simon Ev Phillips
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Rogacki MK, Golfetto O, Tobin SJ, Li T, Biswas S, Jorand R, Zhang H, Radoi V, Ming Y, Svenningsson P, Ganjali D, Wakefield DL, Sideris A, Small AR, Terenius L, Jovanović‐Talisman T, Vukojević V. Dynamic lateral organization of opioid receptors (kappa, mu wt and mu N40D ) in the plasma membrane at the nanoscale level. Traffic 2018; 19:690-709. [PMID: 29808515 PMCID: PMC6120469 DOI: 10.1111/tra.12582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt ), and its naturally occurring isoform (MOPN40D ) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble-averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside-enriched domains and partial association with cholesterol-enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor-specific. KOP-containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D . Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt , whereas this effect was not observed for MOPN40D .
Collapse
Affiliation(s)
- Maciej K. Rogacki
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Tianyi Li
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Huiying Zhang
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Vlad Radoi
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Yu Ming
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Per Svenningsson
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Daniel Ganjali
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Athanasios Sideris
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Alexander R. Small
- Department of Physics and AstronomyCalifornia State Polytechnic UniversityPomonaCalifornia
| | - Lars Terenius
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
- Department of Molecular and Cellular NeurosciencesThe Scripps Research InstituteLa JollaCalifornia
| | | | - Vladana Vukojević
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| |
Collapse
|
15
|
Felce JH, Davis SJ, Klenerman D. Single-Molecule Analysis of G Protein-Coupled Receptor Stoichiometry: Approaches and Limitations. Trends Pharmacol Sci 2018; 39:96-108. [PMID: 29122289 DOI: 10.1016/j.tips.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
How G protein-coupled receptors (GPCRs) are organized at the cell surface remains highly contentious. Single-molecule (SM) imaging is starting to inform this debate as receptor behavior can now be visualized directly, without the need for interpreting ensemble data. The limited number of SM studies of GPCRs undertaken to date have strongly suggested that dimerization is at most transient, and that most receptors are monomeric at any given time. However, even SM data has its caveats and needs to be interpreted carefully. Here, we discuss the types of SM imaging strategies used to examine GPCR stoichiometry and consider some of these caveats. We also emphasize that attempts to resolve the debate ought to rely on orthogonal approaches to measuring receptor stoichiometry.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
16
|
Single-molecule imaging reveals dimerization/oligomerization of CXCR4 on plasma membrane closely related to its function. Sci Rep 2017; 7:16873. [PMID: 29203889 PMCID: PMC5715067 DOI: 10.1038/s41598-017-16802-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Dimerization and oligomerization of G-protein coupled receptors (GPCRs) have emerged as important characters during their trans-membrane signal transduction. However, until now the relationship between GPCR dimerization and their trans-membrane signal transduction function is still uncovered. Here, using pertussis toxin (PTX) to decouple the receptor from G protein complex and with single-molecule imaging, we show that in the presence of agonist, cells treated with PTX showed a decrease in the number of dimers and oligomers on the cell surface compared with untreated ones, which suggests that oligomeric status of CXCR4 could be significantly influenced by the decoupling of G protein complex during its signal transduction process. Moreover, with chlorpromazine (CPZ) to inhibit internalization of CXCR4, it was found that after SDF-1α stimulation, cells treated with CPZ showed more dimers and oligomers on the cell surface than untreated ones, which suggest that dimers and oligomers of CXCR4 tend to internalize more easily than monomers. Taken together, our results demonstrate that dimerization and oligomerization of CXCR4 is closely related with its G protein mediated pathway and β-arrestin mediated internalization process, and would play an important role in regulating its signal transduction functions.
Collapse
|
17
|
Felce JH, Latty SL, Knox RG, Mattick SR, Lui Y, Lee SF, Klenerman D, Davis SJ. Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure. Cell Rep 2017; 20:2654-2665. [PMID: 28903045 PMCID: PMC5608970 DOI: 10.1016/j.celrep.2017.08.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
The organization of Rhodopsin-family G protein-coupled receptors (GPCRs) at the cell surface is controversial. Support both for and against the existence of dimers has been obtained in studies of mostly individual receptors. Here, we use a large-scale comparative study to examine the stoichiometric signatures of 60 receptors expressed by a single human cell line. Using bioluminescence resonance energy transfer- and single-molecule microscopy-based assays, we found that a relatively small fraction of Rhodopsin-family GPCRs behaved as dimers and that these receptors otherwise appear to be monomeric. Overall, the analysis predicted that fewer than 20% of ∼700 Rhodopsin-family receptors form dimers. The clustered distribution of the dimers in our sample and a striking correlation between receptor organization and GPCR family size that we also uncover each suggest that receptor stoichiometry might have profoundly influenced GPCR expansion and diversification.
Collapse
Affiliation(s)
- James H Felce
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Rachel G Knox
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Susan R Mattick
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yuan Lui
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
18
|
Medlock Kakaley EK, Eytcheson SA, LeBlanc GA. Ligand-Mediated Receptor Assembly as an End Point for High-Throughput Chemical Toxicity Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9327-9333. [PMID: 28708939 PMCID: PMC5831241 DOI: 10.1021/acs.est.7b02882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The high throughput screening of chemicals for interaction with intracellular targets is gaining prominence in the toxicity evaluation of environmental chemicals. We describe ligand-mediated receptor assembly as an early event in receptor signaling and its application to the screening of chemicals for interaction with targeted receptors. We utilized bioluminescence resonance energy transfer (BRET) to detect and quantify assembly of the methyl farnesoate receptor (MfR) in response to various high-production volume and other chemicals. The hormone methyl farnesoate binds to the MfR to regulate various aspects of reproduction and development in crustaceans. The MfR protein subunits Met and SRC, cloned from Daphnia pulex, were fused to the fluorophore, mAmetrine and the photon generator, Rluc2, respectively. Ligand-mediated receptor assembly was measured by photon transfer from the photon donor to the fluorophore resulting in fluorescence emission. Overall, the BRET assay had comparable or greater sensitivity as compared to a traditional reporter gene assay. Further, chemicals that screened positive in the BRET assay also stimulated phenotypic outcomes in daphnids that result from MfR signaling. We concluded the BRET assay is an accurate, sensitive, and cost/time efficient alternative to traditional screening assays.
Collapse
Affiliation(s)
| | | | - Gerald A. LeBlanc
- Corresponding author: Address, Department of Biological Sciences, Campus Box 7614, North Carolina State University, Raleigh, NC, 27695-7614, USA, Phone, (919) 515-7404,
| |
Collapse
|
19
|
Jonas KC, Hanyaloglu AC. Impact of G protein-coupled receptor heteromers in endocrine systems. Mol Cell Endocrinol 2017; 449:21-27. [PMID: 28115188 DOI: 10.1016/j.mce.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022]
Abstract
The fine-tuning of endocrine homeostasis is regulated by dynamic receptor mediated processes. The superfamily of G protein-coupled receptors (GPCRs) have diverse roles in the modulation of all endocrine axes, thus understanding the mechanisms underpinning their functionality is paramount for treatment of endocrinopathies. Evidence over the last 20 years has highlighted homo and heteromerization as a key mode of mediating GPCR functional diversity. This review will discuss the concept of GPCR heteromerization and its relevance to endocrine function, detailing in vitro and in vivo evidence, and exploring current and potential pharmacological strategies for specific targeting of GPCR heteromers in endocrine heath and disease.
Collapse
Affiliation(s)
- K C Jonas
- Cell Biology and Genetics Research Centre, Centre for Medical and Biomedical Education, St George's, University of London, UK.
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
20
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
21
|
Lao J, He H, Wang X, Wang Z, Song Y, Yang B, Ullahkhan N, Ge B, Huang F. Single-Molecule Imaging Demonstrates Ligand Regulation of the Oligomeric Status of CXCR4 in Living Cells. J Phys Chem B 2017; 121:1466-1474. [PMID: 28118546 DOI: 10.1021/acs.jpcb.6b10969] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of dimerization and oligomerization of G-protein-coupled receptors in their signal transduction is highly controversial. Delineating this issue can greatly facilitate rational drug design. With single-molecule imaging, we show that chemokine receptor CXCR4 exists mainly as a monomer in normal mammalian living cells and forms dimers and higher-order oligomers at a high expression level, such as in cancer cells. Chemotaxis tests demonstrate that the signal transduction activity of CXCR4 does not depend only on its expression level, indicating a close relation with the oligomeric status of CXCR4. Moreover, binding ligands can effectively upregulate or downregulate the oligomeric level of CXCR4, which suggests that binding ligands may realize their pivotal roles by regulating the oligomeric status of CXCR4 rather than by simply inducing conformational changes.
Collapse
Affiliation(s)
- Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Naseer Ullahkhan
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
22
|
Latty SL, Felce JH, Weimann L, Lee SF, Davis SJ, Klenerman D. Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States. Biophys J 2016; 109:1798-806. [PMID: 26536257 PMCID: PMC4643199 DOI: 10.1016/j.bpj.2015.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The extent to which Rhodopsin family G-protein-coupled receptors (GPCRs) form invariant oligomers is contentious. Recent single-molecule fluorescence imaging studies mostly argue against the existence of constitutive receptor dimers and instead suggest that GPCRs only dimerize transiently, if at all. However, whether or not even transient dimers exist is not always clear due to difficulties in unambiguously distinguishing genuine interactions from chance colocalizations, particularly with respect to short-lived events. Previous single-molecule studies have depended critically on calculations of chance colocalization rates and/or comparison with unfixed control proteins whose diffusional behavior may or may not differ from that of the test receptor. Here, we describe a single-molecule imaging assay that 1) utilizes comparisons with well-characterized control proteins, i.e., the monomer CD86 and the homodimer CD28, and 2) relies on cell fixation to limit artifacts arising from differences in the distribution and diffusion of test proteins versus these controls. The improved assay reliably reports the stoichiometry of the Glutamate-family GPCR dimer, γ-amino butyric acid receptor b2, whereas two Rhodopsin-family GPCRs, β2-adrenergic receptor and mCannR2, exhibit colocalization levels comparable to those of CD86 monomers, strengthening the case against invariant GPCR oligomerization.
Collapse
Affiliation(s)
- Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James H Felce
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Weimann
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
23
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
24
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
25
|
Vrecl M, Jorgensen R, Pogacnik A, Heding A. Development of a BRET2 Screening Assay Using β-Arrestin 2 Mutants. ACTA ACUST UNITED AC 2016; 9:322-33. [PMID: 15191649 DOI: 10.1177/1087057104263212] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study has focused on enhancing the signal generated from the interaction between a G-protein-coupled receptor (GPCR) and β-arrestin 2 (β-arr2), measured by the bioluminescence resonance energy transfer (BRET2) technology. Both class A (β2-adrenergic receptor [β2-AR]) and class B (neurokinin-type 1 receptor [NK1-R]) GPCRs, classified based on their internalization characteristics, have been analyzed. It was evaluated whether the BRET2 signal can be enhanced by using (1) β-arr2 phosphorylation-independent mutant (β-arr2 R169E) and (2) β-arr2 mutants deficient in their ability to interact with the components of the clathrin-coated vesicles (β-arr2 R393E, R395E and β-arr2 373 stop). For the class B receptor, there was no major difference in the agonist-promoted BRET2 signal when comparing results obtained with wild-type (wt) and mutant β-arr2. However, with the class A receptor, a more than 2-fold increase in the BRET2 signal was observed with β-arr2 mutants lacking the AP-2 or both AP-2 and clathrin binding sites. This set of data suggests that the inability of these β-arr2 mutants to interact with the components of the clathrin-coated vesicle probably prevents their rapid dissociation from the receptor, thus yielding an increased and more stable BRET2 signal. The β-arr2 R393E, R395E mutant also enhanced the signal window with other members of the GPCR family (neuropeptide Y type 2 receptor [NPY2-R] and TG1019 receptor) and was successfully applied in full-plate BRET2-based agonist and antagonist screening assays.
Collapse
Affiliation(s)
- Milka Vrecl
- Institute of Anatomy, Histology & Embryology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
26
|
Nemoto W, Yamanishi Y, Limviphuvadh V, Saito A, Toh H. GGIP: Structure and sequence-based GPCR-GPCR interaction pair predictor. Proteins 2016; 84:1224-33. [PMID: 27191053 DOI: 10.1002/prot.25071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 01/20/2023]
Abstract
G Protein-Coupled Receptors (GPCRs) are important pharmaceutical targets. More than 30% of currently marketed pharmaceutical medicines target GPCRs. Numerous studies have reported that GPCRs function not only as monomers but also as homo- or hetero-dimers or higher-order molecular complexes. Many GPCRs exert a wide variety of molecular functions by forming specific combinations of GPCR subtypes. In addition, some GPCRs are reportedly associated with diseases. GPCR oligomerization is now recognized as an important event in various biological phenomena, and many researchers are investigating this subject. We have developed a support vector machine (SVM)-based method to predict interacting pairs for GPCR oligomerization, by integrating the structure and sequence information of GPCRs. The performance of our method was evaluated by the Receiver Operating Characteristic (ROC) curve. The corresponding area under the curve was 0.938. As far as we know, this is the only prediction method for interacting pairs among GPCRs. Our method could accelerate the analyses of these interactions, and contribute to the elucidation of the global structures of the GPCR networks in membranes. Proteins 2016; 84:1224-1233. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University (TDU), Ishizaka, Hatoyama-Machi, Hiki-Gun, Saitama, 350-0394, Japan.,Computational Biology Research Center (CBRC), Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building, 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064, Japan
| | - Yoshihiro Yamanishi
- Medical Institute of Bioregulation (MiB), Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.,Institute for Advanced Study, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore
| | - Akira Saito
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University (TDU), Ishizaka, Hatoyama-Machi, Hiki-Gun, Saitama, 350-0394, Japan
| | - Hiroyuki Toh
- Computational Biology Research Center (CBRC), Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building, 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064, Japan.,Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda-Shi, Hyogo, 669-1337, Japan
| |
Collapse
|
27
|
Bagher AM, Laprairie RB, Kelly MEM, Denovan-Wright EM. Antagonism of Dopamine Receptor 2 Long Affects Cannabinoid Receptor 1 Signaling in a Cell Culture Model of Striatal Medium Spiny Projection Neurons. Mol Pharmacol 2016; 89:652-66. [DOI: 10.1124/mol.116.103465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 11/22/2022] Open
|
28
|
Mo XL, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, Khuri FR, Du Y, Fu H. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform. J Mol Cell Biol 2015; 8:271-81. [PMID: 26578655 DOI: 10.1093/jmcb/mjv064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023] Open
Abstract
Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery.
Collapse
Affiliation(s)
- Xiu-Lei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yin Luo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rina Su
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Dermatology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Jonathan J Havel
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zenggang Li
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Roubalova L, Vosahlikova M, Brejchova J, Sykora J, Rudajev V, Svoboda P. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments. PLoS One 2015; 10:e0135664. [PMID: 26285205 PMCID: PMC4540457 DOI: 10.1371/journal.pone.0135664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 07/25/2015] [Indexed: 11/18/2022] Open
Abstract
Principal Findings HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025–0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the “wobble in cone” model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Summary Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid receptors and G proteins.
Collapse
Affiliation(s)
- Lenka Roubalova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Vosahlikova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Brejchova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Sykora
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Rudajev
- Department of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
30
|
Lim JH, Park GC, Lee SM, Lee JH, Lim B, Hwang SM, Kim JH, Park H, Joo J, Kim YP. Surface-Tunable Bioluminescence Resonance Energy Transfer via Geometry-Controlled ZnO Nanorod Coordination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3469-3475. [PMID: 25802061 DOI: 10.1002/smll.201403700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The use of ZnO nanorods (NRs) as an effective coordinator and biosensing platform to create bioluminescence resonance energy transfer (BRET) is reported. Herein, a hydrothermal approach is applied to obtain morphologically controlled ZnO NRs, which are directly bound to luciferase (Luc) and carboxy-modified quantum dot (QD) acting as a donor-acceptor pair for BRET. BRET efficiency varies significantly with the geometry of ZnO NRs, which modulates the coordination between hexahistidine-tagged Luc (Luc-His6 ) and QD, owing to the combined effect of the total surface area consisting of (001) and (100) planes and their surface polarities. Unlike typical QD-BRET reactions with metal ions (e.g., zinc ions), a geometry-controlled ZnO NR platform can facilitate the design of surface-initiated BRET sensors without being supplemented by copious metal ions: the geometry-controlled ZnO NR platform can therefore pave the way for nanostructure-based biosensors with enhanced analytical performance.
Collapse
Affiliation(s)
- Jun Hyung Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 440-746, Republic of Korea
| | - Geun Chul Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 440-746, Republic of Korea
| | - Seung Muk Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 440-746, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 440-746, Republic of Korea
| | - Butaek Lim
- Department of Life Science and Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Soo Min Hwang
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 156-756, Korea
| | - Jinho Joo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 440-746, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science and Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, Republic of Korea
| |
Collapse
|
31
|
Fujita W, Gomes I, Devi LA. Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10. Br J Pharmacol 2015; 171:4155-76. [PMID: 24916280 DOI: 10.1111/bph.12798] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 12/24/2022] Open
Abstract
GPCRs can interact with each other to form homomers or heteromers. Homomers involve interactions with the same receptor type while heteromers involve interactions between two different GPCRs. These receptor-receptor interactions modulate not only the binding but also the signalling and trafficking properties of individual receptors. Opioid receptor heteromerization has been extensively investigated with the objective of identifying novel therapeutic targets that are as potent as morphine but without the side effects associated with chronic morphine use. In this context, studies have described heteromerization between the different types of opioid receptors and between opioid receptors and a wide range of GPCRs including adrenoceptors, cannabinoid, 5-HT, metabotropic glutamate and sensory neuron-specific receptors. Recent advances in the field involving the generation of heteromer-specific reagents (antibodies or ligands) or of membrane-permeable peptides that disrupt the heteromer interaction are helping to elucidate the physiological role of opioid receptor heteromers and the contribution of the partner receptor to the side effects associated with opioid use. For example, studies using membrane-permeable peptides targeting the heteromer interface have implicated μ and δ receptor heteromers in the development of tolerance to morphine, and heteromers of μ and gastrin-releasing peptide receptors in morphine-induced itch. In addition, a number of ligands that selectively target opioid receptor heteromers exhibit potent antinociception with a decrease in the side effects commonly associated with morphine use. In this review, we summarize the latest findings regarding the biological and functional characteristics of opioid receptor heteromers both in vitro and in vivo.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
32
|
Cobret L, De Tauzia ML, Ferent J, Traiffort E, Hénaoui I, Godin F, Kellenberger E, Rognan D, Pantel J, Bénédetti H, Morisset-Lopez S. Targeting the cis-dimerization of LINGO-1 with low MW compounds affects its downstream signalling. Br J Pharmacol 2014; 172:841-56. [PMID: 25257685 DOI: 10.1111/bph.12945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/30/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of LINGO-1 cis-dimers in the regulation of its biological activity. EXPERIMENTAL APPROACH LINGO-1 homodimers were identified in both HEK293 and SH-SY5Y cells using co-immunoprecipitation experiments and BRET saturation analysis. We performed a hypothesis-driven screen for identification of small-molecule protein-protein interaction modulators of LINGO-1 using a BRET-based assay, adapted for screening. The compound identified was further assessed for effects on LINGO-1 downstream signalling pathways using Western blotting analysis and AlphaScreen technology. KEY RESULTS LINGO-1 was present as homodimers in primary neuronal cultures. LINGO-1 interacted homotypically in cis-orientation and LINGO-1 cis-dimers were formed early during LINGO-1 biosynthesis. A BRET-based assay allowed us to identify phenoxybenzamine as the first conformational modulator of LINGO-1 dimers. In HEK-293 cells, phenoxybenzamine was a positive modulator of LINGO-1 function, increasing the LINGO-1-mediated inhibition of EGF receptor signalling and Erk phosphorylation. CONCLUSIONS AND IMPLICATIONS Our data suggest that LINGO-1 forms constitutive cis-dimers at the plasma membrane and that low MW compounds affecting the conformational state of these dimers can regulate LINGO-1 downstream signalling pathways. We propose that targeting the LINGO-1 dimerization interface opens a new pharmacological approach to the modulation of its function and provides a new strategy for drug discovery.
Collapse
Affiliation(s)
- L Cobret
- Centre de Biophysique Moléculaire, Département biologie cellulaire et cibles thérapeutiques, CNRS, UPR 4301, University of Orléans and INSERM, Orléans, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gomes I, Gupta A, Bushlin I, Devi LA. Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation, and function. Front Pharmacol 2014; 5:268. [PMID: 25520661 PMCID: PMC4253664 DOI: 10.3389/fphar.2014.00268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/16/2014] [Indexed: 11/13/2022] Open
Abstract
Over the last decade an increasing number of studies have focused on the ability of G protein-coupled receptors to form heteromers and explored how receptor heteromerization modulates the binding, signaling and trafficking properties of individual receptors. Most of these studies were carried out in heterologous cells expressing epitope tagged receptors. Very little information is available about the in vivo physiological role of G protein-coupled receptor heteromers due to a lack of tools to detect their presence in endogenous tissue. Recent advances such as the generation of mouse models expressing fluorescently labeled receptors, of TAT based peptides that can disrupt a given heteromer pair, or of heteromer-selective antibodies that recognize the heteromer in endogenous tissue have begun to elucidate the physiological and pathological roles of receptor heteromers. In this review we have focused on heteromer-selective antibodies and describe how a subtractive immunization strategy can be successfully used to generate antibodies that selectively recognize a desired heteromer pair. We also describe the uses of these antibodies to detect the presence of heteromers, to study their properties in endogenous tissues, and to monitor changes in heteromer levels under pathological conditions. Together, these findings suggest that G protein-coupled receptor heteromers represent unique targets for the development of drugs with reduced side-effects.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Ittai Bushlin
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA ; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
34
|
Demonstration of a direct interaction between β2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One 2014; 9:e112664. [PMID: 25401701 PMCID: PMC4234468 DOI: 10.1371/journal.pone.0112664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/06/2014] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism is under the cooperative regulation of both insulin receptor (IR) and β2-adrenergic receptor (β2AR), which represent the receptor tyrosine kinases (RTKs) and seven transmembrane receptors (7TMRs), respectively. Studies demonstrating cross-talk between these two receptors and their endogenous coexpression have suggested their possible interactions. To evaluate the effect of IR and prospective heteromerization on β2AR properties, we showed that IR coexpression had no effect on the ligand binding properties of β2AR; however, IR reduced β2AR surface expression and accelerated its internalization. Additionally, both receptors displayed a similar distribution pattern with a high degree of colocalization. To test the possible direct interaction between β2AR and IR, we employed quantitative BRET2 saturation and competition assays. Saturation assay data suggested constitutive β2AR and IR homo- and heteromerization. Calculated acceptor/donor (AD50) values as a measure of the relative affinity for homo- and heteromer formation differed among the heteromers that could not be explained by a simple dimer model. In heterologous competition assays, a transient increase in the BRET2 signal with a subsequent hyperbolical decrease was observed, suggesting higher-order heteromer formation. To complement the BRET2 data, we employed the informational spectrum method (ISM), a virtual spectroscopy method to investigate protein-protein interactions. Computational peptide scanning of β2AR and IR identified intracellular domains encompassing residues at the end of the 7th TM domain and C-terminal tail of β2AR and a cytoplasmic part of the IR β chain as prospective interaction domains. ISM further suggested a high probability of heteromer formation and homodimers as basic units engaged in heteromerization. In summary, our data suggest direct interaction and higher-order β2AR:IR oligomer formation, likely comprising heteromers of homodimers.
Collapse
|
35
|
Guidolin D, Agnati LF, Marcoli M, Borroto-Escuela DO, Fuxe K. G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 2014; 19:265-83. [PMID: 25381716 DOI: 10.1517/14728222.2014.981155] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The discovery of receptor-receptor interactions (RRIs) in the early 1980s provided evidence that G-protein-coupled receptors (GPCRs) operate not only as monomers but also as heteromers, in which integration of the incoming signals takes place already at the plasma membrane level through allosteric RRIs. These integrative mechanisms give sophisticated dynamics to the structure and function of these receptor assemblies in terms of modulation of recognition, G-protein signaling and selectivity and switching to β-arrestin signaling. AREAS COVERED The present review briefly describes the concept of direct RRI and the available data on the mechanisms of oligomer formation. Further, pharmacological data concerning the best characterized heteromers involving type A GPCRs will be analyzed to evaluate their profile as possible targets for the treatment of various diseases, in particular of impacting diseases of the CNS. EXPERT OPINION GPCR heteromers have the potential to open a completely new field for pharmacology with likely a major impact in molecular medicine. Novel pharmacological strategies for the treatment of several pathologies have already been proposed. However, several challenges still exist to accurately characterize the role of the identified heteroreceptor complexes in pathology and to develop heteromer-specific ligands capable of efficiently exploiting their pharmacological features.
Collapse
Affiliation(s)
- Diego Guidolin
- University of Padova, Department of Molecular Medicine , via Gabelli 65, 35121 Padova , Italy +39 049 8272316 ; +39 049 8272319 ;
| | | | | | | | | |
Collapse
|
36
|
Tehseen M, Liao C, Dacres H, Dumancic M, Trowell S, Anderson A. Oligomerisation of C. elegans olfactory receptors, ODR-10 and STR-112, in yeast. PLoS One 2014; 9:e108680. [PMID: 25254556 PMCID: PMC4177895 DOI: 10.1371/journal.pone.0108680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.
Collapse
Affiliation(s)
- Muhammad Tehseen
- CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Chunyan Liao
- CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia
| | - Helen Dacres
- CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia
| | - Mira Dumancic
- CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia
| | - Stephen Trowell
- CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia
| | - Alisha Anderson
- CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
37
|
Laprairie RB, Bagher AM, Kelly MEM, Dupré DJ, Denovan-Wright EM. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J Biol Chem 2014; 289:24845-62. [PMID: 25037227 DOI: 10.1074/jbc.m114.557025] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC)) on arrestin2-, Gα(i/o)-, Gβγ-, Gα(s)-, and Gα(q)-mediated intracellular signaling in the mouse STHdh(Q7/Q7) cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gα(i/o) and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gα(q)-dependent pathways. CP55,940 and CBD both signaled through Gα(s). CP55,940, but not CBD, activated downstream Gα(s) pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias.
Collapse
Affiliation(s)
- Robert B Laprairie
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amina M Bagher
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie E M Kelly
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Denis J Dupré
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Eileen M Denovan-Wright
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
38
|
Wnorowski A, Jozwiak K. Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal 2014; 26:2259-65. [PMID: 25049076 DOI: 10.1016/j.cellsig.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
The β2-adrenergic receptor (β2AR) is the prototypic member of G protein-coupled receptors (GPCRs) involved in the production of physiological responses to adrenaline and noradrenaline. Research done in the past few years vastly demonstrated that β2AR can form homo- and hetero-oligomers. Despite the fact that currently this phenomenon is widely accepted, the spread and relevance of β2AR oligomerization are still a matter of debate. This review considers the progress achieved in the field of β2AR oligomerization with focus on the implications of the receptor-receptor interactions to β2AR trafficking, pharmacology and downstream signal transduction pathways.
Collapse
Affiliation(s)
- Artur Wnorowski
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Krzysztof Jozwiak
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| |
Collapse
|
39
|
Tovo-Rodrigues L, Roux A, Hutz MH, Rohde LA, Woods AS. Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 2014; 277:764-79. [PMID: 24997265 DOI: 10.1016/j.neuroscience.2014.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Complex molecular and cellular mechanisms regulate G protein-coupled receptors (GPCRs). It is suggested that proteins intrinsically disordered regions (IDRs) are to play a role in GPCR's intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformations which allow them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence-based prediction of IDRs within a protein. We also evaluated putative ligand-binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third intracellular loop (3IL) and C-terminus. About 31%, 39% and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. ELM instances sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system's functional plasticity.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - A Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - M H Hutz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L A Rohde
- Child and Adolescent Psychiatric Division, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| |
Collapse
|
40
|
Massotte D. In vivo opioid receptor heteromerization: where do we stand? Br J Pharmacol 2014; 172:420-34. [PMID: 24666391 DOI: 10.1111/bph.12702] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Opioid receptors are highly homologous GPCRs that modulate brain function at all levels of neural integration, including autonomous, sensory, emotional and cognitive processing. Opioid receptors functionally interact in vivo, but the underlying mechanisms involving direct receptor-receptor interactions, affecting signalling pathways or engaging different neuronal circuits, remain unsolved. Heteromer formation through direct physical interaction between two opioid receptors or between an opioid receptor and a non-opioid one has been postulated and can be characterized by specific ligand binding, receptor signalling and trafficking properties. However, despite numerous studies in heterologous systems, evidence for physical proximity in vivo is only available for a limited number of opioid heteromers, and their physiopathological implication remains largely unknown mostly due to the lack of appropriate tools. Nonetheless, data collected so far using endogenous receptors point to a crucial role for opioid heteromers as a molecular entity that could underlie human pathologies such as alcoholism, acute or chronic pain as well as psychiatric disorders. Opioid heteromers therefore stand as new therapeutic targets for the drug discovery field. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- D Massotte
- Institut des Neurosciences Cellulaires et Intégratives, INCI, Strasbourg, France
| |
Collapse
|
41
|
Mizuno N, Suzuki T, Kishimoto Y, Hirasawa N. Biochemical assay of G protein-coupled receptor oligomerization: adenosine A1 and thromboxane A2 receptors form the novel functional hetero-oligomer. Methods Cell Biol 2014; 117:213-27. [PMID: 24143980 DOI: 10.1016/b978-0-12-408143-7.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are classified into a family of seven transmembrane receptors. Receptor oligomerization may be the key to the expression and function of these receptors, for example, ligand binding, desensitization, membrane trafficking, and signaling. The accumulation of evidence that GPCRs form an oligomerization with a functional alternation may change the strategy for the discovery of novel drugs targeting GPCRs. Identification of the oligomer is essential to elucidate GPCR oligomerization. GPCR oligomerizations have been demonstrated using various biochemical approaches, which include the coimmunoprecipitation method, fluorescence resonance energy transfer assay, and bioluminescence RET assay. Thus, various assays are useful for the study of GPCR oligomerization, and we should choose the best method to match the purpose. We previously targeted adenosine A1 and thromboxane A2 (TP) receptors to form a functionally novel hetero-oligomer, since both receptors function in the same cells. This chapter describes the methods used to detect GPCR oligomerization and alterations in the signaling pathways, principally according to our findings on oligomerization between adenosine A1 and TPα receptors.
Collapse
MESH Headings
- Binding, Competitive
- Bioluminescence Resonance Energy Transfer Techniques/methods
- Cyclic AMP/metabolism
- Gene Expression
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Immunoprecipitation
- Kinetics
- Luciferases, Renilla/genetics
- Luciferases, Renilla/metabolism
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Plasmids
- Protein Binding
- Protein Multimerization
- Protein Transport
- Receptor, Adenosine A1/chemistry
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Natsumi Mizuno
- Department of Pharmacotherapy of Life-style Related Disease, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
42
|
Correll CC, McKittrick BA. Biased ligand modulation of seven transmembrane receptors (7TMRs): functional implications for drug discovery. J Med Chem 2014; 57:6887-96. [PMID: 24697360 DOI: 10.1021/jm401677g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Seven transmembrane receptors (7TMRs), also known as G-protein-coupled receptors (GPCRs), have proven to be valuable targets for the development of therapeutics. The expansion of our understanding of 7TMR downstream signaling pathways beyond G-proteins has broadened our appreciation of the versatility of these cell surface receptors. In particular, the increased awareness of 7TMR engagement of β-arrestin signaling has opened up additional avenues for drug discovery. 7TMRs can adopt different conformations and in response to various ligands can lead to a bias in downstream signaling mechanisms when comparing the overall efficacy between G-protein and β-arrestin dependent pathways. In 2012, we organized a session at the Spring National Meeting of the American Chemical Society on biased signaling in 7TMRs.1-4 Building on that experience, we provide in this Miniperspective some examples that exemplify developments in the area of biased 7TMR signaling and highlight some cautionary notes as well as some of the exciting opportunities for drug discovery.
Collapse
Affiliation(s)
- Craig C Correll
- Department of Immunology, Merck Research Laboratories , BMB 10-108, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
43
|
Choucair-Jaafar N, Salvat E, Freund-Mercier MJ, Barrot M. The antiallodynic action of nortriptyline and terbutaline is mediated by β2 adrenoceptors and δ opioid receptors in the ob/ob model of diabetic polyneuropathy. Brain Res 2014; 1546:18-26. [DOI: 10.1016/j.brainres.2013.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022]
|
44
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
45
|
Su PC, Berger BW. A Novel Assay for Assessing Juxtamembrane and Transmembrane Domain Interactions Important for Receptor Heterodimerization. J Mol Biol 2013; 425:4652-8. [DOI: 10.1016/j.jmb.2013.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
46
|
Bagher AM, Laprairie RB, Kelly MEM, Denovan-Wright EM. Co-expression of the human cannabinoid receptor coding region splice variants (hCB₁) affects the function of hCB₁ receptor complexes. Eur J Pharmacol 2013; 721:341-54. [PMID: 24091169 DOI: 10.1016/j.ejphar.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
The human type 1 cannabinoid (hCB1) receptor is expressed at high levels in the central nervous system. mRNA variants of the coding region of this receptor, human cannabinoid hCB1a and hCB1b receptors, have been identified, their biological function remains unclear. The present study demonstrated that the three human cannabinoid hCB1 coding region variants are expressed in the human and monkey (Macaca fascicularis) brain. Western blot analyses of homogenates from different regions of the monkey brain demonstrated that proteins with the expected molecular weights of the cannabinoid CB1, CB1a and CB1b receptors were co-expressed throughout the brain. Given the co-localization of these receptors, we hypothesized that physical interactions between the three splice variants may affect cannabinoid pharmacology. The human cannabinoid hCB1, hCB1a, and hCB1b receptors formed homodimers and heterodimers, as determined by BRET in transiently transfected HEK 293A cells. We found that the co-expression of the human cannabinoid hCB1 and each of the splice variants increased cell surface expression of the human cannabinoid hCB1 receptor and increased Gi/o-dependent ERK phosphorylation in response to cannabinoid agonists. Therefore, the human cannabinoid hCB1 coding region splice variants play an important physiological role in the activity of the endocannabinoid system.
Collapse
Affiliation(s)
- Amina M Bagher
- Department of Pharmacology, Dalhousie University, 6E Sir Charles Tupper Medical Bldg., 5850 College St., Halifax, NS, Canada B3H 4R2
| | | | | | | |
Collapse
|
47
|
Analysis of GPCR Dimerization Using Acceptor Photobleaching Resonance Energy Transfer Techniques. Methods Enzymol 2013; 521:311-27. [DOI: 10.1016/b978-0-12-391862-8.00017-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Su PC, Berger BW. Identifying key juxtamembrane interactions in cell membranes using AraC-based transcriptional reporter assay (AraTM). J Biol Chem 2012; 287:31515-26. [PMID: 22822084 DOI: 10.1074/jbc.m112.396895] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dimerization is a key regulatory mechanism in activation of transmembrane (TM) receptors during signal transduction. This process involves a coordinated interplay between extracellular (EX), TM, and cytoplasmic (CYTO) regions to form a specific interface required for both ligand binding and intracellular signaling to occur. While several transcriptional activator-based methods exist for investigating TM interactions in bacterial membranes, expression of TM chimera in these methods occurs in a reverse orientation, and are limited to only TM domains for proper membrane trafficking and integration. We therefore developed a new, AraC-based transcriptional reporter assay (AraTM) that expresses EX-TM-CYTO chimera in their native orientation, thereby enabling membrane trafficking to occur independent of the TM chimera used as well as permitting analysis of EX-TM-CYTO interactions in biological membranes. Using integrin α(IIb) TM-CYTO as a model, we observe a large increase in homodimerization for the constitutively active TM mutant L980A relative to wild-type in the TM-CYTO construct (A963-E1008). We also characterized the receptor for advanced glycation endproducts (RAGE), whose homooligomeric state is critical in ligand recognition, and find the specific juxtamembrane region within the CYTO (A375-P394) mediates homodimerization, and is dominant over effects observed when the extracellular C2 domain is included. Furthermore, we find good agreement between our AraTM measurements in bacterial membranes and BRET measurements made on corresponding RAGE constructs expressed in transfected HEK293 cells. Overall, the AraTM assay provides a new approach to identify specific interactions between receptor EX-TM-CYTO domains in biological membranes that are important in regulation of signal transduction.
Collapse
Affiliation(s)
- Pin-Chuan Su
- Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
49
|
Felce JH, Davis SJ. Unraveling receptor stoichiometry using bret. Front Endocrinol (Lausanne) 2012; 3:86. [PMID: 22807923 PMCID: PMC3394964 DOI: 10.3389/fendo.2012.00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/23/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- James H. Felce
- T-cell Biology Group, Nuffield Department of Clinical Medicine, University of OxfordOxford, UK
- MRC Human Immunology Unit, University of Oxford, John Radcliffe HospitalOxford, UK
| | - Simon J. Davis
- T-cell Biology Group, Nuffield Department of Clinical Medicine, University of OxfordOxford, UK
- MRC Human Immunology Unit, University of Oxford, John Radcliffe HospitalOxford, UK
| |
Collapse
|
50
|
Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol Cell Biol 2012; 32:3242-52. [PMID: 22688512 DOI: 10.1128/mcb.00121-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-regulated kinase (ERK) activation. In addition, SMS1/SMS2 double-knockout cells had heightened sensitivity to CXCL12, which was significantly suppressed upon transfection with the SMS1 or SMS2 gene or when they were treated with exogenous sphingomyelin but not when they were treated with the SMS substrate ceramide. Notably, SMS deficiency facilitated relocalization of CXCR4 to lipid rafts, which form platforms for the regulation and transduction of receptor-mediated signaling. Furthermore, we found that SMS deficiency potentiated CXCR4 dimerization, which is required for signal transduction. This dimerization was significantly repressed by sphingomyelin treatment. Collectively, our data indicate that SMS-derived sphingomyelin lowers responsiveness to CXCL12, thereby reducing migration induced by this chemokine. Our findings provide the first direct evidence for an involvement of SMS-generated sphingomyelin in the regulation of cell migration.
Collapse
|