1
|
Xie Z, Bankaitis VA. Phosphatidylinositol transfer protein/planar cell polarity axis regulates neocortical morphogenesis by supporting interkinetic nuclear migration. Cell Rep 2022; 39:110869. [PMID: 35649377 PMCID: PMC9230501 DOI: 10.1016/j.celrep.2022.110869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
The neocortex expands explosively during embryonic development. The earliest populations of neural stem cells (NSCs) form a thin pseudostratified epithelium whose contour determines that of the adult neocortex. Neocortical complexity is accompanied by disproportional expansion of the NSC layer in its tangential dimension to increase tissue surface area. How such disproportional expansion is controlled remains unknown. We demonstrate that a phosphatidylinositol transfer protein (PITP)/non-canonical Wnt planar cell polarity (ncPCP) signaling axis promotes tangential expansion of developing neocortex. PITP signaling supports trafficking of specific ncPCP receptors from the NSC Golgi system to potentiate actomyosin activity important for cell-cycle-dependent interkinetic nuclear migration (IKNM). In turn, IKNM promotes lateral dispersion of newborn NSCs and tangential growth of the cerebral wall. These findings clarify functional roles for IKNM in NSC biology and identify tissue dysmorphogenesis resulting from impaired IKNM as a factor in autism risk, developmental brain disabilities, and neural tube birth defects. Xie and Bankaitis report that a phosphatidylinositol transfer protein/non-canonical planar cell polarity signaling axis supports interkinetic nuclear migration by promoting trafficking of specific non-canonical planar cell polarity receptors from the Golgi system to the plasma membrane, activating actomyosin, and supporting lateral expansion of the neocortex via a convergent extension mechanism.
Collapse
Affiliation(s)
- Zhigang Xie
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | - Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
MRCK-Alpha and Its Effector Myosin II Regulatory Light Chain Bind ABCB4 and Regulate Its Membrane Expression. Cells 2022; 11:cells11040617. [PMID: 35203270 PMCID: PMC8870398 DOI: 10.3390/cells11040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.
Collapse
|
3
|
Petrov D, Dahan I, Cohen-Kfir E, Ravid S. aPKCζ affects directed cell migration through the regulation of myosin light chain phosphorylation. Cell Adh Migr 2017; 11:347-359. [PMID: 27541056 DOI: 10.1080/19336918.2016.1225631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell motility is an essential cellular process for a variety of biological events. It requires cross-talk between the signaling and the cytoskeletal systems. Despite the recognized importance of aPKCζ for cell motility, there is little understanding of the mechanism by which aPKCζ mediates extracellular signals to the cytoskeleton. In the present study, we report that aPKCζ is required for the cellular organization of acto-non-muscle myosin II (NMII) cytoskeleton, for proper cell adhesion and directed cell migration. We show that aPKCζ mediates EGF-dependent RhoA activation and recruitment to the cell membrane. We also show that aPKCζ mediates EGF-dependent myosin light chain (MRLC) phosphorylation that is carried out by Rho-associated protein kinase (ROCK), and that aPKCζ is required for EGF-dependent phosphorylation and inhibition of the myosin phosphatase targeting subunit (MYPT). Finally, we show that aPKCζ mediates the spatial organization of the acto-NMII cytoskeleton in response to EGF stimulation. Our data suggest that aPKCζ is an essential component regulator of acto-NMII cytoskeleton organization leading to directed cell migration, and is a mediator of the EGF signal to the cytoskeleton.
Collapse
Affiliation(s)
- Daria Petrov
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Inbal Dahan
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Einav Cohen-Kfir
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Shoshana Ravid
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| |
Collapse
|
4
|
Creuzet SE, Viallet JP, Ghawitian M, Torch S, Thélu J, Alrajeh M, Radu AG, Bouvard D, Costagliola F, Borgne ML, Buchet-Poyau K, Aznar N, Buschlen S, Hosoya H, Thibert C, Billaud M. LKB1 signaling in cephalic neural crest cells is essential for vertebrate head development. Dev Biol 2016; 418:283-96. [DOI: 10.1016/j.ydbio.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/19/2016] [Accepted: 08/06/2016] [Indexed: 11/25/2022]
|
5
|
Kondo T, Okada M, Kunihiro K, Takahashi M, Yaoita Y, Hosoya H, Hamao K. Characterization of myosin II regulatory light chain isoforms in HeLa cells. Cytoskeleton (Hoboken) 2016; 72:609-20. [DOI: 10.1002/cm.21268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Tomo Kondo
- Department of Biological Science; Graduate School of Science, Hiroshima University; Higashihiroshima 739-8526 Japan
| | - Morihiro Okada
- Division of Embryology and Genetics; Institute for Amphibian Biology, Graduate School of Science, Hiroshima University; Higashihiroshima 739-8526 Japan
| | - Kayo Kunihiro
- Department of Biological Science; Graduate School of Science, Hiroshima University; Higashihiroshima 739-8526 Japan
| | - Masayuki Takahashi
- Department of Chemistry; Faculty of Science, Hokkaido University; Sapporo 010-0810 Japan
| | - Yoshio Yaoita
- Division of Embryology and Genetics; Institute for Amphibian Biology, Graduate School of Science, Hiroshima University; Higashihiroshima 739-8526 Japan
| | - Hiroshi Hosoya
- Department of Biological Science; Graduate School of Science, Hiroshima University; Higashihiroshima 739-8526 Japan
| | - Kozue Hamao
- Department of Biological Science; Graduate School of Science, Hiroshima University; Higashihiroshima 739-8526 Japan
| |
Collapse
|
6
|
Chandrasekharan UM, Dechert L, Davidson UI, Waitkus M, Mavrakis L, Lyons K, Beach JR, Li X, Egelhoff TT, Fox PL, DiCorleto PE. Release of nonmuscle myosin II from the cytosolic domain of tumor necrosis factor receptor 2 is required for target gene expression. Sci Signal 2013; 6:ra60. [PMID: 23861542 DOI: 10.1126/scisignal.2003743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-α (TNF-α) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-α-induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. We identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-α-dependent signaling by p75 and induction of target gene expression persisted substantially longer in cells deficient in myosin regulatory light chain (MRLC; a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-α caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-α, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-α-dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-α-dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-κB and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling.
Collapse
Affiliation(s)
- Unni M Chandrasekharan
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Phosphorylation of myosin II regulatory light chain controls its accumulation, not that of actin, at the contractile ring in HeLa cells. Exp Cell Res 2012; 318:915-24. [PMID: 22374324 DOI: 10.1016/j.yexcr.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 11/24/2022]
Abstract
During cytokinesis in eukaryotic cells, an actomyosin-based contractile ring (CR) is assembled along the equator of the cell. Myosin II ATPase activity is stimulated by the phosphorylation of the myosin II regulatory light chain (MRLC) in vitro, and phosphorylated MRLC localizes at the CR in various types of cells. Previous studies have determined that phosphorylated MRLC plays an important role in CR furrowing. However, the role of phosphorylated MRLC in CR assembly remains unknown. Here, we have used confocal microscopy to observe dividing HeLa cells expressing fluorescent protein-tagged MRLC mutants and actin during CR assembly near the cortex. Di-phosphomimic MRLC accumulated at the cell equator earlier than non-phosphorylatable MRLC and actin. Interestingly, perturbation of myosin II activity by non-phosphorylatable MRLC expression or treatment with blebbistatin, a myosin II inhibitor, did not alter the time of actin accumulation at the cell equator. Furthermore, inhibition of actin polymerization by treatment with latrunculin A had no effect on MRLC accumulation at the cell equator. Taken together, these data suggest that phosphorylated MRLC temporally controls its own accumulation, but not that of actin, in cultured mammalian cells.
Collapse
|
8
|
Huang X, Gai Y, Yang N, Lu B, Samuel CS, Thannickal VJ, Zhou Y. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2751-65. [PMID: 21983071 DOI: 10.1016/j.ajpath.2011.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/18/2011] [Accepted: 08/22/2011] [Indexed: 12/11/2022]
Abstract
Myofibroblasts are specialized contractile cells that participate in tissue fibrosis and remodeling, including idiopathic pulmonary fibrosis (IPF). Mechanotransduction, a process by which mechanical stimuli are converted into biochemical signals, regulates myofibroblast differentiation. Relaxin is a peptide hormone that mediates antifibrotic effects through regulation of collagen synthesis and turnover. In this study, we demonstrate enhanced myofibroblast contraction in bleomycin-induced lung fibrosis in mice and in fibroblastic foci of human subjects with IPF, using phosphorylation of the regulatory myosin light chain (MLC(20)) as a biomarker of in vivo cellular contractility. Compared with wild-type mice, relaxin knockout mice express higher lung levels of phospho-MLC(20) and develop more severe bleomycin-induced lung fibrosis. Exogenous relaxin inhibits MLC(20) phosphorylation and bleomycin-induced lung fibrosis in both relaxin knockout and wild-type mice. Ex vivo studies of IPF lung myofibroblasts demonstrate decreases in MLC(20) phosphorylation and reduced contractility in response to relaxin. Characterization of the signaling pathway reveals that relaxin regulates MLC(20) dephosphorylation and lung myofibroblast contraction by inactivating RhoA/Rho-associated protein kinase through a nitric oxide/cGMP/protein kinase G-dependent mechanism. These studies identify a novel antifibrotic role of relaxin involving the inhibition of the contractile phenotype of lung myofibroblasts and suggest that targeting myofibroblast contractility with relaxin-like peptides may be of therapeutic benefit in the treatment of fibrotic lung disease.
Collapse
Affiliation(s)
- Xiangwei Huang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Enhancement of myosin II/actin turnover at the contractile ring induces slower furrowing in dividing HeLa cells. Biochem J 2011; 435:569-76. [PMID: 21231914 DOI: 10.1042/bj20100837] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Myosin II ATPase activity is enhanced by the phosphorylation of MRLC (myosin II regulatory light chain) in non-muscle cells. It is well known that pMRLC (phosphorylated MRLC) co-localizes with F-actin (filamentous actin) in the CR (contractile ring) of dividing cells. Recently, we reported that HeLa cells expressing non-phosphorylatable MRLC show a delay in the speed of furrow ingression, suggesting that pMRLC plays an important role in the control of furrow ingression. However, it is still unclear how pMRLC regulates myosin II and F-actin at the CR to control furrow ingression during cytokinesis. In the present study, to clarify the roles of pMRLC, we measured the turnover of myosin II and actin at the CR in dividing HeLa cells expressing fluorescent-tagged MRLCs and actin by FRAP (fluorescence recovery after photobleaching). A myosin II inhibitor, blebbistatin, caused an enhancement of the turnover of MRLC and actin at the CR, which induced a delay in furrow ingression. Furthermore, only non-phosphorylatable MRLC and a Rho-kinase inhibitor, Y-27632, accelerated the turnover of MRLC and actin at the CR. Interestingly, the effect of Y-27632 was cancelled in the cell expressing phosphomimic MRLCs. Taken together, these results reveal that pMRLC reduces the turnover of myosin II and also actin at the CR. In conclusion, we show that the enhancement of myosin II and actin turnover at the CR induced slower furrowing in dividing HeLa cells.
Collapse
|
10
|
Murray A, Naeem A, Barnes SH, Drescher U, Guthrie S. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Dev 2010; 5:16. [PMID: 20569485 PMCID: PMC2907369 DOI: 10.1186/1749-8104-5-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022] Open
Abstract
Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A). It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK) and myosin light chain kinase (MLCK), which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.
Collapse
Affiliation(s)
- Ailish Murray
- MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | | | |
Collapse
|
11
|
Hashimoto M, Matsui T, Iwabuchi K, Date T. PKU-beta/TLK1 regulates myosin II activities, and is required for accurate equaled chromosome segregation. Mutat Res 2008; 657:63-67. [PMID: 18838128 DOI: 10.1016/j.mrgentox.2008.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
Tousled-like kinase 1 (or protein kinase ubiquitous, PKU-beta/TLK1) is a serine/threonine protein kinase that is implicated in chromatin remodeling, DNA replication and mitosis. RNAi-mediated PKU-beta/TLK1-depleted human cells showed aneuploidy, and immunofluorescence analysis of these cells revealed the unequal segregation of daughter chromosomes. Immunoblots indicated a substantial reduction in the phosphorylation level of Ser19/Thr18 on the myosin II regulatory light chain (MRLC) in PKU-beta/TLK1-depleted cells, with no change in total MRLC protein. To confirm the relationship between mitotic aberration and MRLC dysfunction, we expressed wild type MRLC or DD-MRLC (mimics diphosphorylation; substitution of both Thr18 and Ser19 with aspartate) in PKU-beta/TLK1-depleted cells. DD-MRLC expression dramatically reduced the unequal segregation of chromosomes. Our data suggest that human PKU-beta/TLK1 plays an important role in chromosome integrity via the regulation of myosin II dynamics by phosphorylating MRLC during mitosis.
Collapse
Affiliation(s)
- Mitsumasa Hashimoto
- Department of Biochemistry, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | | | | | | |
Collapse
|
12
|
Du G, Frohman MA. A lipid-signaled myosin phosphatase surge disperses cortical contractile force early in cell spreading. Mol Biol Cell 2008; 20:200-8. [PMID: 18946083 DOI: 10.1091/mbc.e08-06-0555] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
When cells cease migrating through the vasculature, adhere to extracellular matrix, and begin to spread, they exhibit rapid changes in contraction and relaxation at peripheral regions newly contacting the underlying substrata. We describe here a requirement in this process for myosin II disassembly at the cell cortex via the action of myosin phosphatase (MP), which in turn is regulated by a plasma membrane signaling lipid. Cells in suspension exhibit high levels of activity of the signaling enzyme phospholipase D2 (PLD2), elevating production of the lipid second messenger phosphatidic acid (PA) at the plasma membrane, which in turn recruits MP and stores it there in a presumed inactive state. On cell attachment, down-regulation of PLD2 activity decreases PA production, leading to MP release, myosin dephosphorylation, and actomyosin disassembly. This novel model for recruitment and restraint of MP provides a means to effect a rapid cytoskeletal reorganization at the cell cortex upon demand.
Collapse
Affiliation(s)
- Guangwei Du
- Department of Pharmacology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794
| | | |
Collapse
|
13
|
Cloke B, Huhtinen K, Fusi L, Kajihara T, Yliheikkilä M, Ho KK, Teklenburg G, Lavery S, Jones MC, Trew G, Kim JJ, Lam EWF, Cartwright JE, Poutanen M, Brosens JJ. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology 2008; 149:4462-74. [PMID: 18511503 PMCID: PMC5393297 DOI: 10.1210/en.2008-0356] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational modification of the AR by small ubiquitin-like modifier (SUMO)-1 in decidualizing cells accounted for increased responsiveness to androgen. By combining small interfering RNA technology with genome-wide expression profiling, we found that AR and progesterone receptor (PR) regulate the expression of distinct decidual gene networks. Ingenuity pathway analysis implicated a preponderance of AR-induced genes in cytoskeletal organization and cell motility, whereas analysis of AR-repressed genes suggested involvement in cell cycle regulation. Functionally, AR depletion prevented differentiation-dependent stress fiber formation and promoted motility and proliferation of decidualizing cells. In comparison, PR depletion perturbed the expression of many more genes, underscoring the importance of this nuclear receptor in diverse cellular functions. However, several PR-dependent genes encode for signaling intermediates, and knockdown of PR, but not AR, compromised activation of WNT/beta-catenin, TGFbeta/SMAD, and signal transducer and activator of transcription (STAT) pathways in decidualizing cells. Thus, the nonredundant function of the AR in decidualizing HESCs, centered on cytoskeletal organization and cell cycle regulation, implies an important role for androgens in modulating fetal-maternal interactions. Moreover, we show that PR regulates HESC differentiation, at least in part, by reprogramming growth factor and cytokine signal transduction.
Collapse
Affiliation(s)
- Brianna Cloke
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen Z, Naveiras O, Balduini A, Mammoto A, Conti MA, Adelstein RS, Ingber D, Daley GQ, Shivdasani RA. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 2007; 110:171-9. [PMID: 17392504 PMCID: PMC1896110 DOI: 10.1182/blood-2007-02-071589] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The gene implicated in the May-Hegglin anomaly and related macrothrombocytopenias, MYH9, encodes myosin-IIA, a protein that enables morphogenesis in diverse cell types. Defective myosin-IIA complexes are presumed to perturb megakaryocyte (MK) differentiation or generation of proplatelets. We observed that Myh9(-/-) mouse embryonic stem (ES) cells differentiate into MKs that are fully capable of proplatelet formation (PPF). In contrast, elevation of myosin-IIA activity, by exogenous expression or by mimicking constitutive phosphorylation of its regulatory myosin light chain (MLC), significantly attenuates PPF. This effect occurs only in the presence of myosin-IIA and implies that myosin-IIA influences thrombopoiesis negatively. MLC phosphorylation in MKs is regulated by Rho-associated kinase (ROCK), and consistent with our model, ROCK inhibition enhances PPF. Conversely, expression of AV14, a constitutive form of the ROCK activator Rho, blocks PPF, and this effect is rescued by simultaneous expression of a dominant inhibitory MLC form. Hematopoietic transplantation studies in mice confirm that interference with the putative Rho-ROCK-myosin-IIA pathway selectively decreases the number of circulating platelets. Our studies unveil a key regulatory pathway for platelet biogenesis and hint at Sdf-1/CXCL12 as one possible extracellular mediator. The unexpected mechanism for Myh9-associated thrombocytopenia may lead to new molecular approaches to manipulate thrombopoiesis.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Watanabe T, Hosoya H, Yonemura S. Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cell 2006; 18:605-16. [PMID: 17151359 PMCID: PMC1783795 DOI: 10.1091/mbc.e06-07-0590] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonmuscle myosin II, an actin-based motor protein, plays an essential role in actin cytoskeleton organization and cellular motility. Although phosphorylation of its regulatory light chain (MRLC) is known to be involved in myosin II filament assembly and motor activity in vitro, it remains unclear exactly how MRLC phosphorylation regulates myosin II dynamics in vivo. We established clones of Madin Darby canine kidney II epithelial cells expressing MRLC-enhanced green fluorescent protein or its mutants. Time-lapse imaging revealed that both phosphorylation and dephosphorylation are required for proper dynamics of myosin II. Inhibitors affecting myosin phosphorylation and MRLC mutants indicated that monophosphorylation of MRLC is required and sufficient for maintenance of stress fibers. Diphosphorylated MRLC stabilized myosin II filaments and was distributed locally in regions of stress fibers where contraction occurs, suggesting that diphosphorylation is involved in the spatial regulation of myosin II assembly and contraction. We further found that myosin phosphatase or Zipper-interacting protein kinase localizes to stress fibers depending on the activity of myosin II ATPase.
Collapse
Affiliation(s)
- Toshiyuki Watanabe
- *RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan; and
| | - Hiroshi Hosoya
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | | |
Collapse
|
16
|
Chaw KC, Manimaran M, Tay FEH, Swaminathan S. A quantitative observation and imaging of single tumor cell migration and deformation using a multi-gap microfluidic device representing the blood vessel. Microvasc Res 2006; 72:153-60. [PMID: 17081570 DOI: 10.1016/j.mvr.2006.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/21/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
A microfluidic device was developed for quantifying the migratory and deformability capabilities of a single tumor cell using direct imaging. It was fabricated using photolithography and is made of polydimethysiloxane. Chemotaxis approach was used for directing cell movement, using 10 microm microgaps to restrict the migration to a single cell. Each cell's migration rate is quantified as a measure of its distance traveled over time taken. Real-time recording of cell deformation under physiological flow was performed, and the elongation index and surface area change of the cells were compared. Three human tumor cell lines viz. HepG2, HeLa and MDA-MB-435S were used to verify the operation and methodology of the device. Their migration rates ranged from 5 to 15 microm/h, consistent with other scientific reports. By reducing the microgap width to 3 microm, it was found that the cells moved along the row of microgaps but were unable to migrate across the microgaps. Subsequent deformation of the cells through the gaps further showed that their migratory capability might be governed by their deformation ability and the deformation stress on their membranes. The strategy of targeting cancer cell membrane for rupture may provide a therapy for metastasis. Being a valuable tool for rapid quantification of a single cell's migratory capability, this device should be helpful for pharmacologic and drug screening, investigation of factors that regulate cell migration and deformation.
Collapse
Affiliation(s)
- K C Chaw
- Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos #04-01, 138669, Singapore
| | | | | | | |
Collapse
|
17
|
Beningo KA, Hamao K, Dembo M, Wang YL, Hosoya H. Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch Biochem Biophys 2006; 456:224-31. [PMID: 17094935 PMCID: PMC1831818 DOI: 10.1016/j.abb.2006.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/21/2006] [Accepted: 09/21/2006] [Indexed: 11/15/2022]
Abstract
Adhesive cells show complex mechanical interactions with the substrate, however the exact mechanism of such interactions, termed traction forces, is still unclear. To address this question we have measured traction forces of fibroblasts treated with agents that affect the myosin II-dependent contractile mechanism. Using the potent myosin II inhibitor blebbistatin, we demonstrate that traction forces are strongly dependent on a functional myosin II heavy chain. Since myosin II is regulated by both the myosin light chain kinase (MLCK) and, directly or indirectly, the Rho-associated kinase (ROCK), we examined the effects of inhibitors against these kinases. Interestingly, inhibition of the myosin light chain kinase had no detectable effect, while inhibition of the Rho-dependent kinase caused strong inhibition of traction forces. Our results indicate that ROCK and MLCK play non-redundant roles in regulating myosin II functions, and that a subset of myosin II, regulated by the Rho small GTPase, may be responsible for the regulation of traction forces in migrating fibroblasts.
Collapse
Affiliation(s)
- Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kozue Hamao
- Department of Biological Science, Hiroshima University, Higashi-Hiroshima, 739-8256 Japan
| | - Micah Dembo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Yu-li Wang
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605
- *Corresponding Author: Yu-li Wang, University of Massachusetts Medical School, 377 Plantation, Suite 327, Worcester, MA 01605, Tel: 508-856-8782, Fax: 508-856-8774, e-mail:
| | - Hiroshi Hosoya
- Department of Biological Science, Hiroshima University, Higashi-Hiroshima, 739-8256 Japan
| |
Collapse
|
18
|
Miyauchi K, Yamamoto Y, Kosaka T, Hosoya H. Myosin II activity is not essential for recruitment of myosin II to the furrow in dividing HeLa cells. Biochem Biophys Res Commun 2006; 350:543-8. [PMID: 17022938 DOI: 10.1016/j.bbrc.2006.09.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/21/2022]
Abstract
To elucidate whether phosphorylation of myosin II regulatory light chain (MRLC) is essential for myosin II recruitment to the furrow during cytokinesis, HeLa cells transfected with three types of GFP-tagged recombinant MRLCs, wild-type MRLC, non-phosphorylated form of MRLC, and phosphorylated form of MRLC, were examined. Living cell-imaging showed that both phosphorylated and non-phosphorylated form of MRLCs were recruited to the equator at the same time after anaphase onset, suggesting that phosphorylation of MRLC is not responsible for recruitment of myosin II to the equator. Moreover, the treatment with an inhibitor of myosin II activity, blebbistatin, induced no effect on recruitment of those three recombinant MRLCs. During cytokinesis, phosphorylated but not non-phosphorylated form of MRLC was retained in the equator. These results suggest that phosphorylation of MRLC is essential for retainment of myosin II in the furrow but not for initial recruitment of myosin II to the furrow in dividing HeLa cells.
Collapse
Affiliation(s)
- Kenji Miyauchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | |
Collapse
|
19
|
Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S. Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 2006; 312:1637-50. [PMID: 16519885 DOI: 10.1016/j.yexcr.2006.01.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 12/21/2022]
Abstract
The adherens junction (AJ) densely associated with actin filaments is a major cell-cell adhesion structure. To understand the importance of actin filament association in AJ formation, we first analyzed punctate AJs in NRK fibroblasts where one actin cable binds to one AJ structure unit. The accumulation of AJ components such as the cadherin/catenin complex and vinculin, as well as the formation of AJ-associated actin cables depended on Rho activity. Inhibitors for the Rho target, ROCK, which regulates myosin II activity, and for myosin II ATPase prevented the accumulation of AJ components, indicating that myosin II activity is more directly involved than Rho activity. Depletion of myosin II by RNAi showed similar results. The inhibition of myosin II activity in polarized epithelial MTD-1A cells affected the accumulation of vinculin to circumferential AJ (zonula adherens). Furthermore, correct zonula occludens (tight junction) formation along the apicobasal axis that requires cadherin activity was also impaired. Although MDCK cells which are often used as typical epithelial cells do not have a typical zonula adherens, punctate AJs formed dependently on myosin II activity by inducing wound closure in a MDCK cell sheet. These findings suggest that tension generated by actomyosin is essential for correct AJ assembly.
Collapse
Affiliation(s)
- Yuka Miyake
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Jerdeva GV, Wu K, Yarber FA, Rhodes CJ, Kalman D, Schechter JE, Hamm-Alvarez SF. Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 2005; 118:4797-812. [PMID: 16219687 PMCID: PMC1482462 DOI: 10.1242/jcs.02573] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The acinar epithelial cells of the lacrimal gland exocytose the contents of mature secretory vesicles containing tear proteins at their apical membranes in response to secretagogues. Here we use time-lapse confocal fluorescence microscopy and fluorescence recovery after photobleaching to investigate the changes in actin filaments located beneath the apical membrane during exocytosis evoked by the muscarinic agonist, carbachol (100 microM). Time-lapse confocal fluorescence microscopy of apical actin filaments in reconstituted rabbit lacrimal acini transduced with replication-deficient adenovirus containing GFP-actin revealed a relatively quiescent apical actin array in resting acini. Carbachol markedly increased apical actin filament turnover and also promoted transient actin assembly around apparent fusion intermediates. Fluorescence recovery after photobleaching measurements revealed significant (P< or =0.05) increases and decreases, respectively, in mobile fraction (Mf) and turnover times (t1/2) for apical actin filaments in carbachol-stimulated acini relative to untreated acini. The myosin inhibitors, 2,3-butanedione monoxime (BDM, 10 mM, 15 minutes) and ML-7 (40 microM, 15 minutes), significantly decreased carbachol-stimulated secretion of bulk protein and the exogenous secretory vesicle marker, syncollin-GFP; these agents also promoted accumulation of actin-coated structures which were enriched, in transduced acini, in syncollin-GFP, confirming their identity as fusion intermediates. Actin-coated fusion intermediates were sized consistent with incorporation of multiple rather than single secretory vesicles; moreover, BDM and ML-7 caused a shift towards formation of multiple secretory vesicle aggregates while significantly increasing the diameter of actin-coated fusion intermediates. Our findings suggest that the increased turnover of apical actin filaments and the interaction of actin with non-muscle myosin II assembled around aggregates of secretory vesicles facilitate exocytosis in lacrimal acinar epithelial cells.
Collapse
Affiliation(s)
- Galina V Jerdeva
- Department of Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, PSC 406A, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fabian L, Forer A. Redundant mechanisms for anaphase chromosome movements: crane-fly spermatocyte spindles normally use actin filaments but also can function without them. PROTOPLASMA 2005; 225:169-84. [PMID: 16228898 DOI: 10.1007/s00709-005-0094-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/04/2004] [Indexed: 05/04/2023]
Abstract
Actin inhibitors block or slow anaphase chromosome movements in crane-fly spermatocytes, but stopping of movement is only temporary; we assumed that cells adapt to loss of actin by switching to mechanism(s) involving only microtubules. To test this, we produced actin-filament-free spindles: we added latrunculin B during prometaphase, 9-80 min before anaphase, after which chromosomes generally moved normally during anaphase. We confirmed the absence of actin filaments by staining with fluorescent phalloidin and by showing that cytochalasin D had no effect on chromosome movement. Thus, actin filaments are involved in normal anaphase movements, but in vivo, spindles nonetheless can function normally without them. We tested whether chromosome movements in actin-filament-free spindles arise via microtubules by challenging such spindles with anti-myosin drugs. Y-27632 and BDM (2,3-butanedione monoxime), inhibitors that affect myosin at different regulatory levels, blocked chromosome movement in normal spindles and in actin-filament-free spindles. We tested whether BDM has side effects on microtubule motors. BDM had no effect on ciliary and sperm motility or on ATPase activity of isolated ciliary axonemes, and thus it does not directly block dynein. Nor does it block kinesin, assayed by a microtubule sliding assay. BDM could conceivably indirectly affect these microtubule motors, though it is unlikely that it would have the same side effect on the motors as Y-27632. Since BDM and Y-27632 both affect chromosome movement in the same way, it would seem that both affect spindle myosin; this suggests that spindle myosin interacts with kinetochore microtubules, either directly or via an intermediate component.
Collapse
|
22
|
Chan W, Calderon G, Swift AL, Moseley J, Li S, Hosoya H, Arias IM, Ortiz DF. Myosin II regulatory light chain is required for trafficking of bile salt export protein to the apical membrane in Madin-Darby canine kidney cells. J Biol Chem 2005; 280:23741-7. [PMID: 15826951 DOI: 10.1074/jbc.m502767200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BSEP, MDR1, and MDR2 ATP binding cassette transporters are targeted to the apical (canalicular) membrane of hepatocytes, where they mediate ATP-dependent secretion of bile acids, drugs, and phospholipids, respectively. Sorting to the apical membrane is essential for transporter function; however, little is known regarding cellular proteins that bind ATP binding cassette proteins and regulate their trafficking. A yeast two-hybrid screen of a rat liver cDNA library identified the myosin II regulatory light chain, MLC2, as a binding partner for BSEP, MDR1, and MDR2. The interactions were confirmed by glutathione S-transferase pulldown and co-immunoprecipitation assays. BSEP and MLC2 were overrepresented in a rat liver subcellular fraction enriched in canalicular membrane vesicles, and MLC2 colocalized with BSEP in the apical domain of hepatocytes and polarized WifB, HepG2, and Madin-Darby canine kidney cells. Expression of a dominant negative, non-phosphorylatable MLC2 mutant reduced steady state BSEP levels in the apical domain of polarized Madin-Darby canine kidney cells. Pulse-chase studies revealed that Blebbistatin, a specific myosin II inhibitor, severely impaired delivery of newly synthesized BSEP to the apical surface. These findings indicate that myosin II is required for BSEP trafficking to the apical membrane.
Collapse
Affiliation(s)
- Wayne Chan
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Di Ciano-Oliveira C, Lodyga M, Fan L, Szászi K, Hosoya H, Rotstein OD, Kapus A. Is myosin light-chain phosphorylation a regulatory signal for the osmotic activation of the Na+-K+-2Cl- cotransporter? Am J Physiol Cell Physiol 2005; 289:C68-81. [PMID: 15728707 DOI: 10.1152/ajpcell.00631.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin light-chain (MLC) kinase (MLCK)-dependent increase in MLC phosphorylation has been proposed to be a key mediator of the hyperosmotic activation of the Na+-K+-2Cl- cotransporter (NKCC). To address this hypothesis and to assess whether MLC phosphorylation plays a signaling or permissive role in NKCC regulation, we used pharmacological and genetic means to manipulate MLCK, MLC phosphorylation, or myosin ATPase activity and followed the impact of these alterations on the hypertonic stimulation of NKCC in porcine kidney tubular LLC-PK1 epithelial cells. We found that the MLCK inhibitor ML-7 suppressed NKCC activity independently of MLC phosphorylation. Notably, ML-7 reduced both basal and hypertonically stimulated NKCC activity without influencing MLC phosphorylation under these conditions, and it inhibited NKCC activation by Cl- depletion, a treatment that did not increase MLC phosphorylation. Furthermore, prevention of the osmotically induced increase in MLC phosphorylation by viral induction of cells with a nonphosphorylatable, dominant negative MLC mutant (AA-MLC) did not affect the hypertonic activation of NKCC. Conversely, a constitutively active MLC mutant (DD-MLC) that mimics the diphosphorylated form neither stimulated isotonic nor potentiated hypertonic NKCC activity. Furthermore, a depolarization-induced increase in endogenous MLC phosphorylation failed to activate NKCC. However, complete abolition of basal MLC phosphorylation by K252a or the inhibition of myosin ATPase by blebbistatin significantly reduced the osmotic stimulation of NKCC without suppressing its basal or Cl- depletion-triggered activity. These results indicate that an increase in MLC phosphorylation is neither a sufficient nor a necessary signal to stimulate NKCC in tubular cells. However, basal myosin activity plays a permissive role in the optimal osmotic responsiveness of NKCC.
Collapse
|
24
|
Padash Barmchi M, Rogers S, Häcker U. DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo. ACTA ACUST UNITED AC 2005; 168:575-85. [PMID: 15699213 PMCID: PMC2171764 DOI: 10.1083/jcb.200407124] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morphogenesis of the Drosophila melanogaster embryo is associated with a dynamic reorganization of the actin cytoskeleton that is mediated by small GTPases of the Rho family. Often, Rho1 controls different aspects of cytoskeletal function in parallel, requiring a complex level of regulation. We show that the guanine triphosphate (GTP) exchange factor DRhoGEF2 is apically localized in epithelial cells throughout embryogenesis. We demonstrate that DRhoGEF2, which has previously been shown to regulate cell shape changes during gastrulation, recruits Rho1 to actin rings and regulates actin distribution and actomyosin contractility during nuclear divisions, pole cell formation, and cellularization of syncytial blastoderm embryos. We propose that DRhoGEF2 activity coordinates contractile actomyosin forces throughout morphogenesis in Drosophila by regulating the association of myosin with actin to form contractile cables. Our results support the hypothesis that specific aspects of Rho1 function are regulated by specific GTP exchange factors.
Collapse
Affiliation(s)
- Mojgan Padash Barmchi
- Department of Cell and Molecular Biology, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC B13, 22184 Lund, Sweden
| | | | | |
Collapse
|
25
|
Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 2005; 5:51-63. [PMID: 15630415 DOI: 10.1038/nrc1524] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer development requires the acquisition of several capabilities that include increased replicative potential, anchorage and growth-factor independence, evasion of apoptosis, angiogenesis, invasion of surrounding tissues and metastasis. One protein that has emerged as promoting many of these phenotypes when dysregulated is integrin-linked kinase (ILK), a unique intracellular adaptor and kinase that links the cell-adhesion receptors, integrins and growth factors to the actin cytoskeleton and to a range of signalling pathways. The recent findings of increased levels of ILK in various cancers, and that inhibition of ILK expression and activity is antitumorigenic, makes ILK an attractive target for cancer therapeutics.
Collapse
Affiliation(s)
- Gregory Hannigan
- Cancer Research Program, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Kolega J. Asymmetric distribution of myosin IIB in migrating endothelial cells is regulated by a rho-dependent kinase and contributes to tail retraction. Mol Biol Cell 2003; 14:4745-57. [PMID: 12960430 PMCID: PMC284780 DOI: 10.1091/mbc.e03-04-0205] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
All vertebrates contain two nonmuscle myosin II heavy chains, A and B, which differ in tissue expression and subcellular distributions. To understand how these distinct distributions are controlled and what role they play in cell migration, myosin IIA and IIB were examined during wound healing by bovine aortic endothelial cells. Immunofluorescence showed that myosin IIA skewed toward the front of migrating cells, coincident with actin assembly at the leading edge, whereas myosin IIB accumulated in the rear 15-30 min later. Inhibition of myosin light-chain kinase, protein kinases A, C, and G, tyrosine kinase, MAP kinase, and PIP3 kinase did not affect this asymmetric redistribution of myosin isoforms. However, posterior accumulation of myosin IIB, but not anterior distribution of myosin IIA, was inhibited by dominant-negative rhoA and by the rho-kinase inhibitor, Y-27632, which also inhibited myosin light-chain phosphorylation. This inhibition was overcome by transfecting cells with constitutively active myosin light-chain kinase. These observations indicate that asymmetry of myosin IIB, but not IIA, is regulated by light-chain phosphorylation mediated by rho-dependent kinase. Blocking this pathway inhibited tail constriction and retraction, but did not affect protrusion, suggesting that myosin IIB functions in pulling the rear of the cell forward.
Collapse
Affiliation(s)
- John Kolega
- Division of Anatomy and Cell Biology, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA.
| |
Collapse
|