1
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
2
|
Kim HS, Yoon JS, Jeon Y, Park EJ, Lee JK, Chen S, Lee H, Park JY, Go H, Lee CW. Ssu72-HNF4α signaling axis classify the transition from steatohepatitis to hepatocellular carcinoma. Cell Death Differ 2022; 29:600-613. [PMID: 34616001 PMCID: PMC8901687 DOI: 10.1038/s41418-021-00877-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests a mechanistic link between steatohepatitis and hepatocellular carcinoma (HCC). However, the lack of representative animal models hampers efforts to understand pathophysiological mechanisms underlying steatohepatitis-related HCC. We found that liver-specific deletion of Ssu72 phosphatase in mice, leads to a high incidence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, but not HCC. However, loss of Ssu72 drastically increased the probability of HCC developing, as well as the population of hepatic progenitors, in various chemical and metabolic syndrome-induced HCC models. Importantly, hepatic Ssu72 loss resulted in the induction of mature hepatocyte-to-progenitor cell conversion, by dedifferentiation orchestrated by Ssu72-mediated hypo-phosphorylation of hepatocyte nuclear factor 4α (HNF4α), a master regulator of hepatocyte function. Our findings suggest that Ssu72-mediated HNF4α transcription contributes to the progression of steatohepatitis-associated HCC by regulating the dedifferentiation potential of hepatocytes. Thus, targeting the Ssu72-mediated HNF4α signaling that underlies the pathogenesis of steatohepatitis-associated HCC development could be a novel therapeutic intervention for steatohepatitis-associated HCC.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| | - Joon-Sup Yoon
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yoon Jeon
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jin-Kwan Lee
- Research Institute, Curogen Technology, Suwon, South Korea
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ho Lee
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Jee Young Park
- Department of Pathology, Kyungpook National University Medical Center, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.
- Research Institute, Curogen Technology, Suwon, South Korea.
| |
Collapse
|
3
|
Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, Mai K, Ai Q. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 2021; 172:213-225. [PMID: 34116177 DOI: 10.1016/j.freeradbiomed.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023]
Abstract
Lipid overload-induced hepatic steatosis is a major public health problem worldwide. However, the potential molecular mechanism is not completely understood. Herein, we found that high-fat diet (HFD) or oleic acid (OA) treatment induced oxidative stress which prevented the entry of hepatocyte nuclear factor 4 alpha (HNF4α) into the nucleus by activating protein kinase C delta (PKCδ) in vivo and in vitro in large yellow croaker (Larimichthys crocea). This reduced the level of microsomal triglyceride transfer protein (MTP) transcription, resulting in the impaired secretion of very-low-density lipoprotein (VLDL) and the abnormal accumulation of triglyceride (TG) in hepatocytes. Meanwhile, the detrimental effects induced by lipid overload could be partly alleviated by pretreating hepatocytes with Go6983 (PKCδ inhibitor) or N-acetylcysteine (NAC, reactive oxygen species (ROS) scavenger). In conclusion, for the first time, we revealed that lipid overload impaired hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in fish. This study may provide critical insights into potential intervention strategies against lipid overload-induced hepatic steatosis of fish and human beings.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Hou J, Wang F, Kong P, Yu PKN, Wang H, Han W. Gene profiling characteristics of radioadaptive response in AG01522 normal human fibroblasts. PLoS One 2015; 10:e0123316. [PMID: 25886619 PMCID: PMC4401551 DOI: 10.1371/journal.pone.0123316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei) after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose.
Collapse
Affiliation(s)
- Jue Hou
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Peizhong Kong
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Peter K. N. Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wei Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
5
|
Bridging cell surface receptor with nuclear receptors in control of bile acid homeostasis. Acta Pharmacol Sin 2015; 36:113-8. [PMID: 25500873 DOI: 10.1038/aps.2014.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are traditionally considered as "physiological detergents" for emulsifying hydrophobic lipids and vitamins due to their amphipathic nature. But accumulating clinical and experimental evidence shows an association between disrupted BA homeostasis and various liver disease conditions including hepatitis infection, diabetes and cancer. Consequently, BA homeostasis regulation has become a field of heavy interest and investigation. After identification of the Farnesoid X Receptor (FXR) as an endogenous receptor for BAs, several nuclear receptors (SHP, HNF4α, and LRH-1) were also found to be important in regulation of BA homeostasis. Some post-translational modifications of these nuclear receptors have been demonstrated, but their physiological significance is still elusive. Gut secrets FGF15/19 that can activate hepatic FGFR4 and its downstream signaling cascade, leading to repressed hepatic BA biosynthesis. However, the link between the activated kinases and these nuclear receptors is not fully elucidated. Here, we review the recent literature on signal crosstalk in BA homeostasis.
Collapse
|
6
|
Tavares-Sanchez OL, Rodriguez C, Gortares-Moroyoqui P, Estrada MI. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:126-139. [PMID: 24848804 DOI: 10.1080/09603123.2014.915015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs.
Collapse
Affiliation(s)
- Olga Lidia Tavares-Sanchez
- a Departamento de Biotecnología y Ciencias Alimentarias , Instituto Tecnológico de Sonora , Ciudad Obregón , Mexico
| | | | | | | |
Collapse
|
7
|
Zhao L, Chen H, Zhan YQ, Li CY, Ge CH, Zhang JH, Wang XH, Yu M, Yang XM. Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:604-20. [PMID: 24821553 DOI: 10.1016/j.bbagrm.2014.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 12/15/2022]
Abstract
Hepatocyte nuclear factor-1 alpha (HNF1α) exerts important effects on gene expression in multiple tissues. Several studies have directly or indirectly supported the role of phosphorylation processes in the activity of HNF1α. However, the molecular mechanism of this phosphorylation remains largely unknown. Using microcapillary liquid chromatography MS/MS and biochemical assays, we identified a novel phosphorylation site in HNF1α at Ser249. We also found that the ATM protein kinase phosphorylated HNF1α at Ser249 in vitro in an ATM-dependent manner and that ATM inhibitor KU55933 treatment inhibited phosphorylation of HNF1α at Ser249 in vivo. Coimmunoprecipitation assays confirmed the association between HNF1α and ATM. Moreover, ATM enhanced HNF1α transcriptional activity in a dose-dependent manner, whereas the ATM kinase-inactive mutant did not. The use of KU55933 confirmed our observation. Compared with wild-type HNF1α, a mutation in Ser249 resulted in a pronounced decrease in HNF1α transactivation, whereas no dominant-negative effect was observed. The HNF1αSer249 mutant also exhibited normal nuclear localization but decreased DNA-binding activity. Accordingly, the functional studies of HNF1αSer249 mutant revealed a defect in glucose metabolism. Our results suggested that ATM regulates the activity of HNF1α by phosphorylation of serine 249, particularly in glucose metabolism, which provides valuable insights into the undiscovered mechanisms of ATM in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Long Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Yi-Qun Zhan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Chang-Yan Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Jian-Hong Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Miao Yu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.
| | - Xiao-Ming Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.
| |
Collapse
|
8
|
Babeu JP, Boudreau F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J Gastroenterol 2014; 20:22-30. [PMID: 24415854 PMCID: PMC3886012 DOI: 10.3748/wjg.v20.i1.22] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4A gene are associated with human diseases such as maturity-onset diabetes of the young. Recently, HNF4A has also been described as a susceptibility gene for ulcerative colitis in genome-wide association studies. In addition, specific HNF4A genetic variants have been identified in pediatric cohorts of Crohn’s disease. Results obtained from knockout mice supported that HNF4-α can protect the intestinal mucosae against inflammation. However, the exact molecular links behind HNF4-α and inflammatory bowel diseases remains elusive. In this review, we will summarize the current knowledge about the role of HNF4-α and its isoforms in inflammation. Specific nature of HNF4-α P1 and P2 classes of isoforms will be summarized. HNF4-α role as a hepatocyte mediator for cytokines relays during liver inflammation will be integrated based on documented examples of the literature. Conclusions that can be made from these earlier liver studies will serve as a basis to extrapolate correlations and divergences applicable to intestinal inflammation. Finally, potential functional roles for HNF4-α isoforms in protecting the intestinal mucosae from chronic and pathological inflammation will be presented.
Collapse
|
9
|
Yu M, Guo HX, Hui-Chen, Wang XH, Li CY, Zhan YQ, Ge CH, Yang XM. 14-3-3ζ interacts with hepatocyte nuclear factor 1α and enhances its DNA binding and transcriptional activation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:970-9. [PMID: 23603156 DOI: 10.1016/j.bbagrm.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/31/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Abstract
14-3-3 proteins regulate numerous cellular processes through interaction with a variety of proteins, and have been identified as HNF1α binding partner by mass spectrometry analysis in our previous study. In the present study, the interaction between 14-3-3ζ and HNF1α has been further validated by in vivo and in vitro assays. Moreover, we have found that overexpression of 14-3-3ζ potentiated the transcriptional activity of HNF1α in cultured cells, and silencing of 14-3-3ζ by RNA interference in HepG2 cells specifically affected the HNF1α-dependent gene expression. Furthermore, we have demonstrated that 14-3-3ζ is recruited to endogenous HNF1α responsive promoters and enhances HNF1α binding to its cognate DNA sequences. In addition, we have also provided evidence that the association between HNF1α and 14-3-3ζ is phosphorylation-dependent. Taken together, these results suggest that 14-3-3ζ may be an endogenous physiologic regulator of HNF1α.
Collapse
Affiliation(s)
- Miao Yu
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Merkulova TI, Ananko EA, Ignatieva EV, Kolchanov NA. Transcription regulatory codes of eukaryotic genomes. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Cozzolino AM, Alonzi T, Santangelo L, Mancone C, Conti B, Steindler C, Musone M, Cicchini C, Tripodi M, Marchetti A. TGFβ overrides HNF4α tumor suppressing activity through GSK3β inactivation: implication for hepatocellular carcinoma gene therapy. J Hepatol 2013; 58:65-72. [PMID: 22960426 DOI: 10.1016/j.jhep.2012.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The tumor fate derives from cell autonomous properties and niche microenvironmental cues. The transforming growth factor β (TGFβ) is a major microenvironmental factor for hepatocellular carcinoma (HCC) influencing tumor dedifferentiation, induction of epithelial-to-mesenchymal transition (EMT) and acquisition of metastatic properties. The loss of the transcriptional factor HNF4α is a predominant mechanism through which HCCs progress to a more aggressive phenotype; its re-expression, reducing tumor formation and repressing EMT program, has been suggested as a therapeutic tool for HCC gene therapy. We investigated the influence of TGFβ on the anti-EMT and tumor suppressor HNF4α activity. METHODS Cell motility and invasion were analyzed by wound healing and invasion assays. EMT was evaluated by RT-qPCR and immunofluorescence. ChIP and EMSA assays were utilized for investigation of the HNF4α DNA binding activity. HNF4α post-translational modifications (PTMs) were assessed by 2-DE analysis. GSK3β activity was modulated by chemical inhibition and constitutive active mutant expression. RESULTS We demonstrated that the presence of TGFβ impairs the efficiency of HNF4α as tumor suppressor. We found that TGFβ induces HNF4α PTMs that correlate with the early loss of HNF4α DNA binding activity on target gene promoters. Furthermore, we identified the GSK3β kinase as one of the TGFβ targets mediating HNF4α functional inactivation: GSK3β chemical inhibition results in HNF4α DNA binding impairment while a constitutively active GSK3β mutant impairs the TGFβ-induced inhibitory effect on HNF4α tumor suppressor activity. CONCLUSIONS Our data identify in the dominance of TGFβ a limit for the HNF4α-mediated gene therapy of HCC.
Collapse
Affiliation(s)
- Angela Maria Cozzolino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kodama S, Hosseinpour F, Goldstein JA, Negishi M. Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure. Nucleic Acids Res 2011; 39:8392-403. [PMID: 21764778 PMCID: PMC3201858 DOI: 10.1093/nar/gkr458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor (PXR), acting as a xenobiotic-activated transcription factor, regulates the hepatic metabolism of therapeutics as well as endobiotics such as steroid hormones. Given our finding that PXR activation by rifampicin (RIF) represses the estrogen sulfotransferase (SULT1E1) gene in human primary hepatocytes and hepatocellular carcinoma Huh7 cells, here we have investigated the molecular mechanism of this repression. First the PXR-responsive enhancer was delineated to a 100 bp sequence (−1000/−901), which contains three half sites that constitute the overlapping direct repeat 1 (DR1) and direct repeat 2 (DR2) motifs and two forkhead factor binding sites. siRNA knockdown, chromatin immunoprecipitation and chromatin conformation capture assays were employed to demonstrate that hepatocyte nuclear factor 4α (HNF4α) bound to the PXR-responsive enhancer, and activated the enhancer by looping its position close to the proximal promoter. Upon activation by RIF, PXR indirectly interacted with the enhancer, decreasing the interaction with HNF4α and dissolving the looped SULT1E1 promoter with deacetylation of histone 3. Removal of the DR sites from the enhancer hampers the ability of HNF4α to loop the promoter and that of PXR to repress the promoter activity. Thus, PXR represses human SULT1E1, possibly attenuating the inactivation of estrogen.
Collapse
Affiliation(s)
- Susumu Kodama
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
13
|
Wang Z, Salih E, Burke PA. Quantitative analysis of cytokine-induced hepatocyte nuclear factor-4α phosphorylation by mass spectrometry. Biochemistry 2011; 50:5292-300. [PMID: 21598922 DOI: 10.1021/bi200540w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocyte nuclear factor-4α (HNF-4α), a liver-enriched transcription factor, is essential for liver development and function. HNF-4α regulates a large number of liver-specific genes, many of which are modulated by injury. While HNF-4α function is regulated by phosphorylation, only a limited number of phosphorylation sites in HNF-4α have been identified, and the roles of HNF-4α phosphorylation after injury are unexplored. To address these issues, we have carried out an extensive quantitative mass spectrometry (MS)-based analysis of HNF-4α serine and threonine phosphorylation in response to cytokine stimulation. Studies were performed in HNF-4α-enriched HepG2 cells treated with cytokines for 3 h or left untreated, followed by chemical derivatization of the phosphoserine and phosphothreonine residues using stable isotopic variants of dithiothreitol (DTT) and MS analysis. This has allowed the identification and relative quantification of 12 serine/threonine phosphorylation sites in HNF-4α. Eight of these phosphorylation sites and their sensitivity to cytokine stimulation have not been previously reported. We found that cytokine treatment leads to an increase of HNF-4α phosphorylation in several phosphopeptides. The phosphorylation of HNF-4α mediated by protein kinase A (PKA) significantly reduces HNF-4α binding activity, which mimics the repressive effect of cytokines on HNF-4α binding, and the inhibition of PKA activity by PKA inhibitor can partially recover the reduced HNF-4α binding activity induced by cytokines. These results suggest that the mechanism that alters HNF-4α binding after cytokine stimulation involves modulation of specific HNF-4α phosphorylation dependent, in part, on a PKA signaling pathway.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
14
|
Mezentsev A, Amundson SA. Global gene expression responses to low- or high-dose radiation in a human three-dimensional tissue model. Radiat Res 2011; 175:677-88. [PMID: 21486161 DOI: 10.1667/rr2483.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating data suggest that the biological responses to high and low doses of radiation are qualitatively different, necessitating the direct study of low-dose responses to better understand potential risks. Most such studies have used two-dimensional culture systems, which may not fully represent responses in three-dimensional tissues. To gain insight into low-dose responses in tissue, we have profiled global gene expression in EPI-200, a three-dimensional tissue model that imitates the structure and function of human epidermis, at 4, 16 and 24 h after exposure to high (2.5 Gy) and low (0.1 Gy) doses of low-LET protons. The most significant gene ontology groups among genes altered in expression were consistent with effects observed at the tissue level, where the low dose was associated with recovery and tissue repair, while the high dose resulted in loss of structural integrity and terminal differentiation. Network analysis of the significantly responding genes suggested that TP53 dominated the response to 2.5 Gy, while HNF4A, a novel transcription factor not previously associated with radiation response, was most prominent in the low-dose response. HNF4A protein levels and phosphorylation were found to increase in tissues and cells after low- but not high-dose irradiation.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
15
|
Daigo K, Kawamura T, Ohta Y, Ohashi R, Katayose S, Tanaka T, Aburatani H, Naito M, Kodama T, Ihara S, Hamakubo T. Proteomic analysis of native hepatocyte nuclear factor-4α (HNF4α) isoforms, phosphorylation status, and interactive cofactors. J Biol Chem 2011; 286:674-86. [PMID: 21047794 PMCID: PMC3013027 DOI: 10.1074/jbc.m110.154732] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hepatocyte nuclear factor-4α (HNF4α, NR2A1) is a nuclear receptor that has a critical role in hepatocyte differentiation and the maintenance of homeostasis in the adult liver. However, a detailed understanding of native HNF4α in the steady-state remains to be elucidated. Here we report the native HNF4α isoform, phosphorylation status, and complexes in the steady-state, as shown by shotgun proteomics in HepG2 hepatocarcinoma cells. Shotgun proteomic analysis revealed the complexity of native HNF4α, including multiple phosphorylation sites and inter-isoform heterodimerization. The associating complexes identified by label-free semiquantitative proteomic analysis include the following: the DNA-dependent protein kinase catalytic subunit, histone acetyltransferase complexes, mRNA splicing complex, other nuclear receptor coactivator complexes, the chromatin remodeling complex, and the nucleosome remodeling and histone deacetylation complex. Among the associating proteins, GRB10 interacting GYF protein 2 (GIGYF2, PERQ2) is a new candidate cofactor in metabolic regulation. Moreover, an unexpected heterodimerization of HNF4α and hepatocyte nuclear factor-4γ was found. A biochemical and genomewide analysis of transcriptional regulation showed that this heterodimerization activates gene transcription. The genes thus transcribed include the cell death-inducing DEF45-like effector b (CIDEB) gene, which is an important regulator of lipid metabolism in the liver. This suggests that the analysis of the distinctive stoichiometric balance of native HNF4α and its cofactor complexes described here are important for an accurate understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Kenji Daigo
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Takeshi Kawamura
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Yoshihiro Ohta
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Riuko Ohashi
- the Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, and
| | - Satoshi Katayose
- the Tsukuba Research Laboratories, JSR Corporation, Ibaraki 305-0841, Japan
| | - Toshiya Tanaka
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Hiroyuki Aburatani
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Makoto Naito
- the Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, and
| | - Tatsuhiko Kodama
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Sigeo Ihara
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
| | - Takao Hamakubo
- From the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904
- To whom correspondence should be addressed: Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan. Tel./Fax: 81-3-5452-5231; E-mail:
| |
Collapse
|
16
|
Dankel SN, Hoang T, Flågeng MH, Sagen JV, Mellgren G. cAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1013-9. [PMID: 20670916 DOI: 10.1016/j.bbamcr.2010.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 02/09/2023]
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4alpha) is a member of the nuclear receptor superfamily with important roles in hepatic metabolism. Fasting induces the cAMP/protein kinase A (PKA)-signaling pathway. The mechanisms whereby cAMP regulates HNF-4alpha transcriptional activity are incompletely understood. We have therefore investigated the role of cAMP/PKA in regulation of HNF-4alpha in COS-1 cells and the hepatoma HepG2 cell line. cAMP/PKA inhibited the transcriptional activity of HNF-4alpha in COS-1 cells, whereas a stimulatory effect was observed in HepG2 cells. The cAMP-induced inhibition of HNF-4alpha in COS-1 cells was counteracted by overexpression of the nuclear receptor coactivator PGC-1alpha, and cAMP/PKA-dependent induction of the PGC1A gene in HepG2 cells seems to explain the cell specific differences. This was further supported by knock-down of PGC-1alpha in HepG2 cells, which abolished the stimulatory effect of PKA on HNF-4alpha transcriptional activity. Similar to the cAMP/PKA-mediated regulation of HNF-4alpha, overexpression of the cAMP-response element binding protein (CREB) inhibited the transcriptional activity of HNF-4alpha in COS-1 cells, regardless of cAMP/PKA activation and CREB phosphorylation. Moreover, activation of CREB by cAMP/PKA further stimulated HNF-4alpha transactivation in HepG2 cells. cAMP induced the expression of the HNF-4alpha target genes PCK1 and G6Pase in these cells. In conclusion, our results suggest that the level of PGC-1alpha determines whether the cAMP/PKA-pathway overall stimulates or inhibits HNF-4alpha transcriptional activation.
Collapse
Affiliation(s)
- Simon Nitter Dankel
- Institute of Medicine, University of Bergen and the Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | | | |
Collapse
|
17
|
Chiang JYL. Hepatocyte nuclear factor 4alpha regulation of bile acid and drug metabolism. Expert Opin Drug Metab Toxicol 2010; 5:137-47. [PMID: 19239393 DOI: 10.1517/17425250802707342] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatocyte nuclear factor 4alpha (HNF4alpha) is a liver-enriched nuclear receptor that plays a critical role in early morphogenesis, fetal liver development, liver differentiation and metabolism. Human HNF4alpha gene mutations cause maturity on-set diabetes of the young type 1, an autosomal dominant non-insulin-dependent diabetes mellitus. HNF4alpha is an orphan nuclear receptor because of which the endogenous ligand has not been firmly identified. The trans-activating activity of HNF4alpha is enhanced by interacting with co-activators and inhibited by corepressors. Recent studies have revealed that HNF4alpha plays a central role in regulation of bile acid metabolism in the liver. Bile acids are required for biliary excretion of cholesterol and metabolites, and intestinal absorption of fat, nutrients, drug and xenobiotics for transport and distribution to liver and other tissues. Bile acids are signaling molecules that activate nuclear receptors to control lipids and drug metabolism in the liver and intestine. Therefore, HNF4alpha plays a central role in coordinated regulation of bile acid and xenobiotics metabolism. Drugs that specifically activate HNF4alpha could be developed for treating metabolic diseases such as diabetes, dyslipidemia and cholestasis, as well as drug metabolism and detoxification.
Collapse
Affiliation(s)
- John Y L Chiang
- Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Department of Integrative Medical Sciences, Rootstown, Ohio 44272, USA.
| |
Collapse
|
18
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Takagi S, Nakajima M, Kida K, Yamaura Y, Fukami T, Yokoi T. MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle. J Biol Chem 2009; 285:4415-22. [PMID: 20018894 DOI: 10.1074/jbc.m109.085431] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor (HNF) 4alpha is a key transcription factor regulating endo/xenobiotic-metabolizing enzymes and transporters. We investigated whether microRNAs are involved in the regulation of human HNF4alpha. Potential recognition elements for miR-24 (MRE24) were identified in the coding region and the 3'-untranslated region (3'-UTR), and those for miR-34a (MRE34a) were identified in the 3'-UTR in HNF4alpha mRNA. The HNF4alpha protein level in HepG2 cells was markedly decreased by the overexpression of miR-24 and miR-34a. The HNF4alpha mRNA level was significantly decreased by the overexpression of miR-24 but not by miR-34a. In luciferase analyses in HEK293 cells, the reporter activity of plasmid containing the 3'-UTR of HNF4alpha was significantly decreased by miR-34a. The reporter activity of plasmid containing the HNF4alpha coding region downstream of the luciferase gene was significantly decreased by miR-24. These results suggest that the MRE24 in the coding region and MRE34a in the 3'-UTR are functional in the negative regulation by mRNA degradation and translational repression, respectively. The down-regulation of HNF4alpha by these microRNAs resulted in the decrease of various target genes such as cytochrome P450 7A1 and 8B1 as well as morphological changes and the decrease of the S phase population in HepG2 cells. We also clarified that the expressions of miR-24 and miR-34a were regulated by protein kinase C/mitogen-activated protein kinase and reactive oxygen species pathways, respectively. In conclusion, we found that human HNF4alpha was down-regulated by miR-24 and miR-34a, the expression of which are regulated by cellular stress, affecting the metabolism and cellular biology.
Collapse
Affiliation(s)
- Shingo Takagi
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Mulder J, Karpen SJ, Tietge UJF, Kuipers F. Nuclear receptors: mediators and modifiers of inflammation-induced cholestasis. FRONT BIOSCI-LANDMRK 2009; 14:2599-630. [PMID: 19273222 PMCID: PMC4085779 DOI: 10.2741/3400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses to inflammation and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC as well as for cholestasis in general. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention.
Collapse
Affiliation(s)
- Jaap Mulder
- Department of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
22
|
Lu P, Rha GB, Melikishvili M, Wu G, Adkins BC, Fried MG, Chi YI. Structural basis of natural promoter recognition by a unique nuclear receptor, HNF4alpha. Diabetes gene product. J Biol Chem 2008; 283:33685-97. [PMID: 18829458 DOI: 10.1074/jbc.m806213200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HNF4alpha (hepatocyte nuclear factor 4alpha) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic beta-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4alpha is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4alpha recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 angstroms crystal structure of human HNF4alpha DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1alpha, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4alpha molecular function can cause significant effects in afflicted MODY patients.
Collapse
Affiliation(s)
- Peng Lu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tran QK, Leonard J, Black DJ, Persechini A. Phosphorylation within an autoinhibitory domain in endothelial nitric oxide synthase reduces the Ca(2+) concentrations required for calmodulin to bind and activate the enzyme. Biochemistry 2008; 47:7557-66. [PMID: 18558722 DOI: 10.1021/bi8003186] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
24
|
Hashimoto JG, Wiren KM. Neurotoxic consequences of chronic alcohol withdrawal: expression profiling reveals importance of gender over withdrawal severity. Neuropsychopharmacology 2008; 33:1084-96. [PMID: 17593928 PMCID: PMC3019135 DOI: 10.1038/sj.npp.1301494] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While women are more vulnerable than men to many of the medical consequences of alcohol abuse, the role of sex in the response to ethanol is controversial. Neuroadaptive responses that result in the hyperexcitability associated with withdrawal from chronic ethanol likely reflect gene expression changes. We have examined both genders for the effects of withdrawal on brain gene expression using mice with divergent withdrawal severity that have been selectively bred from a genetically heterogeneous population. A total of 295 genes were identified as ethanol regulated from each gender of each selected line by microarray analyses. Hierarchical cluster analysis of the arrays revealed that the transcriptional response correlated with sex rather than with the selected withdrawal phenotype. Consistent with this, gene ontology category over-representation analysis identified cell death and DNA/RNA binding as targeted classes of genes in females, while in males, protein degradation, and calcium ion binding pathways were more altered by alcohol. Examination of ethanol-regulated genes and these distinct signaling pathways suggested enhanced neurotoxicity in females. Histopathological analysis of brain damage following ethanol withdrawal confirmed elevated cell death in female but not male mice. The sexually dimorphic response was observed irrespective of withdrawal phenotype. Combined, these results indicate a fundamentally distinct neuroadaptive response in females compared to males during chronic ethanol withdrawal and are consistent with observations that female alcoholics may be more vulnerable than males to ethanol-induced brain damage associated with alcohol abuse.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Research Service, Veterans Affairs Medical Center, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Kristine M Wiren
- Research Service, Veterans Affairs Medical Center, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
- Correspondence: Dr KM Wiren, OHSU, Portland VA Medical Center, Research Service, P3 R&D39, Portland, OR 97239, USA, Tel: 503 220 8262, ext. 56595, Fax: 503 273 5351,
| |
Collapse
|
25
|
Xu Z, Tavares-Sanchez OL, Li Q, Fernando J, Rodriguez CM, Studer EJ, Pandak WM, Hylemon PB, Gil G. Activation of bile acid biosynthesis by the p38 mitogen-activated protein kinase (MAPK): hepatocyte nuclear factor-4alpha phosphorylation by the p38 MAPK is required for cholesterol 7alpha-hydroxylase expression. J Biol Chem 2007; 282:24607-14. [PMID: 17603092 PMCID: PMC3291957 DOI: 10.1074/jbc.m611481200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bile acids are required for intestinal absorption and biliary solubilization of cholesterol and lipids. In addition, bile acids play a crucial role in cholesterol homeostasis. One of the key enzymes in the bile acid biosynthetic pathways is cholesterol 7alpha-hydroxylase/cytochrome P450 7alpha-hydroxylase (7alpha-hydroxylase), which is the rate-limiting and regulatory step of the "classic" pathway. Transcription of the 7alpha-hydroxylase gene is highly regulated. Two nuclear receptors, hepatocyte nuclear factor 4alpha (HNF-4alpha) and alpha(1)-fetoprotein transcription factor, are required for both transcription and regulation by different physiological events. It has been shown that some mitogen-activated protein kinases, such as the c-Jun N-terminal kinase and the ERK, play important roles in the regulation of 7alpha-hydroxylase transcription. In this study, we show evidence that the p38 kinase pathway plays an important role in 7alpha-hydroxylase expression and hence in bile acid synthesis. Inhibition of p38 kinase activity in primary hepatocytes results in approximately 5-10-fold reduction of 7alpha-hydroxylase mRNA. This suppression is mediated, at least in part, through HNF-4alpha. Inhibition of p38 kinase activity diminishes HNF-4alpha nuclear protein levels and its phosphorylation in vivo and in vitro, and it renders a less stable protein. Induction of the p38 kinase pathway by insulin results in an increase in HNF-4alpha protein and a concomitant induction of 7alpha-hydroxylase expression that is blocked by inhibiting the p38 pathway. These studies show a functional link between the p38 signaling pathway, HNF-4alpha, and bile acid synthesis.
Collapse
Affiliation(s)
- Zhumei Xu
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Olga L. Tavares-Sanchez
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Quanzhong Li
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Josephine Fernando
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Carmen M. Rodriguez
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Elaine J. Studer
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - William M. Pandak
- Department of Medicine, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Gregorio Gil
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0614
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, P. O. Box 980614, Richmond, VA 23298-0614. Tel.: 804-828-0140; Fax: 804-828-0144;
| |
Collapse
|
26
|
Wang Z, Burke PA. Effects of hepatocyte nuclear factor-4alpha on the regulation of the hepatic acute phase response. J Mol Biol 2007; 371:323-35. [PMID: 17574576 PMCID: PMC2041833 DOI: 10.1016/j.jmb.2007.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 05/16/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Following injury, a large number of hepatic acute phase genes are rapidly modulated at the transcriptional level to restore metabolic homeostasis and limit tissue damage. Hepatocyte nuclear factor 4alpha (HNF-4alpha) is a liver-enriched transcription factor that controls embryonic liver development and regulates tissue-specific gene expression in adult liver cells. Many genes encoding acute phase proteins contain HNF-4alpha-binding sites in their promoter regions and are transcriptionally regulated by HNF-4alpha. Utilizing a cytokine induced acute phase response in HepG2 cells, we investigated the role of HNF-4alpha in regulating the transcription of three HNF-4alpha sensitive genes, alpha1-antitrypsin (alpha1-AT), transthyretin (TTR), and apolipoprotein B (ApoB) after injury. The transcriptional behavior of all three genes depends, in part, on the intracellular concentrations of HNF-4alpha. However, the unique mRNA expression patterns of alpha1-AT, TTR, and ApoB in response to cytokine treatment were abrogated in HepG2 cells with dramatically reduced HNF-4alpha protein concentrations. The mechanism by which HNF-4alpha mediates this injury response is through site-specific alterations in HNF-4alpha-binding abilities and transactivation potentials. Cytokine treatment phosphorylates HNF-4alpha, which directly affects HNF-4alpha activity. Our results demonstrate that HNF-4alpha is a crucial mediator in the regulation of alpha1-AT, TTR, and ApoB gene expression before and after injury, providing evidence of a novel role for HNF-4alpha in the control of the liver's acute phase response.
Collapse
Affiliation(s)
| | - Peter A. Burke
- Corresponding author. Mailing address: Peter A Burke, MD. Boston Medical Center, 850 Harrison Avenue, Dowling 2 South, MA 02118; Telephone: 617-414-8056; Fax: 617-414-7398;
| |
Collapse
|
27
|
Sun K, Montana V, Chellappa K, Brelivet Y, Moras D, Maeda Y, Parpura V, Paschal BM, Sladek FM. Phosphorylation of a conserved serine in the deoxyribonucleic acid binding domain of nuclear receptors alters intracellular localization. Mol Endocrinol 2007; 21:1297-311. [PMID: 17389749 DOI: 10.1210/me.2006-0300] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.
Collapse
Affiliation(s)
- Kai Sun
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guo H, Gao C, Mi Z, Zhang J, Kuo PC. Characterization of the PC4 binding domain and its interactions with HNF4alpha. J Biochem 2007; 141:635-40. [PMID: 17317687 DOI: 10.1093/jb/mvm066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the presence of oxidative stress, the hepatocellular inflammatory-redox (IR) state upregulates inducible nitric oxide synthase (iNOS) expression as an anti-oxidant function. In IL-1beta and peroxide treated hepatocytes, we have identified hepatocyte nuclear factor-4alpha (HNF4) and the transcriptional co-activator, PC4, to be essential for upregulation of iNOS transcription in this setting. The co-activator, PC4, facilitates activator-dependent transcription via interactions with basal transcriptional machinery that are independent of PC4-DNA binding. The interaction between HNF4 and PC4 has not been previously characterized. In this study utilizing human HepG2 cells, we demonstrate the critical role for p38 MAP kinase mediated HNF4 Ser158 phosphorylation (P-HNF4-S158), binding of PC4 to P-HNF4-S158 and characterize the functional domain of PC4 required for P-HNF4-S158 binding. Our results indicate that the presence of the IR state enhances PC4-HNF4 binding to upregulate transcription of target hepatocyte genes, such as iNOS.
Collapse
Affiliation(s)
- Hongtao Guo
- Deparment of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
29
|
Gonzalez FJ. Role of HNF4alpha in the superinduction of the IL-1beta-activated iNOS gene by oxidative stress. Biochem J 2006; 394:e3-5. [PMID: 16479620 PMCID: PMC1408685 DOI: 10.1042/bj20060005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IL-1beta (interleukin-1beta) treatment of hepatocytes results in an NF-kappaB (nuclear factor-kappaB)-mediated activation of the iNOS (induced nitric oxide synthase) gene, and this increase in gene expression is further augmented by oxidative stress. Oxidative stress alone has no influence on the iNOS promoter, therefore indicating that the promoter needs to be primed by NF-kappaB. In this issue of the Biochemical Journal, Guo et al. extend their earlier work, showing that HNF4alpha (hepatocyte nuclear factor 4alpha) mediates the superinduction of iNOS observed by co-treating cells with IL-1b plus H2O2. A specific phosphorylation by p38 kinase at Ser-158 of HNF4alpha results in increased binding of HNF4alpha to the iNOS promoter, leading to enhanced transcription. The study by Guo et al. is the first to show definitively that HNF4alpha can be modulated to differentially activate specific genes. However, issues remain to determine the functional significance in vivo of the elevated iNOS activity, and the mechanism that governs the specificity of HNF4alpha towards the iNOS promoter element as compared with many other HNF4alpha target genes in the hepatocyte.
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Building 37, Room 3106, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|