1
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
2
|
Matamá T, Costa C, Fernandes B, Araújo R, Cruz CF, Tortosa F, Sheeba CJ, Becker JD, Gomes A, Cavaco-Paulo A. Changing human hair fibre colour and shape from the follicle. J Adv Res 2024; 64:45-65. [PMID: 37967812 PMCID: PMC11464751 DOI: 10.1016/j.jare.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Natural hair curvature and colour are genetically determined human traits, that we intentionally change by applying thermal and chemical treatments to the fibre. Presently, those cosmetic methodologies act externally and their recurrent use is quite detrimental to hair fibre quality and even to our health. OBJECTIVES This work represents a disruptive concept to modify natural hair colour and curvature. We aim to model the fibre phenotype as it is actively produced in the follicle through the topical delivery of specific bioactive molecules to the scalp. METHODS Transcriptome differences between curly and straight hairs were identified by microarray. In scalp samples, the most variable transcripts were mapped by in situ hybridization. Then, by using appropriate cellular models, we screened a chemical library of 1200 generic drugs, searching for molecules that could lead to changes in either fibre colour or curvature. A pilot-scale, single-centre, investigator-initiated, prospective, blind, bilateral (split-scalp) placebo-controlled clinical study with the intervention of cosmetics was conducted to obtain a proof of concept (RNEC n.92938). RESULTS We found 85 genes transcribed significantly different between curly and straight hair, not previously associated with this human trait. Next, we mapped some of the most variable genes to the inner root sheath of follicles, reinforcing the role of this cell layer in fibre shape moulding. From the drug library screening, we selected 3 and 4 hits as modulators of melanin synthesis and gene transcription, respectively, to be further tested in 33 volunteers. The intentional specific hair change occurred: 8 of 14 volunteers exhibited colour changes, and 16 of 19 volunteers presented curvature modifications, by the end of the study. CONCLUSION The promising results obtained are the first step towards future cosmetics, complementary or alternative to current methodologies, taking hair styling to a new level: changing hair from the inside out.
Collapse
Affiliation(s)
- Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Fernandes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rita Araújo
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Célia F Cruz
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Francisco Tortosa
- Serviço de Anatomia Patológica, CHLN - Hospital de Santa Maria / Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Unidade de Anatomia Patológica, Hospital CUF Descobertas, Rua Mário Botas (Parque das Nações), 1998-018, Lisboa, Portugal
| | - Caroline J Sheeba
- ICVS - Life and Health Sciences Research Institute, University of Minho, 4710-057 Braga, Portugal; NIHR Central Commissioning Facility (CCF), Grange House, 15 Church Street, Twickenham, TW1 3NL, UK
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Andreia Gomes
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga, Portugal; Solfarcos - Pharmaceutical and Cosmetic Solutions Ltd, Avenida Imaculada Conceição n. 589, 4700-034 Braga, Portugal.
| |
Collapse
|
3
|
Gohari N, Abbasi E, Akrami H. Comprehensive analysis of the prognostic value of glutathione S-transferases Mu family members in breast cancer. Cell Biol Int 2024; 48:1313-1325. [PMID: 38922769 DOI: 10.1002/cbin.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) remains a significant public health concern globally, with a high number of reported cases and a substantial number of deaths every year. Accumulating reactive oxygen species (ROS) and oxidative stress are related to BC and the Glutathione S-transferases Mu (GSTM) family is one of the most important enzymatic detoxifiers associated with many cancers. In this study, UALCAN, Kaplan-Meier plotter, bc-GenExMiner, cBioPortal, STRING, Enrichr, and TIMER databases were employed to carry out a comprehensive bioinformatic analysis and provide new insight into the prognostic value of GSTMs in BC. GSTM2-5 genes in mRNA and protein levels were found to be expressed at lower levels in breast tumors compared to normal tissues, and reduction in mRNA levels is linked to shorter overall survival (OS) and relapse-free survival (RFS). The lower mRNA levels of GSTMs were strongly associated with the worse Scarff-Bloom-Richardson (SBR) grades (p < 0.0001). The mRNA levels of all five GSTMs were substantially higher in estrogen receptor (ER)-positive and progesterone receptor (PR)-positive compared to ER-negative and PR-negative BC patients. As well, when nodal status was compared, GSTM1, GSTM3, and GSTM5 were significantly higher in nodal-positive BC patients (p < .01). Furthermore, GSTM4 had the most gene alteration (4%) among other family members, and GSTM5 showed the strongest correlation with CD4+ T cells (Cor= .234, p = 2.22e-13). In conclusion, our results suggest that GSTM family members may be helpful as biomarkers for prognosis and as therapeutic targets in BC.
Collapse
Affiliation(s)
- Nazanin Gohari
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Elham Abbasi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Akrami
- Associate Professor in Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Luchkova A, Mata A, Cadenas S. Nrf2 as a regulator of energy metabolism and mitochondrial function. FEBS Lett 2024; 598:2092-2105. [PMID: 39118293 DOI: 10.1002/1873-3468.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is essential for the control of cellular redox homeostasis. When activated, Nrf2 elicits cytoprotective effects through the expression of several genes encoding antioxidant and detoxifying enzymes. Nrf2 can also improve antioxidant defense via the pentose phosphate pathway by increasing NADPH availability to regenerate glutathione. Microarray and genome-wide localization analyses have identified many Nrf2 target genes beyond those linked to its redox-regulatory capacity. Nrf2 regulates several intermediary metabolic pathways and is involved in cancer cell metabolic reprogramming, contributing to malignant phenotypes. Nrf2 also modulates substrate utilization for mitochondrial respiration. Here we review the experimental evidence supporting the essential role of Nrf2 in the regulation of energy metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Alina Luchkova
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| |
Collapse
|
5
|
Shi Y, Xu N, Liu B, Ma Y, Fu X, Shang Y, Huang Q, Yao Q, Chen J, Li H. Mifepristone protects acetaminophen induced liver injury through NRF2/GSH/GST mediated ferroptosis suppression. Free Radic Biol Med 2024; 222:229-243. [PMID: 38906233 DOI: 10.1016/j.freeradbiomed.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Ferroptosis is a form of iron-dependent cell death that has attracted significant attention for its potential role in numerous diseases. Targeted inhibition of ferroptosis could be of potential use in treating diseases: such as drug induced liver injury (DILI). Ferroptosis can be antagonized by the xCT/GSH/GPX4, FSP1/CoQ10, DHODH/CoQ10, GCH1/BH4, and NRF2 pathways. Identifying novel anti-ferroptosis pathways will further promote our understanding of the biological nature of ferroptosis and help discover new drugs targeting ferroptosis related human diseases. In this study, we identified the clinically used drug mifepristone (RU486) as a novel ferroptosis inhibitor. Mechanistically, RU486 inhibits ferroptosis by inducing GSH synthesis pathway, which supplies GSH for glutathione-S-transferase (GST) mediated 4-HNE detoxification. Furthermore, RU486 induced RLIP76 and MRP1 export 4-HNE conjugate contributes to its anti-ferroptosis activity. Interestingly, RU486 induced GSH/GSTs/RLIP76&MRP1 anti-ferroptosis pathway acts independent of classic anti-ferroptosis systems: including xCT/GSH/GPX4, FSP1, DHODH, GCH1, SCD1 and FTH1. Moreover, NRF2 was identified to be important for RU486's anti-ferroptosis activity by inducing downstream gene expression. Importantly, in mouse model, RU486 showed strong protection effect on acetaminophen (APAP)-induced acute liver injury, evidenced by decreased ALT, AST level and histological recovery after APAP treatment. Interestingly, RU486 also decreased oxidative markers, including 4-HNE and MDA, and induced NRF2 activation as well as GSTs, MRP1 expression. Together, these data suggest NRF2/GSH/GST/RLIP76&MRP1 mediated detoxification pathway as an important independent anti-ferroptosis pathway act both in vitro and in vivo.
Collapse
Affiliation(s)
- Yanyun Shi
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Nahua Xu
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Baiping Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, 401120, China
| | - Yanni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuemei Fu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, 401120, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qilin Huang
- GuiZhou University Medical College, Guiyang, 550025, China; Department of Neurosurgery, Guiqian International General Hospital, Changpo Road, Wudang District, Guiyang, 550000, China.
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, 401120, China; Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Balogun O, Shao D, Carson M, King T, Kosar K, Zhang R, Zeng G, Cornuet P, Goel C, Lee E, Patel G, Brooks E, Monga SP, Liu S, Nejak-Bowen K. Loss of β-catenin reveals a role for glutathione in regulating oxidative stress during cholestatic liver disease. Hepatol Commun 2024; 8:e0485. [PMID: 38967587 PMCID: PMC11227358 DOI: 10.1097/hc9.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/β-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury. METHODS α-naphthylisothiocyanate (ANIT) was administered to liver-specific knockout (KO) of β-catenin and wild-type mice in the diet. Mice were killed at 6 or 14 days to assess the severity of cholestatic liver disease, measure the expression of target genes, and perform biochemical analyses. RESULTS We found that the presence of β-catenin was protective against ANIT, as KO mice had a significantly lower survival rate than wild-type mice. Although serum markers of liver damage and total bile acid levels were similar between KO and wild-type mice, the KO had minor histological abnormalities, such as sinusoidal dilatation, concentric fibrosis around ducts, and decreased inflammation. Notably, both total glutathione levels and expression of glutathione-S-transferases, which catalyze the conjugation of ANIT to glutathione, were significantly decreased in KO after ANIT. Nuclear factor erythroid-derived 2-like 2, a master regulator of the antioxidant response, was activated in KO after ANIT as well as in a subset of patients with primary sclerosing cholangitis lacking activated β-catenin. Despite the activation of nuclear factor erythroid-derived 2-like 2, KO livers had increased lipid peroxidation and cell death, which likely contributed to mortality. CONCLUSIONS Loss of β-catenin leads to increased cellular injury and cell death during cholestasis through failure to neutralize oxidative stress, which may contribute to the pathology of this disease.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Shao
- Case-Western Reserve University, Departments of Biochemistry and Computer Science, Cleveland, Ohio, USA
| | - Matthew Carson
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thalia King
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karis Kosar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gang Zeng
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Cornuet
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chhavi Goel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth Lee
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Garima Patel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Brooks
- Duquesne University, School of Science and Engineering, Department of Biotechnology, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Hepatology and Nutrition, Division of Gastroenterology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Vetter TA, Parthiban P, Stevens JA, Revelo XS, Kohr MJ, Townsend D. Reduced cardiac antioxidant defenses mediate increased susceptibility to workload-induced myocardial injury in males with genetic cardiomyopathy. J Mol Cell Cardiol 2024; 190:24-34. [PMID: 38527667 PMCID: PMC11060907 DOI: 10.1016/j.yjmcc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies. As a model of persistent cardiac injury, we examined mice lacking β-sarcoglycan (β-SG), a key component of the dystrophin glycoprotein complex (DGC). The loss of the sarcoglycan complex markedly compromises sarcolemmal integrity in this β-SG-/- model. Our studies aim to characterize the mechanisms underlying dramatic sex differences in susceptibility to cardiac injury in β-SG-/- mice. Male β-SG-/- hearts display significantly greater myocardial injury and death following isoproterenol-induced cardiac stress than female β-SG-/- hearts. This protection of females was independent of ovarian hormones. Male β-SG-/- hearts displayed increased susceptibility to exogenous oxidative stress and were significantly protected by angiotensin II type 1 receptor (AT1R) antagonism. Increasing general antioxidative defenses or increasing the levels of S-nitrosylation both provided protection to the hearts of β-SG-/- male mice. Here we demonstrate that increased susceptibility to oxidative damage leads to an AT1R-mediated amplification of workload-induced myocardial injury in male β-SG-/- mice. Improving oxidative defenses, specifically by increasing S-nitrosylation, provided protection to the male β-SG-/- heart from workload-induced injury. These studies describe a unique susceptibility of the male heart to injury and may contribute to the sex differences in other forms of cardiac injury.
Collapse
Affiliation(s)
- Tatyana A Vetter
- Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Preethy Parthiban
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jackie A Stevens
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America; Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
10
|
Wu H, Zhai Y, Yu J, Wei L, Qi X. Transcriptome and proteome analyses reveal that upregulation of GSTM2 by allisartan improves cardiac remodeling and dysfunction in hypertensive rats. Exp Ther Med 2024; 27:220. [PMID: 38590561 PMCID: PMC11000455 DOI: 10.3892/etm.2024.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Long-term hypertension can lead to hypertensive heart disease, which ultimately progresses to heart failure. As an angiotensin receptor blocker antihypertensive drug, allisartan can control blood pressure, and improve cardiac remodeling and cardiac dysfunction caused by hypertension. The aim of the present study was to investigate the protective effects of allisartan on the heart of spontaneously hypertensive rats (SHRs) and the underlying mechanisms. SHRs were used as an animal model of hypertensive heart disease and were treated with allisartan orally at a dose of 25 mg/kg/day. The blood pressure levels of the rats were continuously monitored, their body and heart weights were measured, and their cardiac structure and function were evaluated using echocardiography. Wheat germ agglutinin staining and Masson trichrome staining were employed to assess the morphology of the myocardial tissue. In addition, transcriptome and proteome analyses were performed using the Solexa/Illumina sequencing platform and tandem mass tag technology, respectively. Immunofluorescence co-localization was conducted to analyze Nrf2 nuclear translocation, and TUNEL was performed to detect the levels of cell apoptosis. The protein expression levels of pro-collagen I, collagen III, phosphorylated (p)-AKT, AKT, p-PI3K and PI3K, and the mRNA expression levels of Col1a1 and Col3a1 were determined by western blotting and reverse transcription-quantitative PCR, respectively. Allisartan lowered blood pressure, attenuated cardiac remodeling and improved cardiac function in SHRs. In addition, allisartan alleviated cardiomyocyte hypertrophy and cardiac fibrosis. Allisartan also significantly affected the 'pentose phosphate pathway', 'fatty acid elongation', 'valine, leucine and isoleucine degradation', 'glutathione metabolism', and 'amino sugar and nucleotide sugar metabolism' pathways in the hearts of SHRs, and upregulated the expression levels of GSTM2. Furthermore, allisartan activated the PI3K-AKT-Nrf2 signaling pathway and inhibited cardiomyocyte apoptosis. In conclusion, the present study demonstrated that allisartan can effectively control blood pressure in SHRs, and improves cardiac remodeling and cardiac dysfunction. Allisartan may also upregulate the expression levels of GSTM2 in the hearts of SHRs and significantly affect glutathione metabolism, as determined by transcriptome and proteome analyses. The cardioprotective effect of allisartan may be mediated through activation of the PI3K-AKT-Nrf2 signaling pathway, upregulation of GSTM2 expression and reduction of cardiomyocyte apoptosis in SHRs.
Collapse
Affiliation(s)
- Hao Wu
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yajun Zhai
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jing Yu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Liping Wei
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xin Qi
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
11
|
Ford HR, Bionaz M. The Experimental and In Silico-Based Evaluation of NRF2 Modulators, Sulforaphane and Brusatol, on the Transcriptome of Immortalized Bovine Mammary Alveolar Cells. Int J Mol Sci 2024; 25:4264. [PMID: 38673850 PMCID: PMC11049820 DOI: 10.3390/ijms25084264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.
Collapse
Affiliation(s)
| | - Massimo Bionaz
- Department of Animal and Rangeland Science, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
12
|
Saladino GM, Brodin B, Kakadiya R, Toprak MS, Hertz HM. Iterative nanoparticle bioengineering enabled by x-ray fluorescence imaging. SCIENCE ADVANCES 2024; 10:eadl2267. [PMID: 38517973 DOI: 10.1126/sciadv.adl2267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Nanoparticles (NPs) are currently developed for drug delivery and molecular imaging. However, they often get intercepted before reaching their target, leading to low targeting efficacy and signal-to-noise ratio. They tend to accumulate in organs like lungs, liver, kidneys, and spleen. The remedy is to iteratively engineer NP surface properties and administration strategies, presently a time-consuming process that includes organ dissection at different time points. To improve this, we propose a rapid iterative approach using whole-animal x-ray fluorescence (XRF) imaging to systematically evaluate NP distribution in vivo. We applied this method to molybdenum-based NPs and clodronate liposomes for tumor targeting with transient macrophage depletion, leading to reduced accumulations in lungs and liver and eventual tumor detection. XRF computed tomography (XFCT) provided 3D insight into NP distribution within the tumor. We validated the results using a multiscale imaging approach with dye-doped NPs and gene expression analysis for nanotoxicological profiling. XRF imaging holds potential for advancing therapeutics and diagnostics in preclinical pharmacokinetic studies.
Collapse
Affiliation(s)
- Giovanni M Saladino
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Ronak Kakadiya
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Hans M Hertz
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| |
Collapse
|
13
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
14
|
Yan S, Li M, Jiang Q, Li M, Hu M, Shi X, Liang P, Yin M, Gao X, Shen J, Zhang L. Self-assembled co-delivery nanoplatform for increasing the broad-spectrum susceptibility of fall armyworm toward insecticides. J Adv Res 2024:S2090-1232(24)00044-4. [PMID: 38286302 DOI: 10.1016/j.jare.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Unscientific application of insecticides has led to severe resistance of pests to almost all classes of insecticides. Enhanced detoxification is the most common mechanism for this kind of resistance. OBJECT Fall armyworm (FAW) has developed insecticide resistance, which is often linked to the overexpression of detoxification genes. Herein, a multicomponent nano-pesticide is designed to increase its broad-spectrum susceptibility toward insecticides. METHOD Regulatory function of nuclear factor erythroid 2-related factor 2 (Nrf2) in detoxification was confirmed using transcriptome sequencing, quantitative real-time PCR and enzyme activity measurement. A star polycation (SPc) was adopted to construct the pesticide/SPc/complex, whose self-assembly mechanism and characterization were examined using isothermal titration calorimetry, dynamic light scattering and transmission electron microscope. The delivery efficiency of SPc-loaded dsRNA was examined in vitro and in vivo using fluorescent tracer technique. A multicomponent nano-pesticide was created through the integration of bacterial expression system and nano-delivery system, and its bioactivity was tested in laboratory and field. RESULTS We confirmed the crucial role of Nrf2 in regulating the detoxification in FAW, and silencing Nrf2 could decrease detoxification gene expression and increase insecticide susceptibility. We then applied the SPc to self-assemble a nanoplatform for delivering Nrf2 double-stranded RNA (dsRNA) and pesticide simultaneously. Nano-sized pesticide/SPc/dsRNA complex exhibited high delivery efficiency in vitro and in vivo. Excitingly, the insecticidal activities of pesticide/SPc/dsNrf2 complexes were remarkably improved with the normalized synergistic ratios of 5.43-6.25 for chlorantraniliprole, 4.45-15.00 for emamectin benzoate, and 6.75-15.00 for spinetoram. Finally, we developed a multicomponent nano-pesticide (pesticide/SPc/dsNrf2 complex) using a bacterial expression system and nano-delivery system. This approach exhibited excellent leaf protection and pest control efficacy. CONCLUSION The integration between the pesticide nanometerization and insecticide susceptibility improvement offers a promising strategy to increase insecticidal activity. Our study provides a revolutionary and universal strategy to increase insecticidal activity and decease application doses.
Collapse
Affiliation(s)
- Shuo Yan
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China.
| | - Mingjian Li
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Qinhong Jiang
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Mingshan Li
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Mengfan Hu
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Xueyan Shi
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Pei Liang
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029 Beijing, PR China
| | - Xiwu Gao
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China.
| | - Lei Zhang
- College of Plant Protection, China Agricultural University, 100193 Beijing, PR China.
| |
Collapse
|
15
|
Gayatri V, Krishna Prasad M, Mohandas S, Nagarajan S, Kumaran K, Ramkumar KM. Crosstalk between inflammasomes, inflammation, and Nrf2: Implications for gestational diabetes mellitus pathogenesis and therapeutics. Eur J Pharmacol 2024; 963:176241. [PMID: 38043778 DOI: 10.1016/j.ejphar.2023.176241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The role of inflammasomes in gestational diabetes mellitus (GDM) has emerged as a critical area of research in recent years. Inflammasomes, key components of the innate immune system, are now recognized for their involvement in the pathogenesis of GDM. Activation of inflammasomes in response to various triggers during pregnancy can produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), contributing to systemic inflammation and insulin resistance. This dysregulation not only impacts maternal health but also poses significant risks to fetal development and long-term health outcomes. Understanding the intricate interplay between inflammasomes and GDM holds promise for developing novel therapeutic strategies and interventions to mitigate the adverse effects of this condition on both mothers and their offspring. Researchers have elucidated that targeting inflammasomes using anti-inflammatory drugs and compounds can effectively reduce inflammation in GDM. Furthermore, the addition of nuclear factor erythroid 2-related factor 2 (Nrf2) to this complex mechanism opens novel avenues for therapeutics. The antioxidant properties of Nrf2 may potentially suppress inflammasome activation in GDM. This comprehensive review investigates the intricate relationship between inflammasomes and GDM, emphasizing the pivotal role of inflammation in its pathogenesis. It also sheds light on potential therapeutic strategies targeting inflammasome activation and explores the role of Nrf2 in mitigating inflammation in GDM.
Collapse
Affiliation(s)
- Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sanjushree Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
16
|
Pilarte KA, Reichert EC, Green YS, Halberg LMT, McFarland SA, Mimche PN, Golkowski M, Kamdem SD, Maguire KM, Summers SA, Maschek JA, Reelitz JW, Cox JE, Evason KJ, Koh MY. HAF Prevents Hepatocyte Apoptosis and Hepatocellular Carcinoma through Transcriptional Regulation of the NF-κB pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574894. [PMID: 38260413 PMCID: PMC10802431 DOI: 10.1101/2024.01.09.574894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Hepatocellular carcinoma (HCC) incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways that lead to MASH-HCC are poorly understood. We have previously reported that male mice with global haploinsufficiency of hypoxia-associated factor, HAF ( SART1 +/ - ) spontaneously develop MASH/HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. Results SART1 -floxed mice were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS -/- ) or macrophages (LysM-Cre, macS -/- ). Only hepS -/- mice (both male and female) developed HCC suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient macrophages showed decreased P-p65 and P-p50 and in many major components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro . HAF depletion increased apoptosis both in vitro and in vivo , suggesting that HAF mediates a tumor suppressor role by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by controlling transcription of TRADD and RIPK1 . Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but manifest profound upregulation of HAF, P-65 and TRADD within their livers after 40 weeks of HFD, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared to normal liver. Conclusions HAF is novel transcriptional regulator of the NF-κB pathway that protects against hepatocyte apoptosis and is a key determinant of cell fate during progression to MASH and MASH-HCC.
Collapse
|
17
|
Pfefferlé M, Vallelian F. Transcription Factor NRF2 in Shaping Myeloid Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:159-195. [PMID: 39017844 DOI: 10.1007/978-3-031-62731-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
NFE2-related factor 2 (NRF2) is a master transcription factor (TF) that coordinates key cellular homeostatic processes including antioxidative responses, autophagy, proteostasis, and metabolism. The emerging evidence underscores its significant role in modulating inflammatory and immune processes. This chapter delves into the role of NRF2 in myeloid cell differentiation and function and its implication in myeloid cell-driven diseases. In macrophages, NRF2 modulates cytokine production, phagocytosis, pathogen clearance, and metabolic adaptations. In dendritic cells (DCs), it affects maturation, cytokine production, and antigen presentation capabilities, while in neutrophils, NRF2 is involved in activation, migration, cytokine production, and NETosis. The discussion extends to how NRF2's regulatory actions pertain to a wide array of diseases, such as sepsis, various infectious diseases, cancer, wound healing, atherosclerosis, hemolytic conditions, pulmonary disorders, hemorrhagic events, and autoimmune diseases. The activation of NRF2 typically reduces inflammation, thereby modifying disease outcomes. This highlights the therapeutic potential of NRF2 modulation in treating myeloid cell-driven pathologies.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Department of Internal Medicine, Spital Limmattal, Schlieren, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Liu W, Cheng L, Du Y, Liu X, Ma J, Yan L. 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio) Hexanol Inhibits Proliferation and Induces Apoptosis of Endometriosis by Regulating Glutathione S-Transferase Mu Class 4. Reprod Sci 2023; 30:2945-2961. [PMID: 36928896 DOI: 10.1007/s43032-023-01207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Endometriosis is a chronic disease associated with a disrupted oxidative balance and chronic inflammation. In this study, we investigated the role of glutathione S-transferase Mu class 4 (GSTM4) in endometriosis and determined whether 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX) regulates GSTM4 expression to affect cellular functions and oxidative stress. GSTM4 expression was detected by immunohistochemistry in endometrium from 15 endometriosis patients and 15 healthy controls. Western blotting was used to detect the expression of GSTM4, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP-9), Survivin, B-cell lymphoma-extra-large (Bcl-XL), Bax, kelch-like ECH-associated protein 1 (Keap1), and nuclear factor-erythroid 2-related factor 2 (Nrf2) in primary endometrial stromal cells with endometriosis (EESC) and normal endometrial stromal cells (NESC). The effects of NBDHEX on cell proliferation, migration, and invasion were evaluated using Cell Counting Kit-8 (CCK8) and Transwell assays. Apoptosis was detected by flow cytometry. The expression of GSTM4 was significantly increased in endometrium from endometriosis patients. Upon NBDHEX treatment, ESC exhibited reduced proliferation, migration and invasion abilities, and increased apoptosis. NBDHEX decreased the expression of endometriosis prognostic markers (PCNA and MMP-9) and anti-apoptotic proteins (Survivin and Bcl-xl), while it increased the expression of the apoptotic protein Bax. It had no effect on Keap1 expression, and it decreased the expression of Nrf2. The effect of siRNA-mediated knockdown of GSTM4 was similar to that of suppressing GSTM4 expression with NBDHEX treatment. These results indicate that GSTM4 is highly expressed in endometriosis and its expression is inhibited by NBDHEX. Decreased expression of GSTM4 inhibits cell growth, migration, and invasion, and negatively regulates Nrf2 to affect oxidative stress-induced apoptosis. Our results suggest that GSTM4 may play a role in ameliorating the progression of endometriosis. NBDHEX may have therapeutic potential in the treatment of endometriosis.
Collapse
Affiliation(s)
- Wei Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical, University, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Cheng
- Department of Gynecology Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Yanbo Du
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoqiang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Reproductive Medicine Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Lei Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
19
|
Chen C, Yang L, Li M, Gao L, Qin X, Du G, Zhou Y. Study on the targeted regulation of Scutellaria baicalensis leaf on glutamine-glutamate metabolism and glutathione synthesis in the liver of d-gal ageing rats. J Pharm Pharmacol 2023; 75:1212-1224. [PMID: 37329511 DOI: 10.1093/jpp/rgad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Scutellaria baicalensis leaf (SLE), the above-ground part of the traditional Chinese medicine Scutellaria baicalensis Georgi, is rich in resources and contains a large number of flavonoids with anti-inflammatory, antioxidant and neuroprotective functions. The present study evaluated the ameliorative effects and related mechanisms of SLE on d-gal-induced ageing rats, providing a theoretical basis for the exploitation of SLE. METHODS This experiment investigated the mechanism of SLE for anti-ageing by non-targeted metabonomics technology combined with targeted quantitative analysis and molecular biology technology. KEY FINDINGS Non-targeted metabonomics analysis showed that 39 different metabolites were screened out. Among them, 38 metabolites were regulated by SLE (0.4 g/kg), and 33 metabolites were regulated by SLE (0.8 g/kg). Through enrichment analysis, glutamine-glutamate metabolic pathway was identified as the key metabolic pathway. Subsequently, the results of targeted quantitative and biochemical analysis displayed that the contents of key metabolites and the activities of enzymes in glutamine-glutamate metabolic pathway and glutathione synthesis could be regulated by SLE. Furthermore, the results of Western blotting indicated that SLE significantly modulated the expression of Nrf2, GCLC, GCLM, HO-1, and NQO1 proteins. CONCLUSION To sum up, the anti-ageing mechanism of SLE was related to glutamine-glutamate metabolism pathway and Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Chunni Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Linlin Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Mengru Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
20
|
Kimura Y, Ekuban FA, Zong C, Sugie S, Zhang X, Itoh K, Yamamoto M, Ichihara S, Ohsako S, Ichihara G. Role of Nrf2 in 1,2-dichloropropane-induced cell proliferation and DNA damage in the mouse liver. Toxicol Sci 2023; 195:28-41. [PMID: 37326970 DOI: 10.1093/toxsci/kfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 550-8856, Japan
| | - Xiao Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, People's Republic of China
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0431, Japan
| | - Seiichiro Ohsako
- Department of Environmental and Preventive Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
21
|
Zhou R, Hu J, Qiu J, Lu S, Lin H, Huang R, Zhou S, Huang G, He J. Phenolic compound SG-1 from Balanophora harlandii and its derivatives exert anti-influenza A virus activity via activation of the Nrf2/HO-1 pathway. Biochem Pharmacol 2023; 210:115495. [PMID: 36918045 DOI: 10.1016/j.bcp.2023.115495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory illness and continues to cause pandemics around the world. Against this backdrop, drug resistance poses a challenge to existing antiviral drugs, and hence, there is an urgent need for developing new antiviral drugs. In this study, we obtained a phenolic compound SG-7, a derivative of natural compound 2-hydroxymethyl-1,4-hydroquinone, which exhibits inhibitory activity toward a panel of influenza viruses and has low cellular toxicity. Mechanistic studies have shown that SG-7 exerts its anti-IAV properties by acting on the virus itself and modulating host signaling pathways. Namely, SG-7 targets the HA2 subunit of hemagglutinin (HA) to block the fusion of viral-cellular membranes and inhibits IAV-induced oxidative stress and overexpression of pro-inflammatory factors by activating the Nrf2/HO-1 pathway and reducing NF-κB activation. In addition, SG-7 can enhance type I IFN antiviral response by inducing Nrf2 expression. Importantly, SG-7 showed the ability to inhibit viral replication in the lungs of IAV-infected mice and reduce their mortality. Therefore, SG-7 may be a promising lead compound for anti-influenza drug development.
Collapse
Affiliation(s)
- Runhong Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jingnan Qiu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shaofen Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Guoqing Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| |
Collapse
|
22
|
Kouokam JC, Meaza I, Wise JP. Inflammatory effects of hexavalent chromium in the lung: A comprehensive review. Toxicol Appl Pharmacol 2022; 455:116265. [PMID: 36208701 PMCID: PMC10024459 DOI: 10.1016/j.taap.2022.116265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
Besides smoking, lung cancer can be caused by other factors, including heavy metals such as cadmium, nickel, arsenic, beryllium and hexavalent chromium [Cr(VI)], which is used in multiple settings, resulting in widespread environmental and occupational exposures as well as heavy use. The mechanism by which Cr(VI) causes lung cancer is not completely understood. Currently, it is admitted chromosome instability is a key process in the mechanism of Cr(VI)-induced cancer, and previous studies have suggested Cr(VI) impacts the lung tissue in mice by triggering tissue damage and inflammation. However, the mechanism underlying Cr(VI)-induced inflammation and its exact role in lung cancer are unclear. Therefore, this review aimed to systematically examine previous studies assessing Cr(VI)-induced inflammation and to summarize the major inflammatory pathways involved in Cr(VI)-induced inflammation. In cell culture studies, COX2, VEGF, JAK-STAT, leukotriene B4 (LTB4), MAPK, NF-ҡB and Nrf2 signaling pathways were consistently upregulated by Cr(VI), clearly demonstrating that these pathways are involved in Cr(VI)-induced inflammation. In addition, Akt signaling was also shown to contribute to Cr(VI)-induced inflammation, although discrepant findings were reported. Few mechanistic studies were performed in animal models, in which Cr(VI) upregulated oxidative pathways, NF-kB signaling and the MAPK pathway in the lung tissue. Similar to cell culture studies, opposite effects of Cr(VI) on Akt signaling were reported. This work provides insights into the mechanisms by which Cr(VI) induces lung inflammation. However, discrepant findings and other major issues in study design, both in cell and animal models, suggest that further studies are required to unveil the mechanism of Cr(VI)-induced inflammation and its role in lung cancer.
Collapse
Affiliation(s)
- J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA.
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| |
Collapse
|
23
|
Levy R, Le TH. Role of GSTM1 in Hypertension, CKD, and Related Diseases across the Life Span. KIDNEY360 2022; 3:2153-2163. [PMID: 36591365 PMCID: PMC9802555 DOI: 10.34067/kid.0004552022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
Over 20 years after the introduction of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, CKD remains a major public health burden with limited therapeutic options to halt or slow kidney disease progression at all ages. The consensus is that oxidative stress contributes to CKD development and progression. Yet, to date, there is no clear evidence that broad use of antioxidant therapy provides a beneficial effect in CKD. Understanding the specific pathophysiologic mechanisms in those who are genetically most susceptible to oxidative stress is a crucial step to inform therapy in an individualized medicine approach, considering differing exposures and risks across the life span. Glutathione-S-transferase μ 1 (GSTM1) is a phase 2 enzyme involved in inactivation of reactive oxygen species and metabolism of xenobiotics. In particular, those with the highly prevalent GSTM1 null genotype (GSTM1[0/0]) may be more susceptible to kidney disease progression, due to impaired capacity to handle the increased oxidative stress burden in disease states, and might specifically benefit from therapy that targets the redox imbalance mediated by loss of the GSTM1 enzyme. In this review, we will discuss the studies implicating the role of GSTM1 deficiency in kidney and related diseases from experimental rodent models to humans, from the prenatal period through senescence, and the potential underlying mechanism.
Collapse
Affiliation(s)
- Rebecca Levy
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Cheraghi O, Dabirmanesh B, Ghazi F, Amanlou M, Atabakhshi-kashi M, Fathollahi Y, Khajeh K. The effect of Nrf2 deletion on the proteomic signature in a human colorectal cancer cell line. BMC Cancer 2022; 22:979. [PMID: 36100939 PMCID: PMC9472369 DOI: 10.1186/s12885-022-10055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colorectal cancer is one of the most common cancer and the third leading cause of death worldwide. Increased generation of reactive oxygen species (ROS) is observed in many types of cancer cells. Several studies have reported that an increase in ROS production could affect the expression of proteins involved in ROS-scavenging, detoxification and drug resistance. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a known transcription factor for cellular response to oxidative stress. Several researches exhibited that Nrf2 could exert multiple functions and expected to be a promising therapeutic target in many cancers. Here, Nrf2 was knocked down in colorectal cancer cell line HT29 and changes that occurred in signaling pathways and survival mechanisms were evaluated. Methods The influence of chemotherapy drugs (doxorubicin and cisplatin), metastasis and cell viability were investigated. To explore the association between specific pathways and viability in HT29-Nrf2−, proteomic analysis, realtime PCR and western blotting were performed. Results In the absence of Nrf2 (Nrf2−), ROS scavenging and detoxification potential were dramatically faded and the HT29-Nrf2− cells became more susceptible to drugs. However, a severe decrease in viability was not observed. Bioinformatic analysis of proteomic data revealed that in Nrf2− cells, proteins involved in detoxification processes, respiratory electron transport chain and mitochondrial-related compartment were down regulated. Furthermore, proteins related to MAPKs, JNK and FOXO pathways were up regulated that possibly helped to overcome the detrimental effect of excessive ROS production. Conclusions Our results revealed MAPKs, JNK and FOXO pathways connections in reducing the deleterious effect of Nrf2 deficiency, which can be considered in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10055-y.
Collapse
|
25
|
Molecular mechanisms associated with the chemoprotective role of protocatechuic acid and its potential benefits in the amelioration of doxorubicin-induced cardiotoxicity: A review. Toxicol Rep 2022; 9:1713-1724. [PMID: 36561952 PMCID: PMC9764176 DOI: 10.1016/j.toxrep.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Since its discovery in the 1960 s, doxorubicin (DOX) has constantly elicited the broadest spectrum of cancerocidal activity against human cancers. However, cardiotoxicity caused by DOX directly as well as its metabolites is a great source of concern over the continuous use of DOX in chemotherapy. While the exact mechanism of DOX-induced cardiotoxicity is yet to be completely understood, recent studies indicate oxidative stress, inflammation, and several forms of cell death as key pathogenic mechanisms that underpin the etiology of doxorubicin-induced cardiotoxicity (DIC). Notably, these key mechanistic events are believed to be negatively regulated by 3,4-dihydroxybenzoic acid or protocatechuic acid (PCA)-a plant-based phytochemical with proven anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Here, we review the experimental findings detailing the potential ameliorative effects of PCA under exposure to DOX. We also discuss molecular insights into the pathophysiology of DIC, highlighting the potential intervention points where the use of PCA as a veritable chemoprotective agent may ameliorate DOX-induced cardiotoxicities as well as toxicities due to other anticancer drugs like cisplatin. While we acknowledge that controlled oral administration of PCA during chemotherapy may be insufficient to eliminate all toxicities due to DOX treatment, we propose that the ability of PCA to block oxidative stress, attenuate inflammation, and abrogate several forms of cardiomyocyte cell death underlines its great promise in the amelioration of DIC.
Collapse
|
26
|
Bayliak MM, Vatashchuk MV, Gospodaryov DV, Hurza VV, Demianchuk OI, Ivanochko MV, Burdyliuk NI, Storey KB, Lushchak O, Lushchak VI. High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects. Biochim Biophys Acta Gen Subj 2022; 1866:130226. [PMID: 35987369 DOI: 10.1016/j.bbagen.2022.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes. METHODS Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks. RESULTS The HFFD had no effect on body mass but activated fructolysis and glycolysis and induced inflammation and oxidative stress with a concomitant increase in activity of antioxidant enzymes in the mouse liver. HFFD-fed mice also showed lower mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and slightly increased intensity of mitochondrial respiration in liver compared to mice on the standard diet. No significant effects of HFFD on transcription of PDK2 and PGC1α, a peroxisome proliferator-activated receptor co-activator-1α, or protein levels of p-AMPK, an active form of AMP-activated protein kinase, were found. The addition of AKG to HFFD decreased oxidized glutathione levels, did not affect levels of lipid peroxides and PDK4 transcripts but increased activities of hexokinase and phosphofructokinase in mouse liver. CONCLUSIONS Supplementation with AKG had weak modulating effects on HFFD-induced oxidative stress and changes in energetics in mouse liver. GENERAL SIGNIFICANCE Our research expands the understanding of diet-induced metabolic switching and elucidates further roles of alpha-ketoglutarate as a metabolic regulator.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Myroslava V Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Viktoria V Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Marian V Ivanochko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
27
|
Vasavda C, Xu R, Liew J, Kothari R, Dhindsa RS, Semenza ER, Paul BD, Green DP, Sabbagh MF, Shin JY, Yang W, Snowman AM, Albacarys LK, Moghekar A, Pardo-Villamizar CA, Luciano M, Huang J, Bettegowda C, Kwatra SG, Dong X, Lim M, Snyder SH. Identification of the NRF2 transcriptional network as a therapeutic target for trigeminal neuropathic pain. SCIENCE ADVANCES 2022; 8:eabo5633. [PMID: 35921423 PMCID: PMC9348805 DOI: 10.1126/sciadv.abo5633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/16/2022] [Indexed: 05/28/2023]
Abstract
Trigeminal neuralgia, historically dubbed the "suicide disease," is an exceedingly painful neurologic condition characterized by sudden episodes of intense facial pain. Unfortunately, the only U.S. Food and Drug Administration (FDA)-approved medication for trigeminal neuralgia carries substantial side effects, with many patients requiring surgery. Here, we identify the NRF2 transcriptional network as a potential therapeutic target. We report that cerebrospinal fluid from patients with trigeminal neuralgia accumulates reactive oxygen species, several of which directly activate the pain-transducing channel TRPA1. Similar to our patient cohort, a mouse model of trigeminal neuropathic pain also exhibits notable oxidative stress. We discover that stimulating the NRF2 antioxidant transcriptional network is as analgesic as inhibiting TRPA1, in part by reversing the underlying oxidative stress. Using a transcriptome-guided drug discovery strategy, we identify two NRF2 network modulators as potential treatments. One of these candidates, exemestane, is already FDA-approved and may thus be a promising alternative treatment for trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark F. Sabbagh
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Y. Shin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren K. Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark Luciano
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Wang S, Wei W, Ma N, Qu Y, Liu Q. Molecular mechanisms of ferroptosis and its role in prostate cancer therapy. Crit Rev Oncol Hematol 2022; 176:103732. [PMID: 35697233 DOI: 10.1016/j.critrevonc.2022.103732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is a highly prevalent disease that affects men's health worldwide and is the second most common malignancy in males. Ferroptosis is a novel form of programmed cell death characterized by iron overload and the accumulation of lipid peroxidation, which differs from the regulated cell death modes of necrosis, apoptosis, and autophagy. Substantial progress has been achieved in researching the occurrence and regulatory mechanisms of ferroptosis, which is closely associated with cancer initiation, progression, and suppression and is expected to become a new breakthrough point in the PCa treatment. This review will summarize the mechanisms involved in PCa, and we detail the molecular mechanisms of ferroptosis and its role in PCa treatment.
Collapse
Affiliation(s)
- Shaokun Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Ning Ma
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Yongliang Qu
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Qiuju Liu
- Cancer Center, Department of Hematology, The First Hospital of Jilin University, Changchun 130001, China.
| |
Collapse
|
29
|
Zager RA, Johnson ACM. Early loss of glutathione -s- transferase (GST) activity during diverse forms of acute renal tubular injury. Physiol Rep 2022; 10:e15352. [PMID: 35748049 PMCID: PMC9226817 DOI: 10.14814/phy2.15352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Glutathione‐S‐transferases (GSTs) are a diverse group of phase II detoxification enzymes which primarily evoke tissue protection via glutathione conjugation to xenobiotics and reactive oxygen species. Given their cytoprotective properties, potential changes in GST expression during AKI has pathophysiologic relevance. Hence, we evaluated total GST activity, and the mRNA responses of nine cytosolic GST isotypes (GST alpha1, kappa1, mu1/5, omega1, pi1 sigma1, theta1, zeta1 mRNAs), in five diverse mouse models of AKI (glycerol, ischemia/reperfusion; maleate, cisplatin, endotoxemia). Excepting endotoxemia, each AKI model significantly reduced GST activity (~35%) during both the AKI “initiation” (0‐4 h) and “maintenance” phases (18 or 72 h). During the AKI maintenance phase, increases in multiple GST mRNAs were observed. However, no improvement in GST activity resulted. Increased urinary GST excretion followed AKI induction. However, this could not explain the reduced renal GST activity given that it also fell in response to ex vivo renal ischemia (i.e., absent urinary excretion). GST alpha, a dominant proximal tubule GST isotype, manifested 5–10‐fold protein increases following AKI, arguing against GST proteolysis as the reason for the GST activity declines. Free fatty acids (FFAs) and lysophospholipids, which markedly accumulate during AKI, are known to bind to, and suppress, GST activity. Supporting this concept, arachidonic acid addition to renal cortical protein extracts caused rapid GST activity reductions. Based on these results, we conclude that diverse forms of AKI significantly reduce GST activity. This occurs despite increased GST transcription/translation and independent of urinary GST excretion. Injury‐induced generation of endogenous GST inhibitors, such as FFAs, appears to be a dominant cause.
Collapse
|
30
|
Xu X, Zhang N, Meng X, Jiang H, Ge H, Zheng Y, Qian K, Wang J. FOXO acts as a positive regulator of CncC and deltamethrin tolerance in the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2022; 78:1938-1945. [PMID: 35085425 DOI: 10.1002/ps.6811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Both forkhead box O (FOXO) and nuclear factor erythroid-derived 2-like-2 (Nrf2) are key transcription factors related to stress responses. Whereas limited studies in mammals and Caenorhabditis elegans have revealed the interaction between FoxO/DAF-16 and Nrf2/SKN-1, the role of FOXO in metabolic detoxification and regulation of the Nrf2-Keap1 signaling pathway are poorly understood in insects. RESULTS Using Tribolium castaneum as a model organism, we found that RNA interference-mediated knockdown of FOXO enhanced deltamethrin-induced lethality by affecting the messenger RNA (mRNA) levels of CYP6BQ cluster genes. We further demonstrated that injection of dsFOXO into the beetle larvae decreased expression of CncC and KEAP1 at both the mRNA and protein level. Notably, dual-luciferase and electrophoretic mobility shift assays both confirmed direct regulation of CncC by FOXO, whereas Keap1 was directly regulated by CncC. CONCLUSION FOXO can directly regulate the expression of CncC and indirectly regulate the expression of Keap1 through CncC. The data provide insights into the regulatory mechanisms of the Nrf2-Keap1 signaling pathway in insects.
Collapse
Affiliation(s)
- Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Jin Y, Tan Y, Zhao P, Guo Y, Chen S, Wu J, Ren Z. Glutathione S-transferase Mu 2 inhibits hepatic steatosis via ASK1 suppression. Commun Biol 2022; 5:326. [PMID: 35388144 PMCID: PMC8986781 DOI: 10.1038/s42003-022-03251-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Abstract
Hepatic steatosis is the main characteristic of some liver metabolism diseases. However, unclear molecular mechanism of hepatic steatosis impedes the therapy of this hepatic steatosis. Glutathione-S-transferase mu 2 (GSTM2), as a member of phase II drug metabolizing enzymes (DMEs), regulates cellular antioxidant and detoxificant. GSTM2 was highly up-regulated in hepatic steatosis tissues and high-fat diet (HFD) fed mice. Loss-of-function GSTM2 mouse model demonstrated that GSTM2 protected mice from excess fat accumulation. Mechanistically, GSTM2 interacted with ASK1 and suppressed its phosphorylation and the activation of subsequent downstream p38-JNK signalling. Moreover, GSTM2 overexpression in the liver effectively ameliorated hepatic lipid accumulation. Therefore, we identified GSTM2 as an important negative regulator in progression of hepatic steatosis via both its detoxification/antioxidant and inhibition of ASK1-p38/JNK signalling. This study showed potential therapeutic function of the DME in progression of hepatic steatosis. Jin et al. investigate the underlying mechanisms of hepatic steatosis and show that Glutathione-S-transferase mu 2 (GSTM2), which is a drug metabolizing enzyme (DME), is upregulated in hepatic steatosis tissue from mice fed with a high fat diet. They show that GSTM2 is a negative regulator of hepatic steatosis via both detoxification/antioxidant and inhibition of ASK1-p38/JNK signalling, which sheds light on its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.,Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, PR China
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yu Guo
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Shilin Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China. .,Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
32
|
The Potential of Nrf2 Activation as a Therapeutic Target in Systemic Lupus Erythematosus. Metabolites 2022; 12:metabo12020151. [PMID: 35208225 PMCID: PMC8876688 DOI: 10.3390/metabo12020151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation and oxidative stress are well established in systemic lupus erythematosus (SLE) and are critical to the pathogenesis of autoimmune diseases. The transcription factor NF-E2 related factor 2 (Nrf2) is a central regulator of cellular anti-oxidative responses, inflammation, and restoration of redox balance. Accumulating reports support an emerging role for the regulation of Nrf2 in SLE. These include findings on the development of lupus-like autoimmune nephritis and altered immune cell populations in mice lacking Nrf2, as well as decreased Nrf2 abundance in the dendritic cells of patients with SLE. Nrf2-inducing agents have been shown to alleviate oxidative and inflammatory stress and reduce tissue injury in SLE mouse models. Since Nrf2 expression can be increased in activated T cells, the precise role of Nrf2 activation in different immune cell types and their function remains to be defined. However, targeting Nrf2 for the treatment of diseases associated with oxidative stress and inflammation, such as SLE, is promising. As investigation of Nrf2-inducing agents in clinical trials grows, defining the signaling and molecular mechanisms of action and downstream effects in response to different Nrf2-inducing agents in specific cells, tissues, and diseases, will be critical for effective clinical use.
Collapse
|
33
|
Narożna M, Krajka-Kuźniak V, Kleszcz R, Baer-Dubowska W. Indomethacin and Diclofenac Hybrids with Oleanolic Acid Oximes Modulate Key Signaling Pathways in Pancreatic Cancer Cells. Int J Mol Sci 2022; 23:ijms23031230. [PMID: 35163154 PMCID: PMC8835846 DOI: 10.3390/ijms23031230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Our earlier studies showed that coupling nonsteroidal anti-inflammatory drugs (NSAIDs) with oleanolic acid derivatives increased their anti-inflammatory activity in human hepatoma cells. The aim of this study was to evaluate their effect on the signaling pathways involved in inflammation processes in human pancreatic cancer (PC) cells. Cultured PSN-1 cells were exposed for 24 h (30 µM) to OA oxime (OAO) derivatives substituted with benzyl or morpholide groups and their conjugates with indomethacin (IND) or diclofenac (DCL). The activation of NF-κB and Nrf2 was assessed by the evaluation of the translocation of their active forms into the nucleus and their binding to specific DNA sequences via the ELISA assay. The expression of NF-κB and Nrf2 target genes was evaluated by R-T PCR and Western blot analysis. The conjugation of IND or DCL with OAO derivatives increased cytotoxicity and their effect on the tested signaling pathways. The most effective compound was the DCL hybrid with OAO morpholide (4d). This compound significantly reduced the activation and expression of NF-κB and enhanced the activation and expression of Nrf2. Increased expression of Nrf2 target genes led to reduced ROS production. Moreover, MAPKs and the related pathways were also affected. Therefore, conjugate 4d deserves more comprehensive studies as a potential PC therapeutic agent.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland; (M.N.); (V.K.-K.); (R.K.)
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825, NE 13th Street, Oklahoma City, OK 73104, USA
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland; (M.N.); (V.K.-K.); (R.K.)
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland; (M.N.); (V.K.-K.); (R.K.)
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland; (M.N.); (V.K.-K.); (R.K.)
- Correspondence:
| |
Collapse
|
34
|
Xue MY, Wu JJ, Xie YY, Zhu SL, Zhong YF, Liu JX, Sun HZ. Investigation of fiber utilization in the rumen of dairy cows based on metagenome-assembled genomes and single-cell RNA sequencing. MICROBIOME 2022; 10:11. [PMID: 35057854 PMCID: PMC8772221 DOI: 10.1186/s40168-021-01211-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Dairy cows utilize human-inedible, low-value plant biomass to produce milk, a low-cost product with rich nutrients and high proteins. This process largely relies on rumen microbes that ferment lignocellulose and cellulose to produce volatile fatty acids (VFAs). The VFAs are absorbed and partly metabolized by the stratified squamous rumen epithelium, which is mediated by diverse cell types. Here, we applied a metagenomic binning approach to explore the individual microbes involved in fiber digestion and performed single-cell RNA sequencing on rumen epithelial cells to investigate the cell subtypes contributing to VFA absorption and metabolism. RESULTS The 52 mid-lactating dairy cows in our study (parity = 2.62 ± 0.91) had milk yield of 33.10 ± 6.72 kg. We determined the fiber digestion and fermentation capacities of 186 bacterial genomes using metagenomic binning and identified specific bacterial genomes with strong cellulose/xylan/pectin degradation capabilities that were highly associated with the biosynthesis of VFAs. Furthermore, we constructed a rumen epithelial single-cell map consisting of 18 rumen epithelial cell subtypes based on the transcriptome of 20,728 individual epithelial cells. A systematic survey of the expression profiles of genes encoding candidates for VFA transporters revealed that IGFBP5+ cg-like spinous cells uniquely highly expressed SLC16A1 and SLC4A9, suggesting that this cell type may play important roles in VFA absorption. Potential cross-talk between the microbiome and host cells and their roles in modulating the expression of key genes in the key rumen epithelial cell subtypes were also identified. CONCLUSIONS We discovered the key individual microbial genomes and epithelial cell subtypes involved in fiber digestion, VFA uptake and metabolism, respectively, in the rumen. The integration of these data enables us to link microbial genomes and epithelial single cells to the trophic system. Video abstract.
Collapse
Affiliation(s)
- Ming-Yuan Xue
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jin Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yi Xie
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Sen-Lin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Fan Zhong
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Bardallo RG, Panisello‐Roselló A, Sanchez‐Nuno S, Alva N, Roselló‐Catafau J, Carbonell T. Nrf2 and Oxidative Stress in liver Ischemia/Reperfusion Injury. FEBS J 2021; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Arnau Panisello‐Roselló
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Sergio Sanchez‐Nuno
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Joan Roselló‐Catafau
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| |
Collapse
|
36
|
Rosarda J, Baron KR, Nutsch K, Kline GM, Stanton C, Kelly JW, Bollong MJ, Wiseman RL. Metabolically Activated Proteostasis Regulators Protect against Glutamate Toxicity by Activating NRF2. ACS Chem Biol 2021; 16:2852-2863. [PMID: 34797633 PMCID: PMC8689639 DOI: 10.1021/acschembio.1c00810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
The extracellular accumulation of glutamate is a pathologic hallmark of numerous neurodegenerative diseases including ischemic stroke and Alzheimer's disease. At high extracellular concentrations, glutamate causes neuronal damage by promoting oxidative stress, which can lead to cellular death. This has led to significant interest in developing pharmacologic approaches to mitigate the oxidative toxicity caused by high levels of glutamate. Here, we show that the small molecule proteostasis regulator AA147 protects against glutamate-induced cell death in a neuronal-derived cell culture model. While originally developed as an activator of the activating transcription factor 6 (ATF6) arm of the unfolded protein response, this AA147-dependent protection against glutamate toxicity is primarily mediated through activation of the NRF2-regulated oxidative stress response. We demonstrate that AA147 activates NRF2 selectively in neuronal-derived cells through a mechanism involving metabolic activation to a reactive electrophile and covalent modification of KEAP1─a mechanism analogous to that involved in the AA147-dependent activation of ATF6. These results define the potential for AA147 to protect against glutamate-induced oxidative toxicity and highlight the potential for metabolically activated proteostasis regulators like AA147 to activate both protective ATF6 and NRF2 stress-responsive signaling pathways to mitigate oxidative damage associated with diverse neurologic diseases.
Collapse
Affiliation(s)
- Jessica
D. Rosarda
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kelsey R. Baron
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kayla Nutsch
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gabriel M. Kline
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The
Scripps Research Institute, La
Jolla, California 92037, United States
| | - Caroline Stanton
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffery W. Kelly
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The
Scripps Research Institute, La
Jolla, California 92037, United States
| | - Michael J. Bollong
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - R. Luke Wiseman
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| |
Collapse
|
37
|
Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, Pillai RG, Rabinowitz JD, Papagiannakopoulos T. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. SCIENCE ADVANCES 2021; 7:eabk1023. [PMID: 34788087 PMCID: PMC8598006 DOI: 10.1126/sciadv.abk1023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 05/20/2023]
Abstract
The KEAP1/NRF2 pathway promotes metabolic rewiring to support redox homeostasis. Activation of NRF2 occurs in many cancers, often due to KEAP1 mutations, and is associated with more aggressive disease and treatment resistance. To identify metabolic dependencies in cancers with NRF2 activation, we performed a metabolism-focused CRISPR screen. Glucose-6-phosphate dehydrogenase (G6PD), which was recently shown to be dispensable in Ras-driven tumors, was a top dependency. G6PD catalyzes the committed step of the oxidative pentose phosphate pathway that produces NADPH and nucleotide precursors, but neither antioxidants nor nucleosides rescued. Instead, G6PD loss triggered tricarboxylic acid (TCA) intermediate depletion because of up-regulation of the alternative NADPH-producing enzymes malic enzyme and isocitrate dehydrogenase. In vivo, G6PD impairment markedly suppressed KEAP1 mutant tumor growth, and this suppression was further augmented by TCA depletion by glutaminase inhibition. Thus, G6PD inhibition–induced TCA depletion is a therapeutic vulnerability of NRF2-activated cancer.
Collapse
Affiliation(s)
- Hongyu Ding
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Zihong Chen
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, 91 Prospect Avenue, Princeton, NJ 08544, USA
| | - Katherine Wu
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Shih Ming Huang
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Warren L. Wu
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Sarah E. LeBoeuf
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ray G. Pillai
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, 423 East 23rd Avenue, New York, NY 10016, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, 91 Prospect Avenue, Princeton, NJ 08544, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Perlmutter NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
17β-Estradiol Abrogates Oxidative Stress and Neuroinflammation after Cortical Stab Wound Injury. Antioxidants (Basel) 2021; 10:antiox10111682. [PMID: 34829553 PMCID: PMC8615181 DOI: 10.3390/antiox10111682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Disruptions in brain energy metabolism, oxidative damage, and neuroinflammation are commonly seen in traumatic brain injury (TBI). Microglial activation is the hallmark of neuroinflammation. After brain injury, microglia also act as a double-edged sword with distinctive phenotypic changes. Therefore, therapeutic applications to potentiate microglia towards pro-inflammatory response following brain injury have become the focus of attention in recent years. Here, in the current study, we investigated the hypothesis that 17β-estradiol could rescue the mouse brain against apoptotic cell death and neurodegeneration by suppressing deleterious proinflammatory response probably by abrogating metabolic stress and oxidative damage after brain injury. Male C57BL/6N mice were used to establish a cortical stab wound injury (SWI) model. Immediately after brain injury, the mice were treated with 17β-estradiol (10 mg/kg, once every day via i.p. injection) for one week. Immunoblotting and immunohistochemical analysis was performed to examine the cortical and hippocampal brain regions. For the evaluation of reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG), we used specific kits. Our findings revealed that 17β-estradiol treatment significantly alleviated SWI-induced energy dyshomeostasis and oxidative stress by increasing the activity of phospho-AMPK (Thr172) and by regulating the expression of an antioxidant gene (Nrf2) and cytoprotective enzymes (HO-1 and GSH) to mitigate ROS. Importantly, 17β-estradiol treatment downregulated gliosis and proinflammatory markers (iNOS and CD64) while significantly augmenting an anti-inflammatory response as evidenced by the robust expression of TGF-β and IGF-1 after brain injury. The treatment with 17β-estradiol also reduced inflammatory mediators (Tnf-α, IL-1β, and COX-2) in the injured mouse. Moreover, 17β-estradiol administration rescued p53-associated apoptotic cell death in the SWI model by regulating the expression of Bcl-2 family proteins (Bax and Bcl-2) and caspase-3 activation. Finally, SWI + 17β-estradiol-treated mice illustrated reduced brain lesion volume and enhanced neurotrophic effect and the expression of synaptic proteins. These findings suggest that 17β-estradiol is an effective therapy against the brain secondary injury-induced pathological cascade following trauma, although further studies may be conducted to explore the exact mechanisms.
Collapse
|
39
|
He Q, Wu S, Huang M, Wang Y, Zhang K, Kang J, Zhang Y, Quan F. Effects of Diluent pH on Enrichment and Performance of Dairy Goat X/Y Sperm. Front Cell Dev Biol 2021; 9:747722. [PMID: 34660605 PMCID: PMC8517142 DOI: 10.3389/fcell.2021.747722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
In this paper, on the basis of the differences in the hydrogen ion concentration (pH) of the diluent dairy goat semen on X/Y sperm motility, an X/Y sperm enrichment study was conducted to establish a simple and effective method for gender control in dairy goats. Dairy goat semen was diluted using different pH dilutions and was incubated. Then, the X/Y sperm ratio in the isolated upper sperm was determined using the double TaqMan qPCR method. The internal pH change pattern of sperm cells at different pH dilutions was measured using BCECF-AM probe, and the functional parameters of the isolated sperm were tested with the corresponding kit. Next, an in vitro fertilization test was conducted using isolated spermatozoa and oocytes to determine their fertilization rates, the percentages of female embryos, and the expression of genes related to developing potentially fertilized embryos. Results showed that the percentages of the X sperm cells in the upper sperm layer were 67.24% ± 2.61% at sperm dilution pH of 6.2 and 30.45% ± 1.03% at sperm dilution pH of 7.4, which was significantly different from 52.35% ± 1.72% of the control group (pH 6.8) (P < 0.01). Results also showed that there is a relationship between the external pHo and internal pHi of sperm cells. Furthermore, the percentages of female embryos after the in vitro fertilization of the isolated upper sperm with mature oocytes at pH 6.2 and 7.4 were 66.67% ± 0.05 and 29.73% ± 0.04%, respectively, compared with 48.57% ± 0.02% in the control group (pH 6.8). Highly significant differences occurred between groups (P < 0.01). Additionally, no significant difference was observed during the expression of genes related to embryonic development between the blastocysts formed from sperm isolated by changing the pH of the diluent and the control sperm (P > 0.05). Therefore, this study successfully established a simple and effective method for enriched X/Y sperms from dairy goats, which is important for regulating the desired sex progeny during dairy goat breeding and for guiding dairy goat production.
Collapse
Affiliation(s)
- Qifu He
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Ming Huang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Ying Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| |
Collapse
|
40
|
Mohseni M, Sahebkar A, Askari G, Johnston TP, Alikiaii B, Bagherniya M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother Res 2021; 35:6862-6882. [PMID: 34528307 DOI: 10.1002/ptr.7273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Neuroprotective effects of curcumin have been shown in previous studies. This updated systematic review of clinical trials aimed to investigate the effect of curcumin on neurological disorders. Databases including PubMed, Scopus, Web of Science, and Google Scholar were systematically searched to identify clinical trials investigating the effects of curcumin/turmeric supplements alone, or in combination with other ingredients, on neurological diseases. Nineteen studies comprising 1,130 patients met the inclusion criteria. Generally, intervention and study outcomes were heterogeneous. In most of the studies, curcumin had a favorable effect on oxidative stress and inflammation. However, with the exception of AD, curcumin supplementation either alone, or in combination with other ingredients, had beneficial effects on clinical outcomes for the other aforementioned neurodegenerative diseases. For example, the frequency, severity, and duration of migraine attacks, scores on the revised ALS functional rating scale, and the occurrence of motor complications in PD were all significantly improved with curcumin supplementation either alone or in combination with other ingredients. However, in three studies, several adverse side effects (mostly gastrointestinal in nature) were reported. Curcumin supplementation may have favorable effects on inflammatory status and clinical outcomes of patients with neurological disease, although the results were not consistent.
Collapse
Affiliation(s)
- Maryam Mohseni
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
42
|
Zhang L, Liu T, Hu C, Zhang X, Zhang Q, Shi K. Proteome analysis identified proteins associated with mitochondrial function and inflammation activation crucially regulating the pathogenesis of fatty liver disease. BMC Genomics 2021; 22:640. [PMID: 34481473 PMCID: PMC8418032 DOI: 10.1186/s12864-021-07950-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Fatty liver disease prevalently occurs in commercial postpartum dairies, resulting in a worldwide high culling rate because of their subsequent limitations of production and reproduction performance. Results Fatty liver-specific proteome and acetylome analysis revealed that energy metabolism suppression closely associated with mitochondrial dysfunction and inflammation activation were shown to be remarkable biological processes underlying the development of fatty liver disease, furthermore, acetylation modification of proteins could be one of the main means to modulate these processes. Twenty pivotal genetic factors/genes that differentially expressing and being acetylation modified in liver were identified and proposed to regulate the pathogenesis of fatty liver dairies. These proteins were confirmed to be differentially expressing in individual liver tissue, eight of which being validated via immunohistochemistry assay. Conclusions This study provided a comprehensive proteome and acetylome profile of fatty liver of dairy cows, and revealed potential important biological processes and essential regulators in the pathogenesis of fatty liver disease. Expectantly, understanding the molecular mechanisms of the pathogenesis of fatty liver disease in dairies, as an animal model of non-alcoholic fatty liver disease (NAFLD) in human beings, which is a clinico-pathologically defined process associated with metabolic syndrome, could inspire and facilitate the development of efficacious therapeutic drugs on NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07950-2.
Collapse
Affiliation(s)
- Letian Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Tingjun Liu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Chengzhang Hu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xuan Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Qin Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
43
|
Oliveri LM, Buzaleh AM, Gerez EN. An increase in O-GlcNAcylation of Sp1 down-regulates the gene expression of pi class glutathione S-transferase in diabetic mice. Biochem Biophys Rep 2021; 27:101049. [PMID: 34195388 PMCID: PMC8220555 DOI: 10.1016/j.bbrep.2021.101049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.
Collapse
Affiliation(s)
- Leda María Oliveri
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de, Buenos Aires, Argentina
| | - Esther Noemí Gerez
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
- Cátedra Bioquímica General Celular y Molecular, Facultad de Ciencias Médicas, Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
44
|
Le TH. GSTM1 Gene, Diet, and Kidney Disease: Implication for Precision Medicine?: Recent Advances in Hypertension. Hypertension 2021; 78:936-945. [PMID: 34455814 DOI: 10.1161/hypertensionaha.121.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the United States, the prevalence of chronic kidney disease in adults is ≈14%. The mainstay of therapy for chronic kidney disease is angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, but many patients with chronic kidney disease still progress to end-stage kidney disease. Increased oxidative stress is a major molecular underpinning of chronic kidney disease progression. In humans, a common deletion variant of the glutathione-S-transferase μ-1 (GSTM1) gene, the GSTM1 null allele (GSTM1(0)), results in decreased GSTM1 enzymatic activity and is associated with higher levels of oxidative stress. GSTM1 belongs to the superfamily of GSTs that are phase II antioxidant enzymes and are regulated by Nrf2 (nuclear factor erythroid 2-related factor 2). Cruciferous vegetables in general, and broccoli in particular, are rich in glucoraphanin, a precursor of sulforaphane that has been shown to have protective effects against oxidative damage through the activation of Nrf2. This review will highlight recent human and animal studies implicating the role of GSTM1 deficiency in hypertension and kidney disease, and its impact on the effects of cruciferous vegetables on kidney injury and disease progression, illustrating the significance of gene and environment interaction and a potential for targeted precision medicine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, NY
| |
Collapse
|
45
|
Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Biotransformation Capacity of Zebrafish (Danio rerio) Early Life Stages: Functionality of the Mercapturic Acid Pathway. Toxicol Sci 2021; 176:355-365. [PMID: 32428239 DOI: 10.1093/toxsci/kfaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish (Danio rerio) early life stages offer a versatile model system to study the efficacy and safety of drugs or other chemicals with regard to human and environmental health. This is because, aside from the well-characterized genome of zebrafish and the availability of a broad range of experimental and computational research tools, they are exceptionally well suited for high-throughput approaches. Yet, one important pharmacokinetic aspect is thus far only poorly understood in zebrafish embryo and early larvae: their biotransformation capacity. Especially, biotransformation of electrophilic compounds is a critical pathway because they easily react with nucleophile molecules, such as DNA or proteins, potentially inducing adverse health effects. To combat such adverse effects, conjugation reactions with glutathione and further processing within the mercapturic acid pathway have evolved. We here explore the functionality of this pathway in zebrafish early life stages using a reference substrate (1-chloro-2,4-dinitrobenzene, CDNB). With this work, we show that zebrafish embryos can biotransform CDNB to the respective glutathione conjugate as early as 4 h postfertilization. At all examined life stages, the glutathione conjugate is further biotransformed to the last metabolite of the mercapturic acid pathway, the mercapturate, which is slowly excreted. Being able to biotransform electrophiles within the mercapturic acid pathway shows that zebrafish early life stages possess the potential to process xenobiotic compounds through glutathione conjugation and the formation of mercapturates. The presence of this chemical biotransformation and clearance route in zebrafish early life stages supports the application of this model in toxicology and chemical hazard assessment.
Collapse
Affiliation(s)
- Alena Tierbach
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland.,ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
46
|
Xu X, Meng X, Zhang N, Jiang H, Ge H, Qian K, Wang J. The cytosolic sulfotransferase gene TcSULT1 is involved in deltamethrin tolerance and regulated by CncC in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104905. [PMID: 34301366 DOI: 10.1016/j.pestbp.2021.104905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The sulfuryl transfer reaction catalyzed by cytosolic sulfotransferase (SULT) is one of the major conjugating pathways responsible for the detoxification and subsequent elimination of xenobiotics, however, functional characterization of insect SULTs is still limited. In this study, cDNA encoding a cytosolic sulfotransferase, named TcSULT1, was cloned from the red flour beetle, Tribolium castaneum. Sequence analysis revealed that TcSULT1 had the conserved signature sequences of SULTs, and shared moderate amino acid identities with Bombyx mori and Drosophila SULTs. Analysis of the transcription level showed that TcSULT1 was highly expressed in head, epidermis and malpighian tube, and upregulated at 4 h after exposure to deltamethrin. Knockdown of TcSULT1 significantly increased the susceptibility of beetles to deltamethrin. Both RNAi and dual-luciferase assay revealed that the transcription factor TcCncC regulates the expression of TcSULT1. These data provides insights into the function and regulatory mechanism of insect SULTs.
Collapse
Affiliation(s)
- Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
47
|
Discovering the Protective Effects of Resveratrol on Aflatoxin B1-Induced Toxicity: A Whole Transcriptomic Study in a Bovine Hepatocyte Cell Line. Antioxidants (Basel) 2021; 10:antiox10081225. [PMID: 34439473 PMCID: PMC8388899 DOI: 10.3390/antiox10081225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.
Collapse
|
48
|
Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem Int 2021; 149:105136. [PMID: 34274381 DOI: 10.1016/j.neuint.2021.105136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - María C Gómez-García
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José M Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Alonso
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
49
|
Lietzow J, Golchert J, Pietzner M, Völker U, Poutanen M, Ohlsson C, Homuth G, Köhrle J. Comparative Analysis of the Effects of Long-Term 3,5-diiodothyronine Treatment on the Murine Hepatic Proteome and Transcriptome Under Conditions of Normal Diet and High-Fat Diet. Thyroid 2021; 31:1135-1146. [PMID: 33637021 DOI: 10.1089/thy.2020.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The thyroid hormone (TH) metabolite 3,5-diiodothyronine (3,5-T2) is considered as a potential drug for treatment of nonalcoholic fatty liver disease (NAFLD) based on its prominent antisteatotic effects in murine models of obesity without the detrimental thyromimetic side effects known for classical TH. To expand our understanding of its mode of action, we comprehensively characterized the effects of 3,5-T2 on hepatic gene expression in a diet-induced murine model of obesity by a combined liver proteome and transcriptome analysis. Materials and Methods: Male C57BL/6 mice fed high-fat diet (HFD) to induce NAFLD or standard diet (SD) as control were treated with 2.5 μg/g body weight 3,5-T2 or saline for 4 weeks. We performed mass spectrometry analyses and integrated those proteome data with earlier published microarray-based transcriptome data from the same animals. In addition, concentrations of several sex steroids in serum and different tissues were determined by gas chromatography-tandem mass spectrometry. Results: We observed limited concordance between transcripts and proteins exhibiting differential abundance under 3,5-T2 treatment, which was only partially explainable by methodological reasons and might, therefore, reflect noncanonical post-transcriptional events. The treatment affected the levels of more and partially different proteins under HFD as compared with SD, demonstrating response modulation by the hepatic lipid load. The hepatic physiological signatures of 3,5-T2 treatment inferable from the omics data comprised the reduction of oxidative stress and alteration of apolipoprotein profiles, both due to decreased liver fat content. In addition, induction of several classical TH target genes and genes involved in the biosynthesis of cholesterol, bile acids (BAs), and male sex steroids was observed. The latter finding was supported by hepatic sex steroid measurements. Conclusion: While confirming the beneficial hepatic liver fat reduction by 3,5-T2 treatment, our data suggest that besides the well-known induction of fatty acid oxidation the stimulation of cholesterol- and BA synthesis with subsequent excretion of the latter through bile might represent a further important mechanism in this context. The obvious intensified male sex steroid exposition of the liver in 3,5-T2-treated HFD animals can be predicted to cause enhanced hepatic "masculinization," with not yet clear but potentially detrimental physiological consequences.
Collapse
Affiliation(s)
- Julika Lietzow
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Josef Köhrle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| |
Collapse
|
50
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|