1
|
Mathieu D, Bryson AE, Hamberger B, Singan V, Keymanesh K, Wang M, Barry K, Mondo S, Pangilinan J, Koriabine M, Grigoriev IV, Bonito G, Hamberger B. Multilevel analysis between Physcomitrium patens and Mortierellaceae endophytes explores potential long-standing interaction among land plants and fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:304-323. [PMID: 38265362 DOI: 10.1111/tpj.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.
Collapse
Affiliation(s)
- Davis Mathieu
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Abigail E Bryson
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Britta Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Keykhosrow Keymanesh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Stephen Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, 94720, USA
| | - Gregory Bonito
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Björn Hamberger
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Blake MJ, Steer CJ. Chimeric Livers: Interspecies Blastocyst Complementation and Xenotransplantation for End-Stage Liver Disease. Hepat Med 2024; 16:11-29. [PMID: 38379783 PMCID: PMC10878318 DOI: 10.2147/hmer.s440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Orthotopic liver transplantation (OLT) currently serves as the sole definitive treatment for thousands of patients suffering from end-stage liver disease; and the existing supply of donor livers for OLT is drastically outpaced by the increasing demand. To alleviate this significant gap in treatment, several experimental approaches have been devised with the aim of either offering interim support to patients waiting on the transplant list or bioengineering complete livers for OLT by infusing them with fresh hepatic cells. Recently, interspecies blastocyst complementation has emerged as a promising method for generating complete organs in utero over a short timeframe. When coupled with gene editing technology, it has brought about a potentially revolutionary transformation in regenerative medicine. Blastocyst complementation harbors notable potential for generating complete human livers in large animals, which could be used for xenotransplantation in humans, addressing the scarcity of livers for OLT. Nevertheless, substantial experimental and ethical challenges still need to be overcome to produce human livers in larger domestic animals like pigs. This review compiles the current understanding of interspecies blastocyst complementation and outlines future possibilities for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Zheng W, Shen P, Yu C, Tang Y, Qian C, Yang C, Gao M, Wu Y, Yu S, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Ginsenoside Rh1, a novel casein kinase II subunit alpha (CK2α) inhibitor, retards metastasis via disrupting HHEX/CCL20 signaling cascade involved in tumor cell extravasation across endothelial barrier. Pharmacol Res 2023; 198:106986. [PMID: 37944834 DOI: 10.1016/j.phrs.2023.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Tumor cell extravasation across endothelial barrier has been recognized as a pivotal event in orchestrating metastasis formation. This event is initiated by the interactions of extravasating tumor cells with endothelial cells (ECs). Therefore, targeting the crosstalk between tumor cells and ECs might be a promising therapeutic strategy to prevent metastasis. In this study, we demonstrated that Rh1, one of the main ingredients of ginseng, hindered the invasion of breast cancer (BC) cells as well as diminished the permeability of ECs both in vitro and in vivo, which was responsible for the attenuated tumor cell extravasation across endothelium. Noteworthily, we showed that ECs were capable of inducing the epithelial-mesenchymal transition (EMT) and invadopodia of BC cells that are essential for tumor cell migration and invasion through limiting the nuclear translocation of hematopoietically expressed homeobox (HHEX). The decreased nuclear HHEX paved the way for initiating the CCL20/CCR6 signaling axis, which in turn contributed to damaged endothelial junctions, uncovering a new crosstalk mode between tumor cells and ECs. Intriguingly, Rh1 inhibited the kinase activity of casein kinase II subunit alpha (CK2α) and further promoted the nuclear translocation of HHEX in the BC cells, which resulted in the disrupted crosstalk between chemokine (C-C motif) ligand 20 (CCL20) in the BC cells and chemokine (C-C motif) receptor 6 (CCR6) in the ECs. The prohibited CCL20-CCR6 axis by Rh1 enhanced vascular integrity and diminished tumor cell motility. Taken together, our data suggest that Rh1 serves as an effective natural CK2α inhibitor that can be further optimized to be a therapeutic agent for reducing tumor cell extravasation.
Collapse
Affiliation(s)
- Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingliang Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Ito R, Kimura A, Hirose Y, Hatano Y, Mima A, Mae SI, Keidai Y, Nakamura T, Fujikura J, Nishi Y, Ohta A, Toyoda T, Inagaki N, Osafune K. Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Sci Rep 2023; 13:8659. [PMID: 37248264 DOI: 10.1038/s41598-023-35875-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
For pluripotent stem cell (PSC)-based regenerative therapy against diabetes, the differentiation efficiency to pancreatic lineage cells needs to be improved based on the mechanistic understanding of pancreatic differentiation. Here, we aimed to elucidate the molecular mechanisms underlying pancreatic endoderm differentiation by searching for factors that regulate a crucial pancreatic endoderm marker gene, NKX6.1. Unbiasedly screening an siRNA knockdown library, we identified a candidate transcription factor, HHEX. HHEX knockdown suppressed the expression of another pancreatic endoderm marker gene, PTF1A, as well as NKX6.1, independently of PDX1, a known regulator of NKX6.1 expression. In contrast, the overexpression of HHEX upregulated the expressions of NKX6.1 and PTF1A. RNA-seq analysis showed decreased expressions of several genes related to pancreatic development, such as NKX6.1, PTF1A, ONECUT1 and ONECUT3, in HHEX knockdown pancreatic endoderm. These results suggest that HHEX plays a key role in pancreatic endoderm differentiation.
Collapse
Affiliation(s)
- Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yurie Hirose
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Özden-Yılmaz G, Savas B, Bursalı A, Eray A, Arıbaş A, Senturk S, Karaca E, Karakülah G, Erkek-Ozhan S. Differential Occupancy and Regulatory Interactions of KDM6A in Bladder Cell Lines. Cells 2023; 12:cells12060836. [PMID: 36980177 PMCID: PMC10047809 DOI: 10.3390/cells12060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.
Collapse
Affiliation(s)
| | - Busra Savas
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ahmet Bursalı
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Alirıza Arıbaş
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | |
Collapse
|
6
|
Reolizo LM, Williams H, Wadey K, Frankow A, Li Z, Gaston K, Jayaraman PS, Johnson JL, George SJ. Inhibition of Intimal Thickening By PRH (Proline-Rich Homeodomain) in Mice. Arterioscler Thromb Vasc Biol 2023; 43:456-473. [PMID: 36700427 PMCID: PMC9944393 DOI: 10.1161/atvbaha.122.318367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.
Collapse
Affiliation(s)
- Lien M. Reolizo
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Helen Williams
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kerry Wadey
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Aleksandra Frankow
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Ze Li
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kevin Gaston
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Padma-Sheela Jayaraman
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Jason L. Johnson
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Sarah J. George
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| |
Collapse
|
7
|
Guo Y, Zhu Z, Huang Z, Cui L, Yu W, Hong W, Zhou Z, Du P, Liu CY. CK2-induced cooperation of HHEX with the YAP-TEAD4 complex promotes colorectal tumorigenesis. Nat Commun 2022; 13:4995. [PMID: 36008411 PMCID: PMC9411202 DOI: 10.1038/s41467-022-32674-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Dysregulation of Hippo pathway leads to hyperactivation of YAP-TEAD transcriptional complex in various cancers, including colorectal cancer (CRC). In this study, we observed that HHEX (Hematopoietically expressed homeobox) may enhance transcription activity of the YAP-TEAD complex. HHEX associates with and stabilizes the YAP-TEAD complex on the regulatory genomic loci to coregulate the expression of a group of YAP/TEAD target genes. Also, HHEX may indirectly regulate these target genes by controlling YAP/TAZ expression. Importantly, HHEX is required for the pro-tumorigenic effects of YAP during CRC progression. In response to serum stimulation, CK2 (Casein Kinase 2) phosphorylates HHEX and enhances its interaction with TEAD4. A CK2 inhibitor CX-4945 diminishes the interaction between HHEX and TEAD4, leading to decreased expression of YAP/TEAD target genes. CX-4945 synergizes the antitumor activity of YAP-TEAD inhibitors verteporfin and Super-TDU. Elevated expression of HHEX is correlated with hyperactivation of YAP/TEAD and associated with poor prognosis of CRC patients. Overall, our study identifies HHEX as a positive modulator of YAP/TEAD to promote colorectal tumorigenesis, providing a new therapeutic strategy for targeting YAP/TEAD in CRC. Hippo signalling is often deregulated in cancers. Here the authors show that CK2 enhances the cooperation of HHEX with YAP-TEAD complex to promote colorectal tumorigenesis.
Collapse
Affiliation(s)
- Yuegui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Zhehui Zhu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|
8
|
The transcription factor Hhex regulates inflammation-related genes in microglia. J Pharmacol Sci 2022; 149:166-171. [DOI: 10.1016/j.jphs.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
|
9
|
Watanabe H, Okada H, Hirose J, Omata Y, Matsumoto T, Matsumoto M, Nakamura M, Saito T, Miyamoto T, Tanaka S. Transcription factor Hhex negatively regulates osteoclast differentiation by controlling cyclin‐dependent kinase inhibitors. JBMR Plus 2022; 6:e10608. [PMID: 35434453 PMCID: PMC9009129 DOI: 10.1002/jbm4.10608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
We investigated the role of hematopoietically expressed homeobox protein (Hhex) in osteoclast development. Trimethylation of lysine 27 of histone H3 at the cis‐regulatory element of Hhex was maintained and that of lysine 4 was reduced during receptor activator of nuclear factor κB ligand (RANKL)‐induced osteoclastogenesis, which was associated with a reduction of Hhex expression. Overexpression of Hhex in bone marrow–derived macrophages inhibited, whereas Hhex suppression promoted, RANKL‐induced osteoclastogenesis in vitro. Conditional deletion of Hhex in osteoclast‐lineage cells promoted osteoclastogenesis and reduced cancellous bone volume in mice, confirming the negative regulatory role of Hhex in osteoclast differentiation. Expression of cyclin‐dependent kinase inhibitors such as Cdkn2a and Cdkn1b in osteoclast precursors was negatively regulated by Hhex, and Hhex deletion increased the ratio of cells at the G1 phase of the cell cycle. In conclusion, Hhex is an inhibitor of osteoclast differentiation that is regulated in an epigenetic manner and regulates the cell cycle of osteoclast precursors and the skeletal homeostasis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hisato Watanabe
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Jun Hirose
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery Keio University School of Medicine Tokyo Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery Keio University School of Medicine Tokyo Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery Kumamoto University Kumamoto Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| |
Collapse
|
10
|
Yang X, Cao N, Chen L, Liu L, Zhang M, Cao Y. Suppression of Cell Tumorigenicity by Non-neural Pro-differentiation Factors via Inhibition of Neural Property in Tumorigenic Cells. Front Cell Dev Biol 2021; 9:714383. [PMID: 34595169 PMCID: PMC8476888 DOI: 10.3389/fcell.2021.714383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Our studies have demonstrated that cell tumorigenicity and pluripotent differentiation potential stem from neural stemness or a neural ground state, which is defined by a regulatory network of higher levels of machineries for basic cell physiological functions, including cell cycle, ribosome biogenesis, protein translation, spliceosome, epigenetic modification factors, reprogramming factors, etc., in addition to the neural stemness specific factors. These machineries and neural stemness factors mostly play cancer-promoting roles. It can be deduced that differentiation requires the repression of neural ground state and causes the reduction or loss of neural ground state and thus tumorigenicity in tumorigenic cells. Formerly, we showed that neuronal differentiation led to reduced tumorigenicity in tumorigenic cells. In the present study, we show that non-neural pro-differentiation factors, such as GATA3, HNF4A, HHEX, and FOXA3 that specify mesodermal or/and endodermal tissues during vertebrate embryogenesis, suppress tumorigenicity via repression of neural stemness and promotion of non-neural property in tumorigenic cells. Mechanistically, these transcription factors repress the transcription of neural enriched genes and meanwhile activate genes that specify non-neural properties via direct binding to the promoters of these genes. We also show that combined expression of HHEX and FOXA3 suppresses tumorigenesis effectively in the AOM/DSS model of colitis-associated cancer. We suggest that targeting the property of neural stemness could be an effective strategy for cancer therapy.
Collapse
Affiliation(s)
- Xiaoli Yang
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Ning Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Lu Chen
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Lin Liu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Min Zhang
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J, Zheng M, Zhang S. Clinicopathological Significances of Cancer Stem Cell-Associated HHEX Expression in Breast Cancer. Front Cell Dev Biol 2020; 8:605744. [PMID: 33425911 PMCID: PMC7785851 DOI: 10.3389/fcell.2020.605744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the transcription factor hematopoietic ally expressed homeobox/proline-rich homeodomain (HHEX/PRH) is implicated in numerous cancers. However, the association of HHEX with breast cancer (BC) remains unclear. In this study, HHEX mRNA and protein expression were analyzed using the Oncomine, UALCAN, GEPIA, TCGAportal, and HPA databases. We evaluated the effect of HHEX on clinicopathological parameters using Kaplan–Meier plotter, OncoLnc, TCGAportal, PROGgeneV2, and BC-GenExMiner. Western blotting was performed to compare the level of HHEX in breast samples of Tientsin Albino 2 mice, human breast precancerous lesions, benign breast tumors, and BC. The correlation between HHEX and cancer stem cells was investigated using the GEO (GSE52327 and GSE94865) and GEPIA datasets. Networks between HHEX and survival-related gene marker sets and microRNAs were analyzed using GEPIA, StarBase, and Cytoscape. Results of this study showed that HHEX expression in BC was significantly lower than those in breast precancerous lesions and benign breast tumors at both mRNA and protein levels. BC patients with lower HHEX expression had significantly worse overall survival and disease-free survival. Moreover, HHEX significantly affected the clinicopathology of BC. Specifically, low HHEX expression was correlated with the following groups of patients: age ≤51 years, ER-negative or PR-negative patients, HER-2 positive, triple-negative breast cancer, and basal-like BC. Immunohistochemical analysis of the breast samples showed significant differences of HHEX staining index (P < 0.001) among the three groups. To further investigate the mechanism, we determined the intersection of differentially expressed genes related to BC stem cells and those genes after HHEX expression was altered. This led to the identification of four potentially regulated genes-CXL12, BLNK, PAG1, and LPXN. Using StarBase and km-plotter, the negative regulation of HHEX expression and survival trends, including miR-130b, miR-30e, and miR-301b were joined into miRNA-HHEX-mRNA potential regulatory network. The abilities of proliferation, migration and invasion increased in MDA-MB-231 and BT-549 breast cancer cell lines after HHEX down expression and decreased after HHEX overexpression compared them in the control cells. In conclusion, these data suggest that HHEX expression is downregulated in BC and HHEX may regulate the development of BC through the stem cell-related genes.
Collapse
Affiliation(s)
- Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2020; 28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Laidlaw BJ, Duan L, Xu Y, Vazquez SE, Cyster JG. The transcription factor Hhex cooperates with the corepressor Tle3 to promote memory B cell development. Nat Immunol 2020; 21:1082-1093. [PMID: 32601467 PMCID: PMC7442689 DOI: 10.1038/s41590-020-0713-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/15/2020] [Indexed: 11/08/2022]
Abstract
Memory B cells (MBCs) are essential for long-lived humoral immunity. However, the transcription factors involved in MBC differentiation are poorly defined. Here, using single-cell RNA sequencing analysis, we identified a population of germinal center (GC) B cells in the process of differentiating into MBCs. Using an inducible CRISPR-Cas9 screening approach, we identified the hematopoietically expressed homeobox protein Hhex as a transcription factor regulating MBC differentiation. The corepressor Tle3 was also identified in the screen and was found to interact with Hhex to promote MBC development. Bcl-6 directly repressed Hhex in GC B cells. Reciprocally, Hhex-deficient MBCs exhibited increased Bcl6 expression and reduced expression of the Bcl-6 target gene Bcl2. Overexpression of Bcl-2 was able to rescue MBC differentiation in Hhex-deficient cells. We also identified Ski as an Hhex-induced transcription factor involved in MBC differentiation. These findings establish an important role for Hhex-Tle3 in regulating the transcriptional circuitry governing MBC differentiation.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihui Duan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Xu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sara E Vazquez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Gao C, Huang W, Gao Y, Lo LJ, Luo L, Huang H, Chen J, Peng J. Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1. J Mol Cell Biol 2020; 11:448-462. [PMID: 30428031 PMCID: PMC6604603 DOI: 10.1093/jmcb/mjy068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
The hepatopancreatic duct (HPD) system links the liver and pancreas to the intestinal tube and is composed of the extrahepatic biliary duct, gallbladder, and pancreatic duct. Haematopoietically expressed-homeobox (Hhex) protein plays an essential role in the establishment of HPD; however, the molecular mechanism remains elusive. Here, we show that zebrafish hhex-null mutants fail to develop the HPD system characterized by lacking the biliary marker Annexin A4 and the HPD marker sox9b. The hepatobiliary duct part of the mutant HPD system is replaced by an intrahepatic intestinal tube characterized by expressing the intestinal marker fatty acid-binding protein 2a (fabp2a). Cell lineage analysis showed that this intrahepatic intestinal tube is not originated from hepatocytes or cholangiocytes. Further analysis revealed that cdx1b and pdx1 are expressed ectopically in the intrahepatic intestinal tube and knockdown of cdx1b and pdx1 could restore the expression of sox9b in the mutant. Chromatin-immunoprecipitation analysis showed that Hhex binds to the promoters of pdx1 and cdx1b genes to repress their expression. We therefore propose that Hhex, Cdx1b, Pdx1, and Sox9b form a genetic network governing the patterning and morphogenesis of the HPD and digestive tract systems in zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Weidong Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Lingfei Luo
- College of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- College of Life Sciences, Southwest University, Chongqing, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| |
Collapse
|
15
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
16
|
Blood platelets stimulate cancer extravasation through TGFβ-mediated downregulation of PRH/HHEX. Oncogenesis 2020; 9:10. [PMID: 32019914 PMCID: PMC7000753 DOI: 10.1038/s41389-020-0189-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells go through a process known as epithelial–mesenchymal transition (EMT) during which they acquire the ability to migrate and invade extracellular matrix. Some cells also acquire the ability to move across a layer of endothelial cells to enter and exit the bloodstream; intra- and extravasation, respectively. The transcription factor PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) controls cell proliferation and cell migration/invasion in a range of cell types. Our previous work showed that PRH activity is downregulated in prostate cancer cells owing to increased inhibitory PRH phosphorylation and that this increases cell proliferation and invasion. PRH inhibits migration and invasion by prostate and breast epithelial cells in part by activating the transcription of Endoglin, a transforming growth factor β (TGFβ) co-receptor. Here we show that depletion of PRH in immortalised prostate epithelial cells results in increased extravasation in vitro. We show that blood platelets stimulate extravasation of cells with depleted PRH and that inhibition of TGFβ signalling blocks the effects of platelets on these cells. Moreover, TGFβ induces changes characteristic of EMT including decreased E-Cadherin expression and increased Snail expression. We show that in prostate cells PRH regulates multiple genes involved in EMT and TGFβ signalling. However, both platelets and TGFβ increase PRH phosphorylation. In addition, TGFβ increases binding of its effector pSMAD3 to the PRH/HHEX promoter and downregulates PRH protein and mRNA levels. Thus, TGFβ signalling downregulates PRH activity by multiple mechanisms and induces an EMT that facilitates extravasation and sensitises cells to TGFβ.
Collapse
|
17
|
Homeobox protein Hhex negatively regulates Treg cells by inhibiting Foxp3 expression and function. Proc Natl Acad Sci U S A 2019; 116:25790-25799. [PMID: 31792183 DOI: 10.1073/pnas.1907224116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulatory T (Treg) cells play an essential role in maintaining immune homeostasis, but the suppressive function of Treg cells can be an obstacle in the treatment of cancer and chronic infectious diseases. Here, we identified the homeobox protein Hhex as a negative regulator of Treg cells. The expression of Hhex was lower in Treg cells than in conventional T (Tconv) cells. Hhex expression was repressed in Treg cells by TGF-β/Smad3 signaling. Retroviral overexpression of Hhex inhibited the differentiation of induced Treg (iTreg) cells and the stability of thymic Treg (tTreg) cells by significantly reducing Foxp3 expression. Moreover, Hhex-overexpressing Treg cells lost their immunosuppressive activity and failed to prevent colitis in a mouse model of inflammatory bowel disease (IBD). Hhex expression was increased; however, Foxp3 expression was decreased in Treg cells in a delayed-type hypersensitivity (DTH) reaction, a type I immune reaction. Hhex directly bound to the promoters of Foxp3 and other Treg signature genes, including Il2ra and Ctla4, and repressed their transactivation. The homeodomain and N-terminal repression domain of Hhex were critical for inhibiting Foxp3 and other Treg signature genes. Thus, Hhex plays an essential role in inhibiting Treg cell differentiation and function via inhibition of Foxp3.
Collapse
|
18
|
Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MCJ, Danczyk G, Dutton JR, Hackett PB, Hu WS, Li L, Lu WC, Miller ZD, O'Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. Interspecies Organogenesis for Human Transplantation. Cell Transplant 2019; 28:1091-1105. [PMID: 31426664 PMCID: PMC6767879 DOI: 10.1177/0963689719845351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Blastocyst complementation combined with gene editing is an emerging approach in the
field of regenerative medicine that could potentially solve the worldwide problem of organ
shortages for transplantation. In theory, blastocyst complementation can generate fully
functional human organs or tissues, grown within genetically engineered livestock animals.
Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ
development can open a niche for human stem cells to occupy, thus generating human
tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung,
and skeletal muscle, as well as cells of the immune and nervous systems. Within each of
these organ systems, we identify and discuss (i) the common causes of organ failure; (ii)
the current state of regenerative therapies; and (iii) the candidate genes to knockout and
enable specific exogenous organ development via the use of blastocyst complementation. We
also highlight some of the current barriers limiting the success of blastocyst
complementation.
Collapse
Affiliation(s)
- Andrew T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | - Georgette Danczyk
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Perry B Hackett
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, USA
| | - Wei-Cheng Lu
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Zachary D Miller
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | | | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Maple Shiao
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Nikolas G Toman
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Hui Xie
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA.,Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
19
|
Hhex induces promyelocyte self-renewal and cooperates with growth factor independence to cause myeloid leukemia in mice. Blood Adv 2019; 2:347-360. [PMID: 29453249 DOI: 10.1182/bloodadvances.2017013243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 12/16/2022] Open
Abstract
The hematopoietically expressed homeobox (Hhex) transcription factor is overexpressed in human myeloid leukemias. Conditional knockout models of murine acute myeloid leukemia indicate that Hhex maintains leukemia stem cell self-renewal by enabling Polycomb-mediated epigenetic repression of the Cdkn2a tumor suppressor locus, encoding p16Ink4a and p19Arf However, whether Hhex overexpression also affects hematopoietic differentiation is unknown. To study this, we retrovirally overexpressed Hhex in hematopoietic progenitors. This enabled serial replating of myeloid progenitors, leading to the rapid establishment of interleukin-3 (IL-3)-dependent promyelocytic cell lines. Use of a Hhex-ERT2 fusion protein demonstrated that continuous nuclear Hhex is required for transformation, and structure function analysis demonstrated a requirement of the DNA-binding and N-terminal-repressive domains of Hhex for promyelocytic transformation. This included the N-terminal promyelocytic leukemia protein (Pml) interaction domain, although deletion of Pml failed to prevent Hhex-induced promyelocyte transformation, implying other critical partners. Furthermore, deletion of p16Ink4a or p19Arf did not promote promyelocyte transformation, indicating that repression of distinct Hhex target genes is required for this process. Indeed, transcriptome analysis showed that Hhex overexpression resulted in repression of several myeloid developmental genes. To test the potential for Hhex overexpression to contribute to leukemic transformation, Hhex-transformed promyelocyte lines were rendered growth factor-independent using a constitutively active IL-3 receptor common β subunit (βcV449E). The resultant cell lines resulted in a rapid promyelocytic leukemia in vivo. Thus, Hhex overexpression can contribute to myeloid leukemia via multiple mechanisms including differentiation blockade and enabling epigenetic repression of the Cdkn2a locus.
Collapse
|
20
|
Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture – a microarray assays. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2018-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
The correct oviductal development and morphogenesis of its epithelium are crucial factors influencing female fertility. Oviduct is involved in maintaining an optimal environment for gametes and preimplantation embryo development; secretory oviductal epithelial cells (OECs) synthesize components of oviductal fluid. Oviductal epithelium also participates in sperm binding and its hyperactivation. For better understanding of the genetic bases that underlay porcine oviductal development, OECs were isolated from porcine oviducts and established long-term primary culture. A microarray approach was utilized to determine the differentially expressed genes during specific time periods. Cells were harvested on day 7, 15 and 30 of in vitro primary culture and their RNA was isolated. Gene expression was analyzed and statistical analysis was performed. 48 differentially expressed genes belonging to “tube morphogenesis”, “tube development”, “morphogenesis of an epithelium”, “morphogenesis of branching structure” and “morphogenesis of branching epithelium” GO BP terms were selected, of which 10 most upregulated include BMP4, ARG1, SLIT2, FGFR1, DAB2, TNC, EPAS1, HHEX, ITGB3 and LOX. The results help to shed light on the porcine oviductal development and its epithelial morphogenesis, and show that after long-term culture the OECs still proliferate and maintain their tube forming properties.
Collapse
|
21
|
HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Nat Commun 2018; 9:2704. [PMID: 30006544 PMCID: PMC6045644 DOI: 10.1038/s41467-018-05039-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis. VEGFC, its receptor FLT4, and transcriptional effector PROX1 control formation of the lymphatic system but how is unclear. Here, the authors show that the transcription factor hematopoietically expressed homeobox (HHEX) regulates VEGFC, FLT4 and PROX1 in fish and mammals during angiogenic sprouting and lymphatic formation.
Collapse
|
22
|
Moreira R, Pereiro P, Balseiro P, Milan M, Pauletto M, Bargelloni L, Novoa B, Figueras A. Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:292-306. [PMID: 29481906 DOI: 10.1016/j.dci.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of Mytilus galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to juveniles. For this purpose, after conducting a 454 sequencing of the transcriptomes of mussel hemocytes, adult tissues and larvae, a new DNA microarray was designed and developed. The studied developmental stages: unfertilized oocytes, veliger, pediveliger, settled larvae and juveniles, showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny. Our results show that oocytes present a distinct and characteristic transcriptome. After metamorphosis, both settled larvae and juveniles showed a very similar transcriptome, with no enriched GO terms found between these two stages. This suggests: 1.- the progressive loss of RNA of maternal origin through larval development and 2.- the stabilization of the gene expression after settlement. On the other hand during metamorphosis a specific profile of differentially expressed genes was found. These genes were related to processes such as differentiation and biosynthesis. Processes related to the immune response were strongly down regulated. These suggest a development commitment at the expense of other non-essential functions, which are temporary set aside. Immune genes such as antimicrobial peptides suffer a decreased expression during metamorphosis. In fact, we found that the oocytes which express a higher quantity of genes such as myticins are more likely to reach success of the offspring, compared to oocytes poor in such mRNAs, whose progeny died before reaching metamorphosis.
Collapse
Affiliation(s)
- Rebeca Moreira
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain; Uni Research Environment, Uni Research AS, Nygårdsgaten 112, 5008 Bergen, Norway.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| |
Collapse
|
23
|
Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, Xu X, Gao D, Li Q, Liu Z. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Genet Genomics 2017; 293:587-599. [PMID: 29230585 DOI: 10.1007/s00438-017-1406-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250 K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfish × male blue catfish) with female channel catfish. A genomic region of approximately 1 Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.
Collapse
Affiliation(s)
- Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- The Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
24
|
Wadey KS, Brown BA, Sala-Newby GB, Jayaraman PS, Gaston K, George SJ. Protein kinase CK2 inhibition suppresses neointima formation via a proline-rich homeodomain-dependent mechanism. Vascul Pharmacol 2017; 99:34-44. [PMID: 28927755 PMCID: PMC5718878 DOI: 10.1016/j.vph.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022]
Abstract
Neointimal hyperplasia is a product of VSMC replication and consequent accumulation within the blood vessel wall. In this study, we determined whether inhibition of protein kinase CK2 and the resultant stabilisation of proline-rich homeodomain (PRH) could suppress VSMC proliferation. Both silencing and pharmacological inhibition of CK2 with K66 antagonised replication of isolated VSMCs. SiRNA-induced knockdown as well as ectopic overexpression of proline-rich homeodomain indicated that PRH disrupts cell cycle progression. Mutation of CK2 phosphorylation sites Ser163 and Ser177 within the PRH homeodomain enabled prolonged cell cycle arrest by PRH. Concomitant knockdown of PRH and inhibition of CK2 with K66 indicated that the anti-proliferative action of K66 required the presence of PRH. Both K66 and adenovirus-mediated gene transfer of S163C:S177C PRH impaired neointima formation in human saphenous vein organ cultures. Importantly, neither intervention had notable effects on cell cycle progression, cell survival or migration in cultured endothelial cells.
Collapse
MESH Headings
- Animals
- Casein Kinase II/antagonists & inhibitors
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/enzymology
- Humans
- Hyperplasia
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phosphorylation
- Proline-Rich Protein Domains
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
- Rats
- Saphenous Vein/drug effects
- Saphenous Vein/enzymology
- Saphenous Vein/pathology
- Signal Transduction/drug effects
- Tissue Culture Techniques
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- K S Wadey
- School of Clinical Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK; Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - B A Brown
- School of Clinical Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - G B Sala-Newby
- School of Clinical Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - P-S Jayaraman
- Division of Immunity and Infection, College of Medicine, University Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - K Gaston
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - S J George
- School of Clinical Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
25
|
Proline-Rich Homeodomain protein (PRH/HHEX) is a suppressor of breast tumour growth. Oncogenesis 2017; 6:e346. [PMID: 28604763 PMCID: PMC5519192 DOI: 10.1038/oncsis.2017.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022] Open
Abstract
Breast tumours progress from hyperplasia to ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) is a transcription factor that displays both tumour suppressor and oncogenic activity in different disease contexts; however, the role of PRH in breast cancer is poorly understood. Here we show that nuclear localization of the PRH protein is decreased in DCIS and IBC compared with normal breast. Our previous work has shown that PRH phosphorylation by protein kinase CK2 prevents PRH from binding to DNA and regulating the transcription of multiple genes encoding growth factors and growth factor receptors. Here we show that transcriptionally inactive phosphorylated PRH is elevated in DCIS and IBC compared with normal breast. To determine the consequences of PRH loss of function in breast cancer cells, we generated inducible PRH depletion in MCF-7 cells. We show that PRH depletion results in increased MCF-7 cell proliferation in part at least due to increased vascular endothelial growth factor signalling. Moreover, we demonstrate that PRH depletion increases the formation of breast cancer cells with cancer stem cell-like properties. Finally, and in keeping with these findings, we show that PRH overexpression inhibits the growth of mammary tumours in mice. Collectively, these data indicate that PRH plays a tumour suppressive role in the breast and they provide an explanation for the finding that low PRH mRNA levels are associated with a poor prognosis in breast cancer.
Collapse
|
26
|
Wu T, Hadjantonakis AK, Nowotschin S. Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biol Open 2017; 6:678-687. [PMID: 28288969 PMCID: PMC5450328 DOI: 10.1242/bio.024638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live imaging is the requisite tool for studying cell behaviors driving embryonic development and tissue formation. Genetically encoded reporters expressed under cell type-specific cis-regulatory elements that drive fluorescent protein expression at sufficient levels for visualization in living specimens have become indispensable for these studies. Increasingly dual-color (red-green) imaging is used for studying the coordinate behaviors of two cell populations of interest, identifying and characterizing subsets within broader cell populations or subcellular features. Many reporters have been generated using green fluorescent protein (GFP) due to its brightness and developmental neutrality. To compliment the large cohort of available GFP reporters that label cellular populations in early mouse embryos, we have generated a red fluorescent protein (RFP)-based transgenic reporter using the red fluorescent tdTomato protein driven by cis-regulatory elements from the mouse Hex locus. The Hex-tdTomato reporter predominantly labels endodermal cells. It is a bright RFP-based reporter of the distal visceral endoderm (DVE)/anterior visceral endoderm (AVE), a migratory population within the early post-implantation embryo. It also labels cells of the definitive endoderm (DE), which emerges at gastrulation. Dual-color visualization of these different early endodermal populations will provide a detailed understanding of the cellular behaviors driving key morphogenetic events involving the endoderm. Summary: A red fluorescent reporter under the regulatory control of the mouse Hex gene permits identification of different endodermal populations and visualization of dynamic cellular behaviors driving endoderm specification and morphogenesis.
Collapse
Affiliation(s)
- Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
27
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
28
|
CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis 2017; 6:e293. [PMID: 28134934 PMCID: PMC5294245 DOI: 10.1038/oncsis.2016.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/16/2015] [Accepted: 01/26/2016] [Indexed: 01/02/2023] Open
Abstract
PRH/HHEX (proline-rich homeodomain protein/haematopoietically expressed homeobox protein) is a transcription factor that controls cell proliferation, cell differentiation and cell migration. Our previous work has shown that in haematopoietic cells, Protein Kinase CK2-dependent phosphorylation of PRH results in the inhibition of PRH DNA-binding activity, increased cleavage of PRH by the proteasome and the misregulation of PRH target genes. Here we show that PRH and hyper-phosphorylated PRH are present in normal prostate epithelial cells, and that hyper-phosphorylated PRH levels are elevated in benign prostatic hyperplasia, prostatic adenocarcinoma, and prostate cancer cell lines. A reduction in PRH protein levels increases the motility of normal prostate epithelial cells and conversely, PRH over-expression inhibits prostate cancer cell migration and blocks the ability of these cells to invade an extracellular matrix. We show that CK2 over-expression blocks the repression of prostate cancer cell migration and invasion by PRH. In addition, we show that PRH knockdown in normal immortalised prostate cells results in an increase in the population of cells capable of colony formation in Matrigel, as well as increased cell invasion and decreased E-cadherin expression. Inhibition of CK2 reduces PRH phosphorylation and reduces prostate cell proliferation but the effects of CK2 inhibition on cell proliferation are abrogated in PRH knockdown cells. These data suggest that the increased phosphorylation of PRH in prostate cancer cells increases both cell proliferation and tumour cell migration/invasion.
Collapse
|
29
|
Shields BJ, Jackson JT, Metcalf D, Shi W, Huang Q, Garnham AL, Glaser SP, Beck D, Pimanda JE, Bogue CW, Smyth GK, Alexander WS, McCormack MP. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a. Genes Dev 2016; 30:78-91. [PMID: 26728554 PMCID: PMC4701980 DOI: 10.1101/gad.268425.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, Shields et al. demonstrate that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. The findings in this study describe for the first time a nonclustered homeobox transcription factor that is essential for AML initiation and maintenance and provide mechanistic insight into these processes. Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal.
Collapse
Affiliation(s)
- Benjamin J Shields
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Jacob T Jackson
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Donald Metcalf
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Wei Shi
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia; Computing and Information Systems, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Qiutong Huang
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Alexandra L Garnham
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Stefan P Glaser
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Clifford W Bogue
- Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Gordon K Smyth
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia; Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Matthew P McCormack
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
30
|
Saulle E, Petronelli A, Pelosi E, Coppotelli E, Pasquini L, Ilari R, Lo-Coco F, Testa U. PML-RAR alpha induces the downmodulation of HHEX: a key event responsible for the induction of an angiogenetic response. J Hematol Oncol 2016; 9:33. [PMID: 27052408 PMCID: PMC4823896 DOI: 10.1186/s13045-016-0262-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Background Recent studies indicate that angiogenesis is important in the pathogenesis of acute myeloid leukemias (AMLs). Among the various AMLs, the bone marrow angiogenetic response is particularly pronounced in acute promyelocytic leukemia (APL). However, the molecular mechanisms responsible for this angiogenetic response are largely unknown. In the present study, we have explored the role of HHEX, a homeodomain transcription factor, as a possible mediator of the pro-angiogenetic response observed in APL. This transcription factor seems to represent an ideal candidate for this biologic function because it is targeted by PML-RARα, is capable of interaction with PML and PML-RARα, and acts as a regulator of the angiogenetic response. Methods We used various cellular systems of APL, including primary APL cells and leukemic cells engineered to express PML-RARα, to explore the role of the PML-RARα fusion protein on HHEX expression. Molecular and biochemical techniques have been used to investigate the mechanisms through which PML-RARα downmodulates HHEX and the functional consequences of this downmodulation at the level of the expression of various angiogenetic genes, cell proliferation and differentiation. Results Our results show that HHEX expression is clearly downmodulated in APL and that this effect is directly mediated by a repressive targeting of the HHEX gene promoter by PML-RARα. Studies carried out in primary APL cells and in a cell line model of APL with inducible PML-RARα expression directly support the view that this fusion protein through HHEX downmodulation stimulates the expression of various genes involved in angiogenesis and inhibits cell differentiation. Conclusions Our data suggest that HHEX downmodulation by PML-RARα is a key event during APL pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0262-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ernestina Saulle
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Petronelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Coppotelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pasquini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata" and Fondazione Santa Lucia, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
31
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
32
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
33
|
Erkenbrack EM, Ako-Asare K, Miller E, Tekelenburg S, Thompson JR, Romano L. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Dev Genes Evol 2016; 226:37-45. [PMID: 26781941 DOI: 10.1007/s00427-015-0527-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
Diverse sampling of organisms across the five major classes in the phylum Echinodermata is beginning to reveal much about the structure and function of gene regulatory networks (GRNs) in development and evolution. Sea urchins are the most studied clade within this phylum, and recent work suggests there has been dramatic rewiring at the top of the skeletogenic GRN along the lineage leading to extant members of the euechinoid sea urchins. Such rewiring likely accounts for some of the observed developmental differences between the two major subclasses of sea urchins-cidaroids and euechinoids. To address effects of topmost rewiring on downstream GRN events, we cloned four downstream regulatory genes within the skeletogenic GRN and surveyed their spatiotemporal expression patterns in the cidaroid Eucidaris tribuloides. We performed phylogenetic analyses with homologs from other non-vertebrate deuterostomes and characterized their spatiotemporal expression by quantitative polymerase chain reaction (qPCR) and whole-mount in situ hybridization (WMISH). Our data suggest the erg-hex-tgif subcircuit, a putative GRN kernel, exhibits a mesoderm-specific expression pattern early in Eucidaris development that is directly downstream of the initial mesodermal GRN circuitry. Comparative analysis of the expression of this subcircuit in four echinoderm taxa allowed robust ancestral state reconstruction, supporting hypotheses that its ancestral function was to stabilize the mesodermal regulatory state and that it has been co-opted and deployed as a unit in mesodermal subdomains in distantly diverged echinoderms. Importantly, our study supports the notion that GRN kernels exhibit structural and functional modularity, locking down and stabilizing clade-specific, embryonic regulatory states.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Kayla Ako-Asare
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Emily Miller
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Saira Tekelenburg
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Jeffrey R Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laura Romano
- Department of Biology, Denison University, Granville, OH, 43023, USA
| |
Collapse
|
34
|
Simpson MT, Venkatesh I, Callif BL, Thiel LK, Coley DM, Winsor KN, Wang Z, Kramer AA, Lerch JK, Blackmore MG. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci 2015; 68:272-83. [PMID: 26306672 DOI: 10.1016/j.mcn.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023] Open
Abstract
Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension.
Collapse
Affiliation(s)
- Matthew T Simpson
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Ishwariya Venkatesh
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Ben L Callif
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Laura K Thiel
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Denise M Coley
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Kristen N Winsor
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Zimei Wang
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Audra A Kramer
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Jessica K Lerch
- The Ohio State University, The Center for Brain and Spinal Cord Repair, The Department of Neuroscience, 43210, United States
| | - Murray G Blackmore
- Marquette University, Department of Biomedical Sciences, 53201, United States.
| |
Collapse
|
35
|
Goodings C, Smith E, Mathias E, Elliott N, Cleveland SM, Tripathi RM, Layer JH, Chen X, Guo Y, Shyr Y, Hamid R, Du Y, Davé UP. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation. Stem Cells 2015; 33:2628-41. [PMID: 25968920 DOI: 10.1002/stem.2049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/03/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023]
Abstract
Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Natalina Elliott
- MRC Molecular Hematology Unit, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Xi Chen
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yan Guo
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yu Shyr
- Department of Biostatistics, Center for Quantitative Sciences
| | - Rizwan Hamid
- Division of Medical Genetics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Utpal P Davé
- Department of Cancer Biology.,Division of Hematology/Oncology.,Tennessee Valley Healthcare System, Nashville VA, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Abstract
The hematopoietically expressed homeobox gene, Hhex, is a transcription factor that is important for development of definitive hematopoietic stem cells (HSCs) and B cells, and that causes T-cell leukemia when overexpressed. Here, we have used an Hhex inducible knockout mouse model to study the role of Hhex in adult hematopoiesis. We found that loss of Hhex was tolerated in HSCs and myeloid lineages, but resulted in a progressive loss of B lymphocytes in the circulation. This was accompanied by a complete loss of B-cell progenitors in the bone marrow and of transitional B-cell subsets in the spleen. In addition, transplantation and in vitro culture experiments demonstrated an almost complete failure of Hhex-null HSCs to contribute to lymphoid lineages beyond the common lymphoid precursor stage, including T cells, B cells, NK cells, and dendritic cells. Gene expression analysis of Hhex-deleted progenitors demonstrated deregulated expression of a number of cell cycle regulators. Overexpression of one of these, cyclin D1, could rescue the B-cell developmental potential of Hhex-null lymphoid precursors. Thus, Hhex is a key regulator of early lymphoid development, functioning, at least in part, via regulation of the cell cycle.
Collapse
|
37
|
Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA, Elliott N, Yi Y, Chen X, Downing J, Mullighan C, Swing DA, Tessarollo L, Li L, Love P, Jenkins NA, Copeland NG, Thompson MA, Du Y, Davé UP. LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways. PLoS One 2014; 9:e85883. [PMID: 24465765 PMCID: PMC3897537 DOI: 10.1371/journal.pone.0085883] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 02/03/2023] Open
Abstract
The LMO2 oncogene is deregulated in the majority of human T-cell leukemia cases and in most gene therapy-induced T-cell leukemias. We made transgenic mice with enforced expression of Lmo2 in T-cells by the CD2 promoter/enhancer. These transgenic mice developed highly penetrant T-ALL by two distinct patterns of gene expression: one in which there was concordant activation of Lyl1, Hhex, and Mycn or alternatively, with Notch1 target gene activation. Most strikingly, this gene expression clustering was conserved in human Early T-cell Precursor ALL (ETP-ALL), where LMO2, HHEX, LYL1, and MYCN were most highly expressed. We discovered that HHEX is a direct transcriptional target of LMO2 consistent with its concordant gene expression. Furthermore, conditional inactivation of Hhex in CD2-Lmo2 transgenic mice markedly attenuated T-ALL development, demonstrating that Hhex is a crucial mediator of Lmo2's oncogenic function. The CD2-Lmo2 transgenic mice offer mechanistic insight into concordant oncogene expression and provide a model for the highly treatment-resistant ETP-ALL subtype.
Collapse
Affiliation(s)
- Stephen Smith
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Rati Tripathi
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Charnise Goodings
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Susan Cleveland
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Elizabeth Mathias
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - J. Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Natalina Elliott
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Yajun Yi
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Liqi Li
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Love
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy A. Jenkins
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Neal G. Copeland
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Mary Ann Thompson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Utpal P. Davé
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|
38
|
Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene 2013; 33:5592-600. [PMID: 24240683 DOI: 10.1038/onc.2013.496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022]
Abstract
PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-β co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.
Collapse
Affiliation(s)
- R M Kershaw
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - Y H Siddiqui
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - D Roberts
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - P-S Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - K Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Abstract
Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi‑segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle.
Collapse
Affiliation(s)
- Sarah Katharina Fehling
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| | | | | |
Collapse
|
40
|
Noy P, Gaston K, Jayaraman PS. Dasatinib inhibits leukaemic cell survival by decreasing PRH/Hhex phosphorylation resulting in increased repression of VEGF signalling genes. Leuk Res 2012; 36:1434-7. [PMID: 22874537 PMCID: PMC3462996 DOI: 10.1016/j.leukres.2012.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/20/2012] [Accepted: 07/16/2012] [Indexed: 10/29/2022]
Abstract
The PRH/Hhex transcription factor represses multiple genes in the VEGF signalling pathway (VSP) to inhibit myeloid cell survival. Protein kinase CK2 phosphorylates PRH and counteracts the inhibitory effect of this protein on cell survival by blocking the repression of VSP genes. Here we show that the BCR-ABL/Src kinase inhibitor dasatinib decreases PRH phosphorylation and increases PRH-dependent repression of Vegf and Vegfr-1. Moreover in the absence of PRH, dasatinib does not inhibit cell survival as effectively as in PRH expressing cells. Thus the re-establishment of gene control by PRH is in part responsible for the therapeutic effects of dasatinib.
Collapse
Affiliation(s)
- Peter Noy
- School Immunity and Infection, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
41
|
Noy P, Sawasdichai A, Jayaraman PS, Gaston K. Protein kinase CK2 inactivates PRH/Hhex using multiple mechanisms to de-repress VEGF-signalling genes and promote cell survival. Nucleic Acids Res 2012; 40:9008-20. [PMID: 22844093 PMCID: PMC3467080 DOI: 10.1093/nar/gks687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinase CK2 promotes cell survival and the activity of this kinase is elevated in several cancers including chronic myeloid leukaemia. We have shown previously that phosphorylation of the Proline-Rich Homeodomain protein (PRH/Hhex) by CK2 inhibits the DNA-binding activity of this transcription factor. Furthermore, PRH represses the transcription of multiple genes encoding components of the VEGF-signalling pathway and thereby influences cell survival. Here we show that the inhibitory effects of PRH on cell proliferation are abrogated by CK2 and that CK2 inhibits the binding of PRH at the Vegfr-1 promoter. Phosphorylation of PRH by CK2 also decreases the nuclear association of PRH and induces its cleavage by the proteasome. Moreover, cleavage of phosphorylated PRH produces a stable truncated cleavage product which we have termed PRHΔC (HhexΔC). PRHΔC acts as a transdominant negative regulator of full-length PRH by sequestering TLE proteins that function as PRH co-repressors. We show that this novel regulatory mechanism results in the alleviation of PRH-mediated repression of Vegfr-1. We suggest that the re-establishment of PRH function through inhibition of CK2 could be of value in treatment of myeloid leukaemias, as well as other tumour types in which PRH is inactivated by phosphorylation.
Collapse
Affiliation(s)
- Peter Noy
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
42
|
Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos. Proc Natl Acad Sci U S A 2012; 109:8594-9. [PMID: 22592794 DOI: 10.1073/pnas.1206547109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver and ventral pancreas develop from neighboring territories within the endoderm of gastrulae. ventral pancreatic precursor 1 (vpp1) is a marker gene that is differentially expressed in a cell population within the dorsal endoderm in a pattern partially overlapping with that of hematopoietically expressed homeobox (hhex) during gastrulation. In tail bud embryos, vpp1 expression specifically demarcates two ventral pancreatic buds, whereas hhex expression is mainly restricted to the liver diverticulum. Ectopic expression of a critical dose of hhex led to a greatly enlarged vpp1-positive domain and, subsequently, to the formation of giant ventral pancreata, putatively by conversion of intestinal to ventral pancreatic precursor cells. Conversely, antisense morpholino oligonucleotide-mediated knockdown of hhex resulted in a down-regulation of vpp1 expression and a specific loss of the ventral pancreas. Furthermore, titration of hhex with a dexamethasone-inducible hhex-VP16GR fusion construct suggested that endogenous hhex activity during gastrulation is essential for the formation of ventral pancreatic progenitor cells. These observations suggest that, beyond its role in liver development, hhex controls specification of a vpp1-positive endodermal cell population during gastrulation that is required for the formation of the ventral pancreas.
Collapse
|
43
|
The proline rich homeodomain protein PRH/Hhex forms stable oligomers that are highly resistant to denaturation. PLoS One 2012; 7:e35984. [PMID: 22540015 PMCID: PMC3335068 DOI: 10.1371/journal.pone.0035984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background Many transcription factors control gene expression by binding to specific DNA sequences at or near the genes that they regulate. However, some transcription factors play more global roles in the control of gene expression by altering the architecture of sections of chromatin or even the whole genome. The ability to form oligomeric protein assemblies allows many of these proteins to manipulate extensive segments of DNA or chromatin via the formation of structures such as DNA loops or protein-DNA fibres. Principal Findings Here we show that the proline rich homeodomain protein PRH/Hhex forms predominantly octameric and/or hexadecameric species in solution as well as larger assemblies. We show that these assemblies are highly stable resisting denaturation by temperature and chemical denaturants. Conclusion These data indicate that PRH is functionally and structurally related to the Lrp/AsnC family of proteins, a group of proteins that are known to act globally to control gene expression in bacteria and archaea.
Collapse
|
44
|
Morimoto R, Obinata A. Overexpression of hematopoietically expressed homeoprotein induces nonapoptotic cell death in mouse prechondrogenic ATDC5 cells. Biol Pharm Bull 2011; 34:1589-95. [PMID: 21963500 DOI: 10.1248/bpb.34.1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological cell death is an essential event in normal development and maintenance of homeostasis. Recently, the morphological and pharmacological characteristics of programmed cell death, which are distinct from those of apoptosis under physiological and pathological conditions, have been reported. However, the molecular mechanism and executioner of this type of cell death are unknown. We show that overexpression of hematopoietically expressed homeoprotein (Hex), a homeoprotein of divergent type, and enhanced green fluorescent protein (EGFP) fusion protein (Hex-EGFP) induces cell death in mouse chondrogenic cell line ATDC5. The expression rate of Hex-EGFP decreased more rapidly than that of EGFP 96 h after transfection. The time-lapse image of living cells revealed the Hex-EGFP-positive cells rapidly died in a necrosis-like fashion. The nuclei of Hex-EGFP-expressing cells were rarely fragmented; however, these cells were negative for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. The expression rate of Hex-EGFP clearly increased by treatment with radical scavengers, propyl gallate and butylated hydroxyanisole, slightly increased with a caspase inhibitor, zVAD-fmk, and was not affected by N-acetyl cysteine in ATDC5 cells. A fluorescent probe indicated that reactive oxygen species (ROS) were localized near the nuclei in Hex-EGFP-positive cells. In differentiated ATDC5 cells, as hypertrophic chondrocyte-like cells, the expression rate of Hex-EGFP increased above that in uninduced ATDC5 cells. These results suggest that Hex induces nonapoptotic cell death through local accumulation of reactive oxygen species, and mature chondrocytes, which express Hex, might be able to escape cell death induced by Hex in cartilage.
Collapse
Affiliation(s)
- Riyo Morimoto
- Laboratory of Pharmaceutical Science, Faculty of Physiological Chemistry II, Teikyo University, Sagamihara 252–5195, Japan.
| | | |
Collapse
|
45
|
A potential role for the homeoprotein Hhex in hepatocellular carcinoma progression. Med Oncol 2011; 29:1059-67. [PMID: 21656028 DOI: 10.1007/s12032-011-9989-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 01/15/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common primary malignant tumor of the liver, often associated with the dysregulation of transcriptional pathways involved in cell growth and differentiation. The hematopoietically expressed homeobox protein (Hhex) is an important transcription factor throughout liver development and is essential to liver bud formation and hepatoblast differentiation. Here, we report a relationship between Hhex expression and HCC. First, adenovirus-mediated Hhex delivery into the hepatoma cell line, Hepa1-6, resulted in decreased expression of several proto-oncogenes (c-Jun and Bcl2), increased expression of some tumor suppressor genes (P53 and Rb), and enhanced expression of a cluster of hepatocytic and bile ductular markers. Second, Hhex expression significantly attenuated Hepa1-6 tumorigenicity in nude mice. Third, we report a correlation between Hhex expression and the differentiation state of human HCC. In 24 cases of clinical specimens, there was a significant difference in Hhex expression between poorly differentiated HCC and well-differentiated HCC (P < 0.001). Taken together, these results indicate that Hhex is a potential candidate molecular marker for HCC pathological evaluation, suggesting a need to evaluate Hhex as a potential target for therapeutic intervention.
Collapse
|
46
|
Morimoto R, Yamamoto A, Akimoto Y, Obinata A. Homeoprotein Hex is expressed in mouse developing chondrocytes. J Biochem 2011; 150:61-71. [PMID: 21454303 DOI: 10.1093/jb/mvr039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endochondral ossification is a complex process involving the formation of cartilage and the subsequent replacement by mineralized bone. Although the proliferation and differentiation of chondrocytes are strictly regulated, the molecular mechanisms involved are not completely understood. Here, we show that a divergent-type homeobox gene, hematopoietically expressed homeobox gene (HEX), is expressed in mouse chondrogenic cell line ATDC5. The expression of Hex protein drastically increased during differentiation. The chondrogenic differentiation-enhanced expression of Hex protein was also observed in chondrocytes in the tibia of embryonic day 15.5 (E15.5) mouse embryos. The localization of Hex protein in the chondrocytes of the tibia changed in association with maturation; namely, there was Hex protein in the cytoplasm near the endoplasmic reticulum (ER) in resting chondrocytes, which moved to the nucleus in prehypertrophic chondrocytes, and thereafter entered the ER in hypertrophic chondrocytes. These results suggest Hex expression and subcellular localization are associated with chondrocyte maturation.
Collapse
Affiliation(s)
- Riyo Morimoto
- Department of Physiological Chemistry II, Faculty of Pharmaceutical Science, Teikyo University, Kanagawa, Japan.
| | | | | | | |
Collapse
|
47
|
Ye W, Lin W, Tartakoff AM, Tao T. Karyopherins in nuclear transport of homeodomain proteins during development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1654-62. [PMID: 21256166 DOI: 10.1016/j.bbamcr.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/08/2010] [Accepted: 01/09/2011] [Indexed: 01/12/2023]
Abstract
Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on (a) the roles of karyopherins for import and export of homeoproteins, (b) the regulation of their nuclear transport during development, and (c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Wenduo Ye
- Xiamen University School of Life Sciences, Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
48
|
Locker J. Transcriptional Control of Hepatocyte Differentiation. MOLECULAR PATHOLOGY LIBRARY 2011. [DOI: 10.1007/978-1-4419-7107-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Soufi A, Sawasdichai A, Shukla A, Noy P, Dafforn T, Smith C, Jayaraman PS, Gaston K. DNA compaction by the higher-order assembly of PRH/Hex homeodomain protein oligomers. Nucleic Acids Res 2010; 38:7513-25. [PMID: 20675722 PMCID: PMC2995075 DOI: 10.1093/nar/gkq659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein self-organization is essential for the establishment and maintenance of nuclear architecture and for the regulation of gene expression. We have shown previously that the Proline-Rich Homeodomain protein (PRH/Hex) self-assembles to form oligomeric complexes that bind to arrays of PRH binding sites with high affinity and specificity. We have also shown that many PRH target genes contain suitably spaced arrays of PRH sites that allow this protein to bind and regulate transcription. Here, we use analytical ultracentrifugation and electron microscopy to further characterize PRH oligomers. We use the same techniques to show that PRH oligomers bound to long DNA fragments self-associate to form highly ordered assemblies. Electron microscopy and linear dichroism reveal that PRH oligomers can form protein-DNA fibres and that PRH is able to compact DNA in the absence of other proteins. Finally, we show that DNA compaction is not sufficient for the repression of PRH target genes in cells. We conclude that DNA compaction is a consequence of the binding of large PRH oligomers to arrays of binding sites and that PRH is functionally and structurally related to the Lrp/AsnC family of proteins from bacteria and archaea, a group of proteins formerly thought to be without eukaryotic equivalents.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The development and emergence of the hematopoietic stem cell involves a series of tightly regulated molecular events that are not well characterized. The hematopoietically expressed homeobox (Hhex) gene, a member of the homeobox gene family, is an essential regulator of embryogenesis and hematopoietic progenitor development. To investigate the role of Hhex in hematopoiesis we adapted a murine embryonic stem (ES) cell coculture system, in which ES cells can differentiate into CD41(+) and CD45(+) hematopoietic progenitors in vitro. Our results show that in addition to delayed hemangioblast development, Hhex(-/-) ES-derived progeny accumulate as CD41(+) and CD41(+)c-kit(+) cells, or the earliest definitive hematopoietic progenitors. In addition, Hhex(-/-) ES-derived progeny display a significantly reduced ability to develop into mature CD45(+) hematopoietic cells. The observed reduction in hematopoietic maturation was accompanied by reduced proliferation, because Hhex(-/-) CD41(+)CD45(-)c-kit(+) hematopoietic progenitors accumulated in the G(2) phase of the cell cycle. Thus, Hhex is a critical regulator of hematopoietic development and is necessary for the maturation and proliferation of the earliest definitive hematopoietic progenitors.
Collapse
|