1
|
Zhang H, Ben Zablah Y, Zhang H, Jia Z. Rho Signaling in Synaptic Plasticity, Memory, and Brain Disorders. Front Cell Dev Biol 2021; 9:729076. [PMID: 34671600 PMCID: PMC8520953 DOI: 10.3389/fcell.2021.729076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Memory impairments are associated with many brain disorders such as autism, Alzheimer's disease, and depression. Forming memories involves modifications of synaptic transmission and spine morphology. The Rho family small GTPases are key regulators of synaptic plasticity by affecting various downstream molecules to remodel the actin cytoskeleton. In this paper, we will review recent studies on the roles of Rho proteins in the regulation of hippocampal long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. We will also discuss the involvement of Rho signaling in spine morphology, the structural basis of synaptic plasticity and memory formation. Finally, we will review the association between brain disorders and abnormalities of Rho function. It is expected that studying Rho signaling at the synapse will contribute to the understanding of how memory is formed and disrupted in diseases.
Collapse
Affiliation(s)
- Haorui Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haiwang Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Cho EJ, Kim HY, Lee AY. Paeoniflorin ameliorates Aβ-stimulated neuroinflammation via regulation of NF-κB signaling pathway and Aβ degradation in C6 glial cells. Nutr Res Pract 2020; 14:593-605. [PMID: 33282122 PMCID: PMC7683209 DOI: 10.4162/nrp.2020.14.6.593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease is common age-related neurodegenerative condition characterized by amyloid beta (Aβ) accumulation that leads cognitive impairment. In the present study, we investigated the protective effect of paeoniflorin (PF) against Aβ-induced neuroinflammation and the underlying mechanism in C6 glial cells. MATERIALS/METHODS C6 glial cells were treated with PF and Aβ25–35, and cell viability, nitric oxide (NO) production, and pro-inflammatory cytokine release were measured. Furthermore, the mechanism underlying the effect of PF on inflammatory responses and Aβ degradation was determined by Western blot. RESULTS Aβ25–35 significantly reduced cell viability, but this reduction was prevented by the pretreatment with PF. In addition, PF significantly inhibited Aβ25–35-induced NO production in C6 glial cells. The secretion of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha was also significantly reduced by PF. Further mechanistic studies indicated that PF suppressed the production of these pro-inflammatory cytokines by regulating the nuclear factor-kappa B (NF-κB) pathway. The protein levels of inducible NO synthase and cyclooxygenase-2 were downregulated and phosphorylation of NF-κB was blocked by PF. However, PF elevated the protein expression of inhibitor kappa B-alpha and those of Aβ degrading enzymes, insulin degrading enzyme and neprilysin. CONCLUSIONS These findings indicate that PF exerts protective effects against Aβ-mediated neuroinflammation by inhibiting NF-κB signaling, and these effects were associated with the enhanced activity of Aβ degradation enzymes.
Collapse
Affiliation(s)
- Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| |
Collapse
|
3
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1020] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Gao S, Yu R, Zhou X. The Role of Geranylgeranyltransferase I-Mediated Protein Prenylation in the Brain. Mol Neurobiol 2015; 53:6925-6937. [DOI: 10.1007/s12035-015-9594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
6
|
Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 2015; 22:161-74. [PMID: 24628477 PMCID: PMC4281853 DOI: 10.1089/ars.2013.5767] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. RECENT ADVANCES Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. CRITICAL ISSUES Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. FUTURE DIRECTIONS It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade.
Collapse
|
7
|
Hottman DA, Li L. Protein prenylation and synaptic plasticity: implications for Alzheimer's disease. Mol Neurobiol 2014; 50:177-85. [PMID: 24390573 DOI: 10.1007/s12035-013-8627-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Protein prenylation is an important lipid posttranslational modification of proteins. It includes protein farnesylation and geranylgeranylation, in which the 15-carbon farnesyl pyrophosphate or 20-carbon geranylgeranyl pyrophosphate is attached to the C-terminus of target proteins, catalyzed by farnesyl transferase or geranylgeranyl transferases, respectively. Protein prenylation facilitates the anchoring of proteins into the cell membrane and mediates protein-protein interactions. Among numerous proteins that undergo prenylation, small GTPases represent the largest group of prenylated proteins. Small GTPases are involved in regulating a plethora of cellular functions including synaptic plasticity. The prenylation status of small GTPases determines the subcellular locations and functions of the proteins. Dysregulation or dysfunction of small GTPases leads to the development of different types of disorders. Emerging evidence indicates that prenylated proteins, in particular small GTPases, may play important roles in the pathogenesis of Alzheimer's disease. This review focuses on the prenylation of Ras and Rho subfamilies of small GTPases and its relation to synaptic plasticity and Alzheimer's disease.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 2001 6th St SE, MTRF 4-208, Minneapolis, MN, 55455, USA
| | | |
Collapse
|
8
|
Cheng S, Cao D, Hottman DA, Yuan L, Bergo MO, Li L. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem 2013; 288:35952-60. [PMID: 24136196 DOI: 10.1074/jbc.m113.503904] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aβ deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aβ and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.
Collapse
Affiliation(s)
- Shaowu Cheng
- Departments of Experimental and Clinical Pharmacology University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
9
|
β-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway. Neuromolecular Med 2013; 16:137-49. [PMID: 24085465 DOI: 10.1007/s12017-013-8268-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates β-Amyloid-evoked apoptotic cell death.
Collapse
|
10
|
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno SI, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 2013; 12:487-96. [PMID: 23434393 DOI: 10.1016/j.stem.2013.01.009] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 12/22/2012] [Accepted: 01/18/2013] [Indexed: 12/22/2022]
Abstract
Oligomeric forms of amyloid-β peptide (Aβ) are thought to play a pivotal role in the pathogenesis of Alzheimer's disease (AD), but the mechanism involved is still unclear. Here, we generated induced pluripotent stem cells (iPSCs) from familial and sporadic AD patients and differentiated them into neural cells. Aβ oligomers accumulated in iPSC-derived neurons and astrocytes in cells from patients with a familial amyloid precursor protein (APP)-E693Δ mutation and sporadic AD, leading to endoplasmic reticulum (ER) and oxidative stress. The accumulated Aβ oligomers were not proteolytically resistant, and docosahexaenoic acid (DHA) treatment alleviated the stress responses in the AD neural cells. Differential manifestation of ER stress and DHA responsiveness may help explain variable clinical results obtained with the use of DHA treatment and suggests that DHA may in fact be effective for a subset of patients. It also illustrates how patient-specific iPSCs can be useful for analyzing AD pathogenesis and evaluating drugs.
Collapse
Affiliation(s)
- Takayuki Kondo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hooff GP, Wood WG, Müller WE, Eckert GP. Isoprenoids, small GTPases and Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:896-905. [PMID: 20382260 DOI: 10.1016/j.bbalip.2010.03.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/26/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer's disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction.
Collapse
Affiliation(s)
- Gero P Hooff
- Department of Pharmacology, Campus Riedberg, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
12
|
The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5:e9505. [PMID: 20209079 PMCID: PMC2831066 DOI: 10.1371/journal.pone.0009505] [Citation(s) in RCA: 749] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/20/2010] [Indexed: 01/17/2023] Open
Abstract
Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies.
Collapse
|
13
|
Zhang XF, Forscher P. Rac1 modulates stimulus-evoked Ca(2+) release in neuronal growth cones via parallel effects on microtubule/endoplasmic reticulum dynamics and reactive oxygen species production. Mol Biol Cell 2009; 20:3700-12. [PMID: 19570918 DOI: 10.1091/mbc.e08-07-0730] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The small G protein Rac regulates cytoskeletal protein dynamics in neuronal growth cones and has been implicated in axon growth, guidance, and branching. Intracellular Ca(2+) is another well known regulator of growth cone function; however, effects of Rac activity on intracellular Ca(2+) metabolism have not been well characterized. Here, we investigate how Rac1 activity affects release of Ca(2+) from intracellular endoplasmic reticulum (ER) stores stimulated by application of serotonin (5-hydroxytriptamine). We also address how Rac1 effects on microtubule assembly dynamics affect distribution of Ca(2+) release sites. Multimode fluorescent microscopy was used to correlate microtubule and ER behavior, and ratiometric imaging was used to assess intracellular Ca(2+) dynamics. We report that Rac1 activity both promotes Ca(2+) release and affects its spatial distribution in neuronal growth cones. The underlying mechanism involves synergistic Rac1 effects on microtubule assembly and reactive oxygen species (ROS) production. Rac1 activity modulates Ca(2+) by 1) enhancing microtubule assembly which in turn promotes spread of the ER-based Ca(2+) release machinery into the growth cone periphery, and 2) by increasing ROS production which facilitated inositol 1,4,5-trisphosphate-dependent Ca(2+) release. These results cast Rac1 as a key modulator of intracellular Ca(2+) function in the neuronal growth cone.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven CT 06520, USA
| | | |
Collapse
|
14
|
Wang PL, Niidome T, Akaike A, Kihara T, Sugimoto H. Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene. J Neurosci Res 2009; 87:2105-14. [DOI: 10.1002/jnr.22039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis 2009; 35:251-7. [PMID: 19464372 PMCID: PMC3778879 DOI: 10.1016/j.nbd.2009.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/02/2009] [Accepted: 05/10/2009] [Indexed: 11/24/2022] Open
Abstract
Post-translational modification of small GTPases by farnesyl- (FPP) and geranylgeranylpyrophosphate (GGPP) has generated much attention due to their potential contribution to cancer, cardiovascular and neurodegenerative diseases. Prenylated proteins have been identified in numerous cell functions and elevated levels of FPP and GGPP have been previously proposed to occur in Alzheimer disease (AD) but have never been quantified. In the present study, we determined if the mevalonate derived compounds FPP and GGPP are increased in brain grey and white matter of male AD patients as compared with control samples. This study demonstrates for the first time that FPP and GGPP levels are significantly elevated in human AD grey and white matter but not cholesterol, indicating a potentially disease-specific targeting of isoprenoid regulation independent of HMG-CoA-reductase. Further suggesting a selective disruption of FPP and GGPP homeostasis in AD, we show that inhibition of HMG-CoA reductase in vivo significantly reduced FPP, GGPP and cholesterol abundance in mice with the largest effect on the isoprenoids. A tentative conclusion is that if indeed regulation of FPP and GGPP is altered in AD brain such changes may stimulate protein prenylation and contribute to AD neuropathophysiology.
Collapse
|
16
|
Barber SC, Higginbottom A, Mead RJ, Barber S, Shaw PJ. An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic Biol Med 2009; 46:1127-38. [PMID: 19439221 PMCID: PMC2742740 DOI: 10.1016/j.freeradbiomed.2009.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/01/2008] [Accepted: 01/20/2009] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, characterized by progressive dysfunction and death of motor neurons. Although evidence for oxidative stress in ALS pathogenesis is well described, antioxidants have generally shown poor efficacy in animal models and human clinical trials. We have developed an in vitro screening cascade to identify antioxidant molecules capable of rescuing NSC34 motor neuron cells expressing an ALS-associated mutation of superoxide dismutase 1. We have tested known antioxidants and screened a library of 2000 small molecules. The library screen identified 164 antioxidant molecules, which were refined to the 9 most promising molecules in subsequent experiments. Analysis of the in silico properties of hit compounds and a review of published literature on their in vivo effectiveness have enabled us to systematically identify molecules with antioxidant activity combined with chemical properties necessary to penetrate the central nervous system. The top-performing molecules identified include caffeic acid phenethyl ester, esculetin, and resveratrol. These compounds were tested for their ability to rescue primary motor neuron cultures after trophic factor withdrawal, and the mechanisms of action of their antioxidant effects were investigated. Subsequent in vivo studies can be targeted using molecules with the greatest probability of success.
Collapse
Key Words
- 5-lox, 5-lipoxygenase
- aaph, 2,2′-azobis(2-methylpropionamidine) dihydrochloride
- als, amyotrophic lateral sclerosis
- are, antioxidant response element
- bbb, blood–brain barrier
- cape, caffeic acid phenethyl ester
- cns, central nervous system
- dcf, dichlorofluorescein
- dmso, dimethyl sulfoxide
- esc, esculetin
- ethd1, ethidium homodimer-1
- egfp, enhanced green fluorescent protein
- ltb4, leukotriene b4
- mn, motor neuron
- mtt, methylthiazolyldiphenyl tetrazolium bromide
- ndga, nordihydroguaiaretic acid
- nrf2, nuclear factor erythroid 2-related factor 2
- otca, 2-oxo-l-thiazolidine-4-carboxylic acid
- pbs, phosphate-buffered saline
- pi, prediction interval
- psa, polar surface area
- res, resveratrol
- r-pe, r-phycoerythrin
- sod1, superoxide dismutase 1
- tk, thymidine kinase promoter
- trap, total radical-trapping antioxidant parameter.
- antioxidant
- amyotrophic lateral sclerosis
- mouse
- nsc34
- superoxide dismutase
- free radicals
Collapse
Affiliation(s)
- Siân C. Barber
- Academic Neurology Unit and Sheffield Care and Research Centre for Motor Neuron Disorders, University of Sheffield, Sheffield S10 2RX, UK
| | - Adrian Higginbottom
- Academic Neurology Unit and Sheffield Care and Research Centre for Motor Neuron Disorders, University of Sheffield, Sheffield S10 2RX, UK
| | - Richard J. Mead
- Academic Neurology Unit and Sheffield Care and Research Centre for Motor Neuron Disorders, University of Sheffield, Sheffield S10 2RX, UK
| | - Stuart Barber
- Department of Statistics, University of Leeds, Leeds, UK
| | - Pamela J. Shaw
- Academic Neurology Unit and Sheffield Care and Research Centre for Motor Neuron Disorders, University of Sheffield, Sheffield S10 2RX, UK
- Corresponding author. Fax: +44 114 2261201.
| |
Collapse
|
17
|
Girigoswami K, Ku SH, Ryu J, Park CB. A synthetic amyloid lawn system for high-throughput analysis of amyloid toxicity and drug screening. Biomaterials 2008; 29:2813-9. [DOI: 10.1016/j.biomaterials.2008.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/18/2008] [Indexed: 11/17/2022]
|
18
|
Nathalie Lacor P. Advances on the understanding of the origins of synaptic pathology in AD. Curr Genomics 2007; 8:486-508. [PMID: 19415125 PMCID: PMC2647163 DOI: 10.2174/138920207783769530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/14/2022] Open
Abstract
Although Alzheimer's disease (AD) was first discovered a century ago, we are still facing a lack of definitive diagnosis during the patient's lifetime and are unable to prescribe a curative treatment. However, the past 10 years have seen a "revamping" of the main hypothesis about AD pathogenesis and the hope to foresee possible treatment. AD is no longer considered an irreversible disease. A major refinement of the classic beta-amyloid cascade describing amyloid fibrils as neurotoxins has been made to integrate the key scientific evidences demonstrating that the first pathological event occurring in AD early stages affects synaptic function and maintenance. A concept fully compatible with synapse loss being the best pathological correlate of AD rather than other described neuropathological hallmarks (amyloid plaques, neurofibrillary tangles or neuronal death). The notion that synaptic alterations might be reverted, thus offering a potential curability, was confirmed by immunotherapy experiments targeting beta-amyloid protein in transgenic AD mice in which cognitive functions were improved despite no reduction in the amyloid plaques burden. The updated amyloid cascade now integrates the synapse failure triggered by soluble Abeta-oligomers. Still no consensus has been reached on the most toxic Abeta conformations, neither on their site of production nor on their extra- versus intra-cellular actions. Evidence shows that soluble Abeta oligomers or ADDLs bind selectively to neurons at their synaptic loci, and trigger major changes in synapse composition and morphology, which ultimately leads to dendritic spine loss. However, the exact mechanism is not yet fully understood but is suspected to involve some membrane receptor(s).
Collapse
|
19
|
Reid PC, Urano Y, Kodama T, Hamakubo T. Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med 2007; 11:383-92. [PMID: 17635634 PMCID: PMC3922347 DOI: 10.1111/j.1582-4934.2007.00054.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and the most prevalent form of dementia worldwide. AD is characterized pathologically by amyloid-β plaques, neurofibrillary tangles and neuronal loss, and clinically by a progressive loss of cognitive abilities. At present, the fundamental molecular mechanisms underlying the disease are unclear and no treatment for AD is known. Epidemiological evidence continues to mount linking vascular diseases, such as hypertension and diabetes, and hypercholesterolaemia with an increased risk for developing AD. A growing amount of evidence suggests a mechanistic link between cholesterol metabolism in the brain and the formation of amyloid plaques in AD development. Cholesterol and statins clearly modulate β-amyloid precursor protein (βAPP) processing in cell culture and animal models. Statins not only reduce endogenous cholesterol synthesis but also exert other various pleiotrophic effects, such as the reduction in protein isoprenylation. Through these effects statins modulate a variety of cellular functions involving both cholesterol (and membrane rafts) and isoprenylation. Although clearly other factors, such as vascular inflammation, oxidative stress and genetic factors, are intimately linked with the progression of AD, this review focuses on the present research findings describing the effect of cholesterol, membrane rafts and isoprenylation in regulating βAPP processing and in particular γ-secretase complex assembly and function and AD progression, along with consideration for the potential role statins may play in modulating these events.
Collapse
Affiliation(s)
- Patrick C Reid
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- PeptiDream Inc., Tokyo, Japan
- *Correspondence to: Takao HAMAKUBO Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, #35 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. Tel.: +81-3-5452-5231; Fax: +81-3-5452-5232 E-mail:
| | - Yasuomi Urano
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takao Hamakubo
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Molecular Biology and Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence to: Takao HAMAKUBO Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, #35 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. Tel.: +81-3-5452-5231; Fax: +81-3-5452-5232 E-mail:
| |
Collapse
|
20
|
Lee SC, Sim N, Clement MV, Yadav SK, Pervaiz S. Dominant negative Rac1 attenuates paclitaxel-induced apoptosis in human melanoma cells through upregulation of heat shock protein 27: A functional proteomic analysis. Proteomics 2007; 7:4112-22. [DOI: 10.1002/pmic.200700386] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Kim SW, Kim JB, Kim JH, Lee JK. Interferon-gamma-induced expressions of heat shock protein 60 and heat shock protein 10 in C6 astroglioma cells: identification of the signal transducers and activators of transcription 3-binding site in bidirectional promoter. Neuroreport 2007; 18:385-9. [PMID: 17435608 DOI: 10.1097/wnr.0b013e32801299cc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heat shock protein 60 and heat shock protein 10 are mitochondrial chaperonin proteins. Here, we report that the expressions of heat shock protein 60 and heat shock protein 10 were upregulated in interferon-gamma-treated C6 astroglioma cells, and the 582 bp in the bidirectional promoter of the heat shock protein 60 and heat shock protein 10 genes is responsible for interferon-gamma-induced induction. The induction of heat shock protein 60 and heat shock protein 10 by interferon-gamma was virtually abolished by introducing mutations into the putative signal transducers and activators of transcription 3-response element in the promoter, and the same mutation impaired increment of the signal transducers and activators of transcription 3-binding after interferon-gamma treatment. Moreover, Rac1 GTPase was required for maximal heat shock protein 10 and heat shock protein 60 inductions by interferon-gamma. These results suggest that interferon-gamma-induced upregulations of heat shock protein 60 and heat shock protein 10 in C6 astroglioma cells are mediated by the signal transducers and activators of transcription 3-binding site, localized in the bidirectional promoter.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Anatomy and Center for Advanced Medical Education (BK21 project), Inha University School of Medicine, Inchon, Korea
| | | | | | | |
Collapse
|
22
|
Mendoza-Naranjo A, Gonzalez-Billault C, Maccioni RB. Abeta1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. J Cell Sci 2007; 120:279-88. [PMID: 17200137 DOI: 10.1242/jcs.03323] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A number of psychiatric and neurodegenerative disorders, such as Alzheimer's disease, are characterized by abnormalities in the neuronal cytoskeleton. Here, we find that the enhancement in actin polymerization induced by fibrillar amyloid-beta peptide (Abeta) is associated with increased activity of Rac1/Cdc42 Rho GTPases. Rac1 upregulation involves the participation of Tiam1, a Rac guanine-nucleotide exchange factor, where Abeta exposure leads to Tiam1 activation by a Ca(2+)-dependent mechanism. These results point to Rho GTPases as one of the targets in Abeta-induced neurodegeneration in Alzheimer's disease pathology, with a role in mediating changes in the actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Ariadna Mendoza-Naranjo
- Laboratory of Cellular, Molecular Biology and Neuroscience, Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago, Chile.
| | | | | |
Collapse
|
23
|
Lee KS, Kim SR, Park SJ, Min KH, Lee KY, Jin SM, Yoo WH, Lee YC. Antioxidant down-regulates interleukin-18 expression in asthma. Mol Pharmacol 2006; 70:1184-93. [PMID: 16822930 DOI: 10.1124/mol.106.024737] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An alteration in the balance between a T-helper type 2 cell (Th2) response and a Th1 response may predispose to the development of bronchial asthma. Interleukin-18 (IL-18) has an ability to promote both Th1 and Th2 responses, depending on the surrounding cytokine environment. Reactive oxygen species (ROS) play a crucial role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of asthma. In this study, we used a C57BL/6 mouse model of allergic asthma to examine the effects of antioxidants on the regulation of IL-18 expression. Our present study with ovalbumin-induced murine model of asthma revealed that ROS production in cells from bronchoalveolar lavage fluids was increased and that administration of L-2-oxothiazolidine-4-carboxylic acid or alpha-lipoic acid reduced the increased levels of ROS, the increased expression of IL-18 protein and mRNA, airway inflammation, and bronchial hyperresponsiveness. Our results also showed that antioxidants down-regulated a transcription factor, nuclear factor-kappaB (NF-kappaB), activity. These results indicate that antioxidants may reduce IL-18 expression in asthma by inhibiting the activity of NF-kappaB and suggest that ROS regulate the IL-18 expression.
Collapse
Affiliation(s)
- Kyung Sun Lee
- Department of Internal Medicine, Chonbuk National University Medical School, San 2-20, Geumamdong, Deokjin-gu, Jeonju, Jeonbuk 561-180, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee KS, Kim SR, Park SJ, Park HS, Min KH, Lee MH, Jin SM, Jin GY, Yoo WH, Lee YC. Hydrogen peroxide induces vascular permeability via regulation of vascular endothelial growth factor. Am J Respir Cell Mol Biol 2006; 35:190-7. [PMID: 16574943 DOI: 10.1165/rcmb.2005-0482oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays critical roles in initiation and/or worsening of respiratory disease process. Although reactive oxygen species (ROS) are shown to cause vascular leakage, the mechanisms by which ROS induce an increase in vascular permeability are not clearly understood. In this study, we have used a murine model to evaluate the effect of hydrogen peroxide (H(2)O(2)) to examine roles of ROS and the molecular mechanism in vascular permeability. The results have revealed that ROS levels, vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor-1alpha protein level, airway hyperresponsiveness, and vascular permeability are increased after inhalation of H(2)O(2). Administration of antioxidants markedly reduced plasma extravasation and VEGF levels in lungs treated with H(2)O(2). These results indicate that ROS may modulate vascular permeability via upregulation of VEGF expression.
Collapse
Affiliation(s)
- Kyung Sun Lee
- Department of Internal Medicine, Chonbuk National University Medical School, San 2-20 Geumam-dong, Jeonju, Jeonbuk 561-180, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim SH, Park HJ, Lee CM, Choi IW, Moon DO, Roh HJ, Lee HK, Park YM. Epigallocatechin-3-gallate protects toluene diisocyanate-induced airway inflammation in a murine model of asthma. FEBS Lett 2006; 580:1883-90. [PMID: 16516891 DOI: 10.1016/j.febslet.2006.02.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 11/19/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major form of tea catechin, has anti-allergic properties. To elucidate the anti-allergic mechanisms of EGCG, we investigated its regulation of matrix metalloproteinase (MMP-9) expression in toluene diisocyanate (TDI)-inhalation lung tissues as well as TNF-alpha and Th2 cytokine (IL-5) production in BAL fluid. Compared with untreated asthmatic mice those administrated with EGCG had significantly reduced asthmatic reaction. Also, increased reactive oxygen species (ROS) generation by TDI inhalation was diminished by administration of EGCG in BAL fluid. These results suggest that EGCG regulates inflammatory cell migration possibly by suppressing MMP-9 production and ROS generation, and indicate that EGCG may be useful as an adjuvant therapy for bronchial asthma.
Collapse
Affiliation(s)
- Seung-Hun Kim
- Department of Pediatrics, Pusan National University College of Medicine, Pusan 602-739, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cole SL, Vassar R. Isoprenoids and Alzheimer's disease: a complex relationship. Neurobiol Dis 2006; 22:209-22. [PMID: 16406223 DOI: 10.1016/j.nbd.2005.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/04/2005] [Accepted: 11/13/2005] [Indexed: 11/22/2022] Open
Abstract
Cholesterol metabolism has been linked to Alzheimer's disease (AD) neuropathology, which is characterized by amyloid plaques, neurofibrillary tangles and neuroinflammation. Indeed, the use of statins, which inhibit cholesterol and isoprenoid biosynthesis, as potential AD therapeutics is under investigation. Whether statins offer benefit for AD will be determined by the outcome of large, placebo-controlled, randomized clinical trials. However, their use as pharmacological tools has delineated novel roles for isoprenoids in AD. Protein isoprenylation regulates multiple cellular and molecular events and here we review the complex roles of isoprenoids in AD-relevant processes and carefully evaluate isoprenoid pathways as potential AD therapeutic targets.
Collapse
Affiliation(s)
- S L Cole
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | |
Collapse
|
27
|
Nikolova S, Lee YS, Lee YS, Kim JA. Rac1-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic Res 2005; 39:1295-304. [PMID: 16298859 DOI: 10.1080/10715760500176866] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.
Collapse
Affiliation(s)
- Sevdalina Nikolova
- Department of Biotechnology, Graduate School, Yeungnam University, Gyeongsan, 712-749, South Korea
| | | | | | | |
Collapse
|
28
|
Kim HS, Lee MS. Essential role of STAT1 in caspase-independent cell death of activated macrophages through the p38 mitogen-activated protein kinase/STAT1/reactive oxygen species pathway. Mol Cell Biol 2005; 25:6821-33. [PMID: 16024814 PMCID: PMC1190352 DOI: 10.1128/mcb.25.15.6821-6833.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Unlike other immune cells, activation of macrophages by stimulating agents, such as lipopolysaccharide (LPS), confers significant resistance to many apoptotic stimuli, but the underlying mechanism of this phenomenon remains largely unknown. Here, we demonstrate that LPS-induced early caspase activation is essential for macrophage survival because blocking caspase activation with a pancaspase inhibitor (zVAD [benzyloxycarbonyl-Val-Ala-Asp]) rapidly induced death of activated macrophages. This type of death process by zVAD/LPS was principally mediated by intracellular generation of superoxide. STAT1 knockout macrophages demonstrated profoundly decreased superoxide production and were resistant to treatment with zVAD/LPS, indicating the crucial involvement of STAT1 in macrophage death by zVAD/LPS. STAT1 level and activity were reciprocally regulated by caspase activation and were associated with cell death. Activation of STAT1 was critically dependent upon serine phosphorylation induced by p38 mitogen-activated protein kinase (MAPK) because a p38 MAPK inhibitor nullified STAT1 serine phosphorylation, reactive oxygen species (ROS) production, and macrophage death by zVAD/LPS. Conversely, p38 MAPK activation was dependent upon superoxide and was also nullified in STAT1 knockout macrophages, probably due to impaired generation of superoxide. Our findings collectively indicate that STAT1 signaling modulates intracellular oxidative stress in activated macrophages through a positive-feedback mechanism involving the p38 MAPK/STAT1/ROS pathway, which is interrupted by caspase activation. Furthermore, our study may provide significant insights in regards to the unanticipated critical role of STAT1 in the caspase-independent death pathway.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Kangnam-ku, Seoul 135-710, South Korea
| | | |
Collapse
|
29
|
Désiré L, Bourdin J, Loiseau N, Peillon H, Picard V, De Oliveira C, Bachelot F, Leblond B, Taverne T, Beausoleil E, Lacombe S, Drouin D, Schweighoffer F. RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo. J Biol Chem 2005; 280:37516-25. [PMID: 16150730 DOI: 10.1074/jbc.m507913200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.
Collapse
|
30
|
Lee KS, Park HS, Park SJ, Kim SR, Min KH, Jin SM, Park KH, Kim UH, Kim CY, Lee YC. A prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid, regulates vascular permeability by reducing vascular endothelial growth factor expression in asthma. Mol Pharmacol 2005; 68:1281-90. [PMID: 16103046 DOI: 10.1124/mol.105.016055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation of the asthmatic airway is usually accompanied by increased vascular permeability and plasma exudation. Oxidative stress plays critical roles in airway inflammation. Although reactive oxygen species (ROS) are shown to cause vascular leakage, the mechanisms by which ROS induce increased vascular permeability are not clearly understood. We have used a murine model of asthma to evaluate the effect of l-2-oxothiazolidine-4-carboxylic acid (OTC), a prodrug of cysteine that acts as an antioxidant, more specifically in the increase of vascular permeability. These mice develop the following typical pathophysiological features of asthma in the lungs: increased numbers of inflammatory cells of the airways, airway hyper-responsiveness, increased vascular permeability, and increased levels of vascular endothelial growth factor (VEGF). Administration of OTC markedly reduced plasma extravasation and VEGF levels in allergen-induced asthmatic lungs. We also showed that at 72 h after ovalbumin inhalation, increased levels of hypoxia-inducible factor-1alpha (a transcriptional activator of VEGF) in nuclear protein extracts of lung tissues were decreased by the administration of OTC. These results indicate that OTC modulates vascular permeability by lowering VEGF expression.
Collapse
Affiliation(s)
- Kyung Sun Lee
- Department of Internal Medicine, Chonbuk National University Medical School, 634-18, Keumamdong, Jeonju, 561-712, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Park EJ, Ji KA, Jeon SB, Choi WH, Han IO, You HJ, Kim JH, Jou I, Joe EH. Rac1 contributes to maximal activation of STAT1 and STAT3 in IFN-gamma-stimulated rat astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 173:5697-703. [PMID: 15494521 DOI: 10.4049/jimmunol.173.9.5697] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rac1 GTPase is implicated as a signaling mediator in various cellular events. In this study, we show that Rac1 contributes to IFN-gamma-induced inflammatory responses in rat astrocytes. We revealed that IFN-gamma rapidly stimulated activation of Rac1 in C6 astroglioma cells by investigating GST-PAK-PBD-binding ability. We also found that Rac1 deficiency led to attenuation of IFN-gamma-responsive transcriptional responses. Compared with levels in control cells, IFN-gamma-induced IFN-gamma-activated sequence promoter activity was markedly reduced in both C6 astroglioma cells and primary astrocytes expressing RacN17, a well-characterized Rac1-negative mutant. The expression of several IFN-gamma-responsive genes, such as MCP-1 and ICAM-1, was also reduced in cells expressing RacN17. Consistent with these observations, IFN-gamma-induced phosphorylation of STAT1 and STAT3 was lower in C6 cells expressing RacN17 (referred to as C6-RacN17) than in control cells. However, there was no difference in expression level of IFN-gammaRalpha subunit and IFN-gamma-induced phosphorylation of JAK1 between C6 control and C6-RacN17 cells. Interestingly, Rac1 appeared to associate with IFN-gammaRalpha and augment the interaction of IFN-gammaR with either STAT1 or STAT3 in response to IFN-gamma. Taken together, we suggest that Rac1 may serve as an auxiliary mediator of IFN-gamma-signaling, at least at the level of STAT activation, thus contributing to maximal activation of IFN-gamma-responsive inflammatory signaling in rat astrocytes.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee YC, Lee KS, Park SJ, Park HS, Lim JS, Park KH, Im MJ, Choi IW, Lee HK, Kim UH. Blockade of airway hyperresponsiveness and inflammation in a murine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid. FASEB J 2004; 18:1917-9. [PMID: 15385436 DOI: 10.1096/fj.04-2212fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of bronchial asthma. An excess production of reactive oxygen species (ROS) and defective endogenous antioxidant defense mechanisms may be present in asthma. Reduced glutathione (GSH) is one of the most important reducing agents against oxidant free radicals. A reducing agent, L-2-oxothiazolidine-4-carboxylic acid (OTC), a prodrug of cysteine, increases intracellular GSH. We have used a mouse model for asthma to determine effects of OTC on allergen-induced bronchial inflammation and airway hyper-responsiveness. The administration of OTC reduced bronchial inflammation and airway hyper-responsiveness. ROS generation in bronchoalveolar lavage fluids was increased by ovalbumin (OVA) inhalation, but this increase was diminished by administration of OTC. The increased IL-4, IL-5, IL-13, and eosinophil cationic protein levels in lungs after OVA inhalation were significantly reduced by the administration of OTC. In addition, the increased expression of ICAM-1, VCAM-1, RANTES, and eotaxin in lungs after OVA inhalation was significantly reduced by the administration of OTC. We also showed that the increased NF-kappaB levels in nuclear protein extracts of lung tissues at 72 h after OVA inhalation were decreased by the administration of OTC. These findings suggest that OTC may reduce airway inflammation and hyper-responsiveness through regulation of NF-kappaB activity.
Collapse
Affiliation(s)
- Yong Chul Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Canevari L, Abramov AY, Duchen MR. Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem Res 2004; 29:637-50. [PMID: 15038611 DOI: 10.1023/b:nere.0000014834.06405.af] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Abeta) peptides. Although the disease undoubtedly reflects the interaction of complex multifactorial processes, Abeta itself is toxic to neurons in vitro and the load of Abeta in vivo correlates well with the degree of cognitive impairment. There has therefore been considerable interest in the mechanism(s) of Abeta neurotoxicity. We here review the basic biology of Abeta processing and consider some of the major areas of focus of this research. It is clear that both AD and Abeta toxicity are characterized by oxidative stress, alterations in the activity of enzymes of intermediary metabolism, and mitochondrial dysfunction, especially impaired activity of cytochrome c oxidase. Studies in vitro also show alterations in cellular calcium signaling. We consider the mechanisms proposed to mediate cell injury and explore evidence to indicate which of these many changes in function are primary and which secondary.
Collapse
Affiliation(s)
- Laura Canevari
- Division of Neurochemistry, Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| | | | | |
Collapse
|
34
|
Han S, Espinoza LA, Liao H, Boulares AH, Smulson ME. Protection by antioxidants against toxicity and apoptosis induced by the sulphur mustard analog 2-chloroethylethyl sulphide (CEES) in Jurkat T cells and normal human lymphocytes. Br J Pharmacol 2004; 141:795-802. [PMID: 14769780 PMCID: PMC1574251 DOI: 10.1038/sj.bjp.0705591] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. The mechanism of toxicity of sulphur mustard was investigated by examining the biochemical effects of the analog 2-chloroethylethyl sulphide (CEES) in both human Jurkat cells as well as normal human lymphocytes. 2. Exposure of both types of cells to CEES resulted in a marked decrease in the intracellular concentration of the reduced form of glutathione (GSH), and CEES-induced cell death was potentiated by l-buthionine sulphoximine, an inhibitor of GSH synthesis. 3. CEES increased the endogenous production of reactive oxygen species (ROS) in Jurkat cells, and CEES-induced cell death was potentiated by hydrogen peroxide. 4. CEES induced various hallmarks of apoptosis, including collapse of the mitochondrial membrane potential, proteolytic processing and activation of procaspase-3, and cleavage of poly (ADP-ribose) polymerase. 5. The effects of CEES on the accumulation of ROS, the intracellular concentration of GSH, the mitochondrial membrane potential, and caspase-3 activity were all inhibited by pretreatment of cells with the GSH precursor N-acetyl cysteine or with GSH-ethyl ester. Furthermore, CEES-induced cell death was also prevented by these antioxidants. 6. CEES toxicity appears to be mediated, at least in part, by the generation of ROS and consequent depletion of GSH. Given that sulphur mustard is still a potential biohazard, the protective effects of antioxidants against CEES toxicity demonstrated in Jurkat cells and normal human lymphocytes may provide the basis for the development of a therapeutic strategy to counteract exposure to this chemical weapon.
Collapse
Affiliation(s)
- Suhua Han
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20057, U.S.A
| | - Luis A Espinoza
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20057, U.S.A
| | - Hongling Liao
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20057, U.S.A
| | - A Hamid Boulares
- Louisiana State University Health Science Center, Department of Pharmacology and Experimental Therapeutics and the Stanley Cancer Center, New Orleans, LA 70112, U.S.A
| | - Mark E Smulson
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20057, U.S.A
- Author for correspondence:
| |
Collapse
|
35
|
Masuda K, Itoh H, Sakihama T, Akiyama C, Takahashi K, Fukuda R, Yokomizo T, Shimizu T, Kodama T, Hamakubo T. A combinatorial G protein-coupled receptor reconstitution system on budded baculovirus. Evidence for Galpha and Galphao coupling to a human leukotriene B4 receptor. J Biol Chem 2003; 278:24552-62. [PMID: 12721292 DOI: 10.1074/jbc.m302801200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.
Collapse
Affiliation(s)
- Kazuyuki Masuda
- Laboratory for Systems Biology and Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|