1
|
Huang X, Zhao X, Li Y, Feng Y, Zhang G, Wang Q, Xu C. Combining Bulk and Single Cell RNA-Sequencing Data to Identify Hub Genes of Fibroblasts in Dilated Cardiomyopathy. J Inflamm Res 2024; 17:5375-5388. [PMID: 39161677 PMCID: PMC11330748 DOI: 10.2147/jir.s470860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is the second leading cause of heart failure, with intricate pathophysiological underpinnings. In order to shed fresh light on the mechanistic research of DCM, we combined bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data to examine significant cells and genes implicated in the disease. Methods This analysis employed publicly accessible bulk RNA-seq and scRNA-seq DCM datasets. The scRNA-seq data underwent normalization, principal component, and t-distribution stochastic neighbor embedding analysis. Cell-to-cell communication networks and activity analysis were conducted using CellChat. Utilizing enrichment analysis, the marker genes' role in the active cells was evaluated. After screening by limma software and weighted gene co-expression network analysis, the differentially expressed genes (DEGs) served as hub genes. Furthermore, these hub genes were subjected to immunological studies, transcription factor expression, and gene set enrichment. Lastly, the expression of the four hub genes and their connection to DCM were verified using the rat models. Results Fibroblasts and monocytes were chosen as hub cells from among the eight identified cell clusters; their marker genes intersected with DEGs to yield six hub genes. In addition, the six hub genes and the essential module genes intersected to yield four essential genes (ASPN, SFRP4, LUM, and FRZB) that were connected to the Wnt signaling pathway and highly expressed in fibroblast. The four hub DEGs had an expression pattern in the DCM rat model experiment results that was in line with the findings of the bioinformatics study. Additionally, there was a strong correlation between decreased cardiac function and the up-regulation of ASPN, SFRP4, LUM, and FRZB. Conclusion Ultimately, bulk RNA-seq and scRNA-seq data identified fibroblasts and monocytes as the main cell types implicated in DCM. The highly expressed genes ASPN, FRZB, LUM, and SFRP4 in fibroblasts may aid in the mechanistic investigation of DCM.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Yaping Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Yangmeng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Guoan Zhang
- Department of Cardiovascular Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Qiyu Wang
- Department of Graduate School, Yan’an University, Yan’an, People’s Republic of China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| |
Collapse
|
2
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
3
|
Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. SCIENCE ADVANCES 2024; 10:eadk6610. [PMID: 38457502 PMCID: PMC10923514 DOI: 10.1126/sciadv.adk6610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/03/2024] [Indexed: 03/10/2024]
Abstract
Limited motor activity due to the loss of natural structure impedes recovery in patients suffering from tendon-to-bone injury. Conventional biomaterials focus on strengthening the regenerative ability of tendons/bones to restore natural structure. However, owing to ignoring the immune environment and lack of multi-tissue regenerative function, satisfactory outcomes remain elusive. Here, combined manganese silicate (MS) nanoparticles with tendon/bone-related cells, the immunomodulatory multicellular scaffolds were fabricated for integrated regeneration of tendon-to-bone. Notably, by integrating biomimetic cellular distribution and MS nanoparticles, the multicellular scaffolds exhibited diverse bioactivities. Moreover, MS nanoparticles enhanced the specific differentiation of multicellular scaffolds via regulating macrophages, which was mainly attributed to the secretion of PGE2 in macrophages induced by Mn ions. Furthermore, three animal results indicated that the scaffolds achieved immunomodulation, integrated regeneration, and function recovery at tendon-to-bone interfaces. Thus, the multicellular scaffolds based on inorganic biomaterials offer an innovative concept for immunomodulation and integrated regeneration of soft/hard tissue interfaces.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yahui Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Beach ZM, Nuss CA, Weiss SN, Soslowsky LJ. Neonatal Achilles Tendon Microstructure is Negatively Impacted by Decorin and Biglycan Knockdown After Injury and During Development. Ann Biomed Eng 2024; 52:657-670. [PMID: 38079083 DOI: 10.1007/s10439-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/22/2023] [Indexed: 02/13/2024]
Abstract
Interest in studying neonatal development and the improved healing response observed in neonates is increasing, with the goal of using this work to create better therapeutics for tendon injury. Decorin and biglycan are two small leucine-rich proteoglycans that play important roles in collagen fibrillogenesis to develop, maintain, and repair tendon structure. However, little is known about the roles of decorin and biglycan in early neonatal development and healing. The goal of this study was to determine the effects of decorin and biglycan knockdown on Achilles tendon structure and mechanics during neonatal development and recovery of these properties after injury of the neonatal tendon. We hypothesized that knockdown of decorin and biglycan would disrupt the neonatal tendon developmental process and produce tendons with impaired mechanical and structural properties. We found that knockdown of decorin and biglycan in an inducible, compound decorin/biglycan knockdown model, both during development and after injury, in neonatal mice produced tendons with reduced mechanical properties. Additionally, the collagen fibril microstructure resembled an immature tendon with a large population of small diameter fibrils and an absence of larger diameter fibrils. Overall, this study demonstrates the importance of decorin and biglycan in facilitating tendon growth and maturation during neonatal development.
Collapse
Affiliation(s)
- Zakary M Beach
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney A Nuss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Yuan Y, Wang P, Zhang H, Liu Y. Identification of M2 Macrophage-Related Key Genes in Advanced Atherosclerotic Plaques by Network-Based Analysis. J Cardiovasc Pharmacol 2024; 83:276-288. [PMID: 38194604 DOI: 10.1097/fjc.0000000000001528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
ABSTRACT Atherosclerotic plaque accounts for major adverse cardiovascular events because of its vulnerability. The classically activated macrophage (M1) and alternatively activated macrophage (M2) are implicated in the progression and regression of plaque, respectively. However, the therapeutic targets related to M2 macrophages still remain largely elusive. In this study, cell-type identification by estimating relative subsets of RNA transcripts and weighted gene coexpression network analysis algorithms were used to establish a weighted gene coexpression network for identifying M2 macrophage-related hub genes using GSE43292 data set. The results showed that genes were classified into 7 modules, with the blue module (Cor = 0.67, P = 3e-05) being the one that was most related to M2 macrophage infiltration in advanced plaques, and then 99 hub genes were identified from blue module. Meanwhile, 1289 differentially expressed genes were produced in GSE43292 data set. Subsequently, the intersection genes of hub genes and differentially expressed genes, including AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 , were obtained by Venn diagrams and named as key genes. Further validation using data sets GSE100927 and GSE41571 showed that 6 key genes all downregulated in advanced and vulnerable plaques compared with early and stable plaque samples (|Log2 (fold change)| > 0.5, P < 0.05 or 0.001), respectively. Receiver operator characteristic curve analysis indicated that the 6 key genes might have potential diagnostic value. The validation of key genes in the model in vitro and in vivo also demonstrated decreased mRNA expressions of AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 ( P < 0.05 or 0.001). Collectively, we identified AKTIP, ASPN, FAM26E, RAB23, PLS3, and PLSCR4 as M2 macrophage-related key genes during atherosclerotic progression, proposing potential intervention targets for advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Yao Yuan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Military Medical University), Chongqing, China
| | | | | | | |
Collapse
|
6
|
Zanini F, Che X, Suresh NE, Knutsen C, Klavina P, Xie Y, Domingo-Gonzalez R, Liu M, Kum A, Jones RC, Quake SR, Alvira CM, Cornfield DN. Hyperoxia prevents the dynamic neonatal increases in lung mesenchymal cell diversity. Sci Rep 2024; 14:2033. [PMID: 38263350 PMCID: PMC10805790 DOI: 10.1038/s41598-023-50717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
Rapid expansion of the pulmonary microvasculature through angiogenesis drives alveolarization, the final stage of lung development that occurs postnatally and dramatically increases lung gas-exchange surface area. Disruption of pulmonary angiogenesis induces long-term structural and physiologic lung abnormalities, including bronchopulmonary dysplasia, a disease characterized by compromised alveolarization. Although endothelial cells are primary determinants of pulmonary angiogenesis, mesenchymal cells (MC) play a critical and dual role in angiogenesis and alveolarization. Therefore, we performed single cell transcriptomics and in-situ imaging of the developing lung to profile mesenchymal cells during alveolarization and in the context of lung injury. Specific mesenchymal cell subtypes were present at birth with increasing diversity during alveolarization even while expressing a distinct transcriptomic profile from more mature correlates. Hyperoxia arrested the transcriptomic progression of the MC, revealed differential cell subtype vulnerability with pericytes and myofibroblasts most affected, altered cell to cell communication, and led to the emergence of Acta1 expressing cells. These insights hold the promise of targeted treatment for neonatal lung disease, which remains a major cause of infant morbidity and mortality across the world.
Collapse
Affiliation(s)
- Fabio Zanini
- School of Clinical Medicine, University of New South Wales, Sydney, Australia.
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia.
- Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia.
| | - Xibing Che
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nina E Suresh
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Carsten Knutsen
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Paula Klavina
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Yike Xie
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Racquel Domingo-Gonzalez
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Liu
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Kum
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Cristina M Alvira
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David N Cornfield
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
8
|
Kinoshita M, Yamada S, Sasaki J, Suzuki S, Kajikawa T, Iwayama T, Fujihara C, Imazato S, Murakami S. Mice Lacking PLAP-1/Asporin Show Alteration of Periodontal Ligament Structures and Acceleration of Bone Loss in Periodontitis. Int J Mol Sci 2023; 24:15989. [PMID: 37958972 PMCID: PMC10649079 DOI: 10.3390/ijms242115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (μCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by μCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoru Yamada
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Junichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shigeki Suzuki
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tetsuhiro Kajikawa
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| |
Collapse
|
9
|
Medzikovic L, Aryan L, Ruffenach G, Li M, Savalli N, Sun W, Sarji S, Hong J, Sharma S, Olcese R, Fishbein G, Eghbali M. Myocardial fibrosis and calcification are attenuated by microRNA-129-5p targeting Asporin and Sox9 in cardiac fibroblasts. JCI Insight 2023; 8:e168655. [PMID: 37154157 PMCID: PMC10243800 DOI: 10.1172/jci.insight.168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Myocardial fibrosis and calcification associate with adverse outcomes in nonischemic heart failure. Cardiac fibroblasts (CF) transition into myofibroblasts (MF) and osteogenic fibroblasts (OF) to promote myocardial fibrosis and calcification. However, common upstream mechanisms regulating both CF-to-MF transition and CF-to-OF transition remain unknown. microRNAs are promising targets to modulate CF plasticity. Our bioinformatics revealed downregulation of miR-129-5p and upregulation of its targets small leucine-rich proteoglycan Asporin (ASPN) and transcription factor SOX9 as common in mouse and human heart failure (HF). We experimentally confirmed decreased miR-129-5p and enhanced SOX9 and ASPN expression in CF in human hearts with myocardial fibrosis and calcification. miR-129-5p repressed both CF-to-MF and CF-to-OF transition in primary CF, as did knockdown of SOX9 and ASPN. Sox9 and Aspn are direct targets of miR-129-5p that inhibit downstream β-catenin expression. Chronic Angiotensin II infusion downregulated miR-129-5p in CF in WT and TCF21-lineage CF reporter mice, and it was restored by miR-129-5p mimic. Importantly, miR-129-5p mimic not only attenuated progression of myocardial fibrosis, calcification marker expression, and SOX9 and ASPN expression in CF but also restored diastolic and systolic function. Together, we demonstrate miR-129-5p/ASPN and miR-129-5p/SOX9 as potentially novel dysregulated axes in CF-to-MF and CF-to-OF transition in myocardial fibrosis and calcification and the therapeutic relevance of miR-129-5p.
Collapse
Affiliation(s)
| | - Laila Aryan
- Department of Anesthesiology & Perioperative Medicine
| | | | - Min Li
- Department of Anesthesiology & Perioperative Medicine
| | | | - Wasila Sun
- Department of Anesthesiology & Perioperative Medicine
| | - Shervin Sarji
- Department of Anesthesiology & Perioperative Medicine
| | - Jason Hong
- Department of Anesthesiology & Perioperative Medicine
- Division of Pulmonary & Critical Care Medicine
| | - Salil Sharma
- Department of Anesthesiology & Perioperative Medicine
| | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine
- Department of Physiology, and
| | - Gregory Fishbein
- Department of Physiology, and
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
10
|
Lin P, Zhang G, Li H. The Role of Extracellular Matrix in Wound Healing. Dermatol Surg 2023; 49:S41-S48. [PMID: 37115999 DOI: 10.1097/dss.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Extracellular matrix communicates with surrounding cells to maintain skin homeostasis and modulate multiple cellular processes including wound healing. OBJECTIVE To elucidate the dynamic composition and potential roles of extracellular matrix in normal skin, wound healing process, and abnormal skin scarring. MATERIALS AND METHODS Literature review was performed to identify relevant publications pertaining to the extracellular matrix deposition in normal skin and wound healing process, as well as in abnormal scars. RESULTS A summary of the matrix components in normal skin is presented. Their primary roles in hemostasis, inflammation, proliferation, and remodeling phases of wound healing are briefly discussed. Identification of novel extracellular matrix in keloids is also provided. CONCLUSION Abnormal scarring remains a challenging condition with unmet satisfactory treatments. Illumination of extracellular matrix composition and functions in wound healing process will allow for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Pingping Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
11
|
Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NY. Unraveling the Relevance of Tissue-Specific Decellularized Extracellular Matrix Hydrogels for Vocal Fold Regenerative Biomaterials: A Comprehensive Proteomic and In Vitro Study. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200095. [PMID: 37547672 PMCID: PMC10398787 DOI: 10.1002/anbr.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Decellularized extracellular matrix (dECM) is a promising material for tissue engineering applications. Tissue-specific dECM is often seen as a favorable material that recapitulates a native-like microenvironment for cellular remodeling. However, the minute quantity of dECM derivable from small organs like the vocal fold (VF) hampers manufacturing scalability. Small intestinal submucosa (SIS), a commercial product with proven regenerative capacity, may be a viable option for VF applications. This study aims to compare dECM hydrogels derived from SIS or VF tissue with respect to protein content and functionality using mass spectrometry-based proteomics and in vitro studies. Proteomic analysis reveals that VF and SIS dECM share 75% of core matrisome proteins. Although VF dECM proteins have greater overlap with native VF, SIS dECM shows less cross-sample variability. Following decellularization, significant reductions of soluble collagen (61%), elastin (81%), and hyaluronan (44%) are noted in VF dECM. SIS dECM contains comparable elastin and hyaluronan but 67% greater soluble collagen than VF dECM. Cells deposit more neo-collagen on SIS than VF-dECM hydrogels, whereas neo-elastin (~50 μg/scaffold) and neo-hyaluronan (~ 6 μg/scaffold) are comparable between the two hydrogels. Overall, SIS dECM possesses reasonably similar proteomic profile and regenerative capacity to VF dECM. SIS dECM is considered a promising alternative for dECM-derived biomaterials for VF regeneration.
Collapse
Affiliation(s)
- Mika Brown
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| | - Lorne Taylor
- The Proteomics Platform, McGill University Health Center 1001 Decarie Boulevard Montreal Suite E01.5056 Montreal, Quebec, H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- Department of Bioengineering, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
- Faculty of Dentistry, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
| | - Nicole Y.K. Li-Jessen
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- School of Communication Sciences and Disorders, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Department of Otolaryngology - Head and Neck Surgery, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Research Institute of McGill University Health Center, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| |
Collapse
|
12
|
Chen J, Lin Y, Sun Z. Inhibition of miR-101-3p prevents human aortic valve interstitial cell calcification through regulation of CDH11/SOX9 expression. Mol Med 2023; 29:24. [PMID: 36809926 PMCID: PMC9945614 DOI: 10.1186/s10020-023-00619-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the second leading cause of adult heart diseases. The purpose of this study is to investigate whether miR-101-3p plays a role in the human aortic valve interstitial cells (HAVICs) calcification and the underlying mechanisms. METHODS Small RNA deep sequencing and qPCR analysis were used to determine changes in microRNA expression in calcified human aortic valves. RESULTS The data showed that miR-101-3p levels were increased in the calcified human aortic valves. Using cultured primary HAVICs, we demonstrated that the miR-101-3p mimic promoted calcification and upregulated the osteogenesis pathway, while anti-miR-101-3p inhibited osteogenic differentiation and prevented calcification in HAVICs treated with the osteogenic conditioned medium. Mechanistically, miR-101-3p directly targeted cadherin-11 (CDH11) and Sry-related high-mobility-group box 9 (SOX9), key factors in the regulation of chondrogenesis and osteogenesis. Both CDH11 and SOX9 expressions were downregulated in the calcified human HAVICs. Inhibition of miR-101-3p restored expression of CDH11, SOX9 and ASPN and prevented osteogenesis in HAVICs under the calcific condition. CONCLUSION miR-101-3p plays an important role in HAVIC calcification through regulation of CDH11/SOX9 expression. The finding is important as it reveals that miR-1013p may be a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Physiology, College of Medicine, UT Cardiovascular Institute, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
13
|
Chen Y, Luo M, Xie Y, Xing L, Han X, Tian Y. Periodontal ligament-associated protein-1 engages in teeth overeruption and periodontal fiber disorder following occlusal hypofunction. J Periodontal Res 2023; 58:131-142. [PMID: 36445954 DOI: 10.1111/jre.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Teeth overeruption is a problem of clinical significance, but the underlying mechanism how changes in external occlusal force convert to the periodontium remodeling signals has been a largely under explored domain. And recently, periodontal ligament-associated protein-1 (PLAP-1)/asporin was found to play a pivotal role in maintaining periodontal homeostasis. The aim of this study was to explore the function of PLAP-1 in the periodontally hypofunctional tissue turnover. METHODS After extracting left maxillary molars in mice, the left and right mandibular molars were distributed into hypofunction group (HG) and control group (CG), respectively. Mice were sacrificed for radiographic, histological, and molecular biological analyses after 1, 4 and 12 weeks. In vitro, dynamic compression was applied using Flexcell FX-5000 Compression System to simulate intermittent occlusal force. The expression of PLAP1 in loaded and unloaded human periodontal ligament cells (hPDLCs) was compared, and its molecular biological effects were further explored by small interfering RNA (siRNA) targeting PLAP1. RESULTS In vivo, fiber disorder in periodontal ligament (PDL), bone apposition at furcation regions, and bone resorption in alveolar bone were illustrated in the HG compared with the CG. In addition, PLAP-1 positive area decreased significantly in PDL following occlusal unloading. In vitro, the loss of compressive loading relatively downregulated PLAP1 expression, which was essential to promote collagen I but inhibit osterix and osteocalcin expression in hPDLCs. CONCLUSIONS PLAP-1 presumably plays a pivotal role in occlusal force-regulated periodontal homeostasis by facilitating collagen fiber synthesis in hPDLCs and suppressing excessive osteoblast differentiation, further preventing teeth from overeruption. Further evidence in PLAP-1 conditional knockout mice is needed.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Yu L, Li G, Jin S, Su J, Li S. Identification of the core genes in Randall's plaque of kidney stone and immune infiltration with WGCNA network. Front Genet 2023; 14:1048919. [PMID: 36816033 PMCID: PMC9931196 DOI: 10.3389/fgene.2023.1048919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Background: Randall's plaque is regarded as the precursor lesion of lithiasis. However, traditional bioinformatic analysis is limited and ignores the relationship with immune response. To investigate the underlying calculi formation mechanism, we introduced innovative algorithms to expand our understanding of kidney stone disease. Methods: We downloaded the GSE73680 series matrix from the Gene Expression Omnibus (GEO) related to CaOx formation and excluded one patient, GSE116860. In the RStudio (R version 4.1.1) platform, the differentially expressed genes (DEGs) were identified with the limma package for GO/KEGG/GSEA analysis in the clusterProfiler package. Furthermore, high-correlated gene co-expression modules were confirmed by the WGCNA package to establish a protein-protein interaction (PPI) network. Finally, the CaOx samples were processed by the CIBERSORT algorithm to anchor the key immune cells group and verified in the validation series matrix GSE117518. Results: The study identified 840 upregulated and 1065 downregulated genes. The GO/KEGG results revealed fiber-related or adhesion-related terms and several pathways in addition to various diseases identified from the DO analysis. Moreover, WGCNA selected highly correlated modules to construct a PPI network. Finally, 16 types of immune cells are thought to participate in urolithiasis pathology and are related to hub genes in the PPI network that are proven significant in the validation series matrix GSE117518. Conclusion: Randall's plaque may relate to genes DCN, LUM, and P4HA2 and M2 macrophages and resting mast immune cells. These findings could serve as potential biomarkers and provide new research directions.
Collapse
Affiliation(s)
- Lingyun Yu
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Gefei Li
- Department of Cardiovascular Surgery, Shenzhen, Guangdong, China
| | - Shiyao Jin
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jiahong Su
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Shoulin Li
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Shoulin Li,
| |
Collapse
|
15
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
16
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
17
|
The Role of Decorin in Autoimmune and Inflammatory Diseases. J Immunol Res 2022; 2022:1283383. [PMID: 36033387 PMCID: PMC9402370 DOI: 10.1155/2022/1283383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren's syndrome (SS), chronic obstructive pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these disorders.
Collapse
|
18
|
Regulation of biomineralization by proteoglycans: From mechanisms to application. Carbohydr Polym 2022; 294:119773. [DOI: 10.1016/j.carbpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
19
|
Yang W, Jin G, Qian K, Zhang C, Zhi W, Yang D, Lu Y, Han J. Comprehensive bioinformatics analysis of susceptibility genes for developmental dysplasia of the hip. Intractable Rare Dis Res 2022; 11:70-80. [PMID: 35702583 PMCID: PMC9161127 DOI: 10.5582/irdr.2022.01043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is a multifactorial disease, which occurs under environmental and genetic influence. The etiopathogenesis of DDH has not been fully explained. As research progresses, many candidate genes have been found to be closely related to the occurrence of DDH. In this study, we comprehensively examined 16 susceptibility genes of DDH using bioinformatics. COL1A1 encodes the pro-alpha1 chains of type I collagen, which is the major protein component of the bone extracellular matrix (ECM). The genes displaying the most statistically significant co-expression link to COL1A1 are ASPN, TGFB1, DKK1, IL-6, TENM3 and GDF5. DKK1, FRZB and WISP3 are components of the Wnt signaling pathway. CX3CR1 and GDF5 regulate chondrogenesis through the canonical Wnt signaling pathway. ASPN could induce collagen mineralization through binding with collagen and calcium. Integrated bioinformatics analysis indicates that ECM, Wnt signaling pathway and TGF-β signaling pathway are involved in the occurrence of DDH. These provide a basis for further exploring the pathogenesis of DDH.
Collapse
Affiliation(s)
- Wei Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Guiyang Jin
- Department of General Education, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Keying Qian
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Chao Zhang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wei Zhi
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Dan Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Yanqin Lu and Jinxiang Han, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Ji'nan 250013, China. E-mail: (YL), (JH)
| | - Jinxiang Han
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Yanqin Lu and Jinxiang Han, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Ji'nan 250013, China. E-mail: (YL), (JH)
| |
Collapse
|
20
|
Kim S, Mun S, Shin W, Han K, Kim MY. Identification of Potentially Pathogenic Variants Associated with Recurrence in Medication-Related Osteonecrosis of the Jaw (MRONJ) Patients Using Whole-Exome Sequencing. J Clin Med 2022; 11:jcm11082145. [PMID: 35456240 PMCID: PMC9030961 DOI: 10.3390/jcm11082145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Bisphosphonates are antiresorptive and antiangiogenic drugs that prevent and treat bone loss and mineralization in women with postmenopausal osteoporosis and cancer patients. Medication-related osteonecrosis of the jaw (MRONJ) is commonly caused by tooth extraction and dental trauma. Although genetic and pathological studies about MRONJ have been conducted, the pathogenesis of MRONJ still remains unclear. Methods: We aimed to identify genetic variants associated with MRONJ, using whole-exome sequencing (WES). Ten MRONJ patients prescribed bisphosphonates were recruited for WES, and jawbone tissue and blood samples were collected from the patients. Results: The analysis of the WES data found a total of 1866 SNP and 40 InDel variants which are specific to MRONJ. The functional classification assay using Gene Ontology and pathway analysis discovered that genes bearing the MRONJ variants are significantly enriched for keratinization and calcium ion transport. Some of the variants are potential pathogenic variants (24 missense mutations and seven frameshift mutations) with MAF < 0.01. Conclusions: The variants are located in eight different genes (KRT18, MUC5AC, NBPF9, PABPC3, MST1L, ASPN, ATN1, and SLAIN1). Nine deleterious SNPs significantly associated with MRONJ were found in the KRT18 and PABPC3 genes. It suggests that KRT18 and PABPC3 could be MRONJ-related key genes.
Collapse
Affiliation(s)
- Songmi Kim
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea (S.M.)
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
| | - Seyoung Mun
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea (S.M.)
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
| | - Wonseok Shin
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan 31116, Korea;
| | - Kyudong Han
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea (S.M.)
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
- Correspondence: (K.H.); (M.-Y.K.); Tel.: +82-41-550-1240 (K.H.); +82-41-550-1912 (M.-Y.K.)
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Correspondence: (K.H.); (M.-Y.K.); Tel.: +82-41-550-1240 (K.H.); +82-41-550-1912 (M.-Y.K.)
| |
Collapse
|
21
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
22
|
Song N, Li J, Li B, Pan E, Ma Y. Transcriptome analysis of the bivalve Placuna placenta mantle reveals potential biomineralization-related genes. Sci Rep 2022; 12:4743. [PMID: 35304539 PMCID: PMC8933548 DOI: 10.1038/s41598-022-08610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 01/31/2023] Open
Abstract
The shells of window pane oyster Placuna placenta are very thin and exhibit excellent optical transparency and mechanical robustness. However, little is known about the biomineralization-related proteins of the shells of P. placenta. In this work, we report the comprehensive transcriptome of the mantle tissue of P. placenta for the first time. The unigenes of the mantle tissue of P. placenta were annotated by using the public databases such as nr, GO, KOG, KEGG, and Pfam. 24,343 unigenes were annotated according to Pfam database, accounting for 21.48% of the total unigenes. We find that half of the annotated unigenes of the mantle tissue of P. placenta are consistent to the annotated unigenes from pacific oyster Crassostrea gigas according to nr database. The unigene sequence analysis from the mantle tissue of P. placenta indicates that 465,392 potential single nucleotide polymorphisms (SNPs) and 62,103 potential indel markers were identified from 60,371 unigenes. 178 unigenes of the mantle tissue of P. placenta are found to be homologous to those reported proteins related to the biomineralization process of molluscan shells, while 18 of them are highly expressed unigenes in the mantle tissue. It is proposed that four unigenes with the highest expression levels in the mantle tissue are very often related to the biomineralization process, while another three unigenes are potentially related to the biomineralization process according to the Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. In summary, the transcriptome analysis of the mantle tissue of P. Placenta shows the potential biomineralization-related proteins and this work may shed light for the shell formation mechanism of bivalves.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
23
|
Lira Dos Santos EJ, de Almeida AB, Chavez MB, Salmon CR, Mofatto LS, Camara-Souza MB, Tan MH, Kolli TN, Mohamed FF, Chu EY, Novaes PD, Santos ECA, Kantovitz KR, Foster BL, Nociti FH. Orthodontic tooth movement alters cementocyte ultrastructure and cellular cementum proteome signature. Bone 2021; 153:116139. [PMID: 34364013 PMCID: PMC8478897 DOI: 10.1016/j.bone.2021.116139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
Cementum is a mineralized tissue that covers tooth roots and functions in the periodontal attachment complex. Cementocytes, resident cells of cellular cementum, share many characteristics with osteocytes, are mechanoresponsive cells that direct bone remodeling based on changes in loading. We hypothesized that cementocytes play a key role during orthodontic tooth movement (OTM). To test this hypothesis, we used 8-week-old male Wistar rats in a model of OTM for 2, 7, or 14 days (0.5 N), whereas unloaded contralateral teeth served as controls. Tissue and cell responses were analyzed by high-resolution micro-computed tomography, histology, tartrate-resistant acid phosphatase staining for odontoclasts/osteoclasts, and transmission electron microscopy. In addition, laser capture microdissection was used to collect cellular cementum, and extracted proteins were identified by liquid chromatography coupled to tandem mass spectrometry. The OTM model successfully moved first molars mesially more than 250 μm by 14 days introducing apoptosis in a small number of cementocytes and areas of root resorption on mesial and distal aspects. Cementocytes showed increased nuclear size and proportion of euchromatin suggesting cellular activity. Proteomic analysis identified 168 proteins in cellular cementum with 21 proteins found only in OTM sites and 54 proteins only present in control samples. OTM-down-regulated several extracellular matrix proteins, including decorin, biglycan, asporin, and periostin, localized to cementum and PDL by immunostaining. Furthermore, type IV collagen (COL14A1) was the protein most down-regulated (-45-fold) by OTM and immunolocalized to cells at the cementum-dentin junction. Eleven keratins were significantly increased by OTM, and a pan-keratin antibody indicated keratin localization primarily in epithelial remnants of Hertwig's epithelial root sheath. These experiments provide new insights into biological responses of cementocytes and cellular cementum to OTM.
Collapse
Affiliation(s)
- Elis J Lira Dos Santos
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Amanda B de Almeida
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil; Faculty of Dentistry, N. Sra. do Patrocínio University Center, Itu, São Paulo, Brazil
| | - Luciana S Mofatto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil
| | - Mariana Barbosa Camara-Souza
- Department of Prosthodontics and Periodontics, Division of Prosthodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Michelle H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Tamara N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pedro Duarte Novaes
- Department of Morphology, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Eduardo C A Santos
- Department of Pediatric Dentistry, Division of Orthodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil.
| |
Collapse
|
24
|
Proteoglycans and Diseases of Soft Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:127-138. [PMID: 34807417 DOI: 10.1007/978-3-030-80614-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteoglycans consist of protein cores to which at least one glycosaminoglycan chain is attached. They play important roles in the physiology and biomechanical function of tendons, ligaments, cardiovascular system, and other systems through their involvement in regulation of assembly and maintenance of extracellular matrix, and through their participation in cell proliferation together with growth factors. They can be divided into two main groups, small and large proteoglycans. The small proteoglycans are also known as small leucine-rich proteoglycans (SLRPs) which are encoded by 18 genes and are further subclassified into Classes I-V. Several members of Class I and II, such as decorin and biglycan from Class I, and Class II fibromodulin and lumican, are known to regulate collagen fibrillogenesis. Decorin limits the diameter of collagen fibrils during fibrillogenesis. The function of biglycan in fibrillogenesis is similar to that of decorin. Though biomechanical function of tendon is compromised in decorin-deficient mice, decorin can substitute for lack of biglycan in biglycan-deficient mice. New data also indicate an important role for biglycan in disorders of the cardiovascular system, including aortic valve stenosis and aortic dissection. Two members of the Class II of SLRPs, fibromodulin and lumican bind to the same site within the collagen molecule and can substitute for each other in fibromodulin- or lumican-deficient mice.Aggrecan and versican are the major representatives of the large proteoglycans. Though they are mainly found in the cartilage where they provide resilience and toughness, they are present also in tensile portions of tendons and, in slightly different biochemical form in fibrocartilage. Degradation by aggrecanase is responsible for the appearance of different forms of aggrecan and versican in different parts of the tendon where these cleaved forms play different roles. In addition, they are important components of the ventricularis of cardiac valves. Mutations in the gene for versican or in the gene for elastin (which binds to versican ) lead to severe disruptions of normal developmental of the heart at least in mice.
Collapse
|
25
|
Safdari M, Bibak B, Soltani H, Hashemi J. Recent advancements in decellularized matrix technology for bone tissue engineering. Differentiation 2021; 121:25-34. [PMID: 34454348 DOI: 10.1016/j.diff.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo- or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo-like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.
Collapse
Affiliation(s)
- Mohammadreza Safdari
- Department of Surgery, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hoseinali Soltani
- Department of General Surgery, Imam Ali Hospital, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
26
|
Zhu Y, Cheung ALM. Proteoglycans and their functions in esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:507-521. [PMID: 34367925 PMCID: PMC8317653 DOI: 10.5306/wjco.v12.i7.507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that has a poor prognosis. Its high lethality is mainly due to the lack of symptoms at early stages, which culminates in diagnosis at a late stage when the tumor has already metastasized. Unfortunately, the common cancer biomarkers have low sensitivity and specificity in esophageal cancer. Therefore, a better understanding of the molecular mechanisms underlying ESCC progression is needed to identify novel diagnostic markers and therapeutic targets for intervention. The invasion of cancer cells into the surrounding tissue is a crucial step for metastasis. During metastasis, tumor cells can interact with extracellular components and secrete proteolytic enzymes to remodel the surrounding tumor microenvironment. Proteoglycans are one of the major components of extracellular matrix. They are involved in multiple processes of cancer cell invasion and metastasis by interacting with soluble bioactive molecules, surrounding matrix, cell surface receptors, and enzymes. Apart from having diverse functions in tumor cells and their surrounding microenvironment, proteoglycans also have diagnostic and prognostic significance in cancer patients. However, the functional significance and underlying mechanisms of proteoglycans in ESCC are not well understood. This review summarizes the proteoglycans that have been studied in ESCC in order to provide a comprehensive view of the role of proteoglycans in the progression of this cancer type. A long term goal would be to exploit these molecules to provide new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
27
|
Liu L, Yu H, Long Y, You Z, Ogawa R, Du Y, Huang C. Asporin inhibits collagen matrix-mediated intercellular mechanocommunications between fibroblasts during keloid progression. FASEB J 2021; 35:e21705. [PMID: 34105826 DOI: 10.1096/fj.202100111r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
Keloids are fibrotic lesions that grow unceasingly and invasively and are driven by local mechanical stimuli. Unlike other fibrotic diseases and normal wound healing, keloids exhibit little transformation of dermal fibroblasts into α-SMA+ myofibroblasts. This study showed that asporin is the most strongly expressed gene in keloids and its gene-ontology terms relate strongly to ECM metabolism/organization. Experiments with human dermal cells (HDFs) showed that asporin overexpression/treatment abrogated the HDF ability to adopt a perpendicular orientation when subjected to stretching tension. It also induced calcification of the surrounding 3D collagen matrix. Asporin overexpression/treatment also prevented the HDFs from remodeling the surrounding 3D collagen matrix, leading to a disorganized network of thick, wavy collagen fibers that resembled keloid collagen architecture. This in turn impaired the ability of the HDFs to contract the collagen matrix. Asporin treatment also made the fibroblasts impervious to the fibrous collagen contraction of α-SMA+ myofibroblasts, which normally activates fibroblasts. Thus, by calcifying collagen, asporin prevents fibroblasts from linearly rearranging the surrounding collagen; this reduces both their mechanosensitivity and mechanosignaling to each other through the collagen network. This blocks fibroblast activation and differentiation into the mature myofibroblasts that efficiently remodel the extracellular matrix. Consequently, the fibroblasts remain immature, highly proliferative, and continue laying down abundant extracellular matrix, causing keloid growth and invasion. Notably, dermal injection of asporin-overexpressing HDFs into murine wounds recapitulated keloid collagen histopathological characteristics. Thus, disrupted interfibroblast mechanocommunication may promote keloid progression. Asporin may be a new diagnostic biomarker and therapeutic target for keloids.
Collapse
Affiliation(s)
- Longwei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yi Long
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, González-Lucán M, Funcasta-Calderón R. Elastic tissue disruption is a major pathogenic factor to human vascular disease. Mol Biol Rep 2021; 48:4865-4878. [PMID: 34129188 DOI: 10.1007/s11033-021-06478-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/05/2021] [Indexed: 01/15/2023]
Abstract
Elastic fibers are essential components of the arterial extracellular matrix. They consist of the protein elastin and an array of microfibrils that support the protein and connect it to the surrounding matrix. The elastin gene encodes tropoelastin, a protein that requires extensive cross-linking to become elastin. Tropoelastin is expressed throughout human life, but its expression levels decrease with age, suggesting that the potential to synthesize elastin persists during lifetime although declines with aging. The initial abnormality documented in human atherosclerosis is fragmentation and loss of the elastic network in the medial layer of the arterial wall, suggesting an imbalance between elastic fiber injury and restoration. Damaged elastic structures are not adequately repaired by synthesis of new elastic elements. Progressive collagen accumulation follows medial elastic fiber disruption and fibrous plaques are formed, but advanced atherosclerosis lesions do not develop in the absence of prior elastic injury. Aging is associated with arterial extracellular matrix anomalies that evoke those present in early atherosclerosis. The reduction of elastic fibers with subsequent collagen accumulation leads to arterial stiffening and intima-media thickening, which are independent predictors of incident hypertension in prospective community-based studies. Arterial stiffening precedes the development of hypertension. The fundamental role of the vascular elastic network to arterial structure and function is emphasized by congenital disorders caused by mutations that disrupt normal elastic fiber production. Molecular changes in the genes coding tropoelastin, lysyl oxidase (tropoelastin cross-linking), and elastin-associated microfibrils, including fibrillin-1, fibulin-4, and fibulin-5 produce severe vascular injury due to absence of functional elastin.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain.
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Raquel Funcasta-Calderón
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
29
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
30
|
Zhang K, Wu M, Qin X, Wen P, Wu Y, Zhuang J. Asporin is a Potential Promising Biomarker for Common Heart Failure. DNA Cell Biol 2021; 40:303-315. [PMID: 33605799 DOI: 10.1089/dna.2020.5995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is the end-stage of various diseases, especially ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We aimed to investigate the common molecular mechanism of ICM and DCM. Differentially expressed genes (DEGs) of ICM or DCM samples compared with control were identified in GSE1869, GSE5406, GSE57338, GSE79962, GSE116250, and GSE46224 datasets. Functional enrichment analysis and protein-protein network analysis of the coregulated DEGs in at least four datasets were performed using the online tools of DAVID, the Metascape database, and the STRING database. Hub genes of HF were identified and validated by western blotting (WB) and immunohistochemistry in our tissue microarray (TMA). Seventy-four coregulated ICM and 126 coregulated DCM relevant DEGs were identified. Moreover, 59 common genes between ICM and DCM relevant DEGs were obtained, which were mainly involved in cardiac fibrosis and several signal pathways, such as Wnt signal pathway, PI3K-Akt signal pathway, and HIF-1A signal pathway. Among the six hub genes with top degrees, asporin (ASPN) had a relatively higher correlation with LVEF. Finally, TMA and WB results revealed that the ASPN protein was significantly increased in ICM and DCM left ventricular samples. The present study revealed some common molecular mechanisms of HF with different causes. Furthermore, ASPN may be a potential promising biomarker for HF.
Collapse
Affiliation(s)
- Kai Zhang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min Wu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianyu Qin
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pengju Wen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Zhuang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Zhang K, Qin X, Wen P, Wu Y, Zhuang J. Systematic analysis of molecular mechanisms of heart failure through the pathway and network-based approach. Life Sci 2020; 265:118830. [PMID: 33259868 DOI: 10.1016/j.lfs.2020.118830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
AIMS The molecular networks and pathways involved in heart failure (HF) are still largely unknown. The present study aimed to systematically investigate the genes associated with HF, comprehensively explore their interactions and functions, and identify possible regulatory networks involved in HF. MAIN METHODS The weighted gene coexpression network analysis (WGCNA), crosstalk analysis, and Pivot analysis were used to identify gene connections, interaction networks, and molecular regulatory mechanisms. Functional analysis and protein-protein interaction (PPI) were performed using DAVID and STRING databases. Gene set variation analysis (GSVA) and receiver operating characteristic (ROC) curve analysis were also performed to evaluate the relationship of the hub genes with HF. KEY FINDINGS A total of 5968 HF-related genes were obtained to construct the co-expression networks, and 18 relatively independent and closely linked modules were identified. Pivot analysis suggested that four transcription factors and five noncoding RNAs were involved in regulating the process of HF. The genes in the module with the highest positive correlation to HF was mainly enriched in cardiac remodeling and response to stress. Five upregulated hub genes (ASPN, FMOD, NT5E, LUM, and OGN) were identified and validated. Furthermore, the GSVA scores of the five hub genes for HF had a relatively high areas under the curve (AUC). SIGNIFICANCE The results of this study revealed specific molecular networks and their potential regulatory mechanisms involved in HF. These may provide new insight into understanding the mechanisms underlying HF and help to identify more effective therapeutic targets for HF.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianyu Qin
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
32
|
Dambroise E, Ktorza I, Brombin A, Abdessalem G, Edouard J, Luka M, Fiedler I, Binder O, Pelle O, Patton EE, Busse B, Menager M, Sohm F, Legeai-Mallet L. Fgfr3 Is a Positive Regulator of Osteoblast Expansion and Differentiation During Zebrafish Skull Vault Development. J Bone Miner Res 2020; 35:1782-1797. [PMID: 32379366 DOI: 10.1002/jbmr.4042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Gain or loss-of-function mutations in fibroblast growth factor receptor 3 (FGFR3) result in cranial vault defects highlighting the protein's role in membranous ossification. Zebrafish express high levels of fgfr3 during skull development; in order to study FGFR3's role in cranial vault development, we generated the first fgfr3 loss-of-function zebrafish (fgfr3lof/lof ). The mutant fish exhibited major changes in the craniofacial skeleton, with a lack of sutures, abnormal frontal and parietal bones, and the presence of ectopic bones. Integrated analyses (in vivo imaging and single-cell RNA sequencing of the osteoblast lineage) of zebrafish fgfr3lof/lof revealed a delay in osteoblast expansion and differentiation, together with changes in the extracellular matrix. These findings demonstrate that fgfr3 is a positive regulator of osteogenesis. We conclude that changes in the extracellular matrix within growing bone might impair cell-cell communication, mineralization, and new osteoblast recruitment. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Ivan Ktorza
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Alessandro Brombin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ghaith Abdessalem
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Joanne Edouard
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute for Integrative Biology of the Cell (I2BC)-CNRS, Gif-sur-Yvette, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivia Binder
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Olivier Pelle
- Flow Cytometry Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mickaël Menager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Frederic Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute for Integrative Biology of the Cell (I2BC)-CNRS, Gif-sur-Yvette, France.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Flow Cytometry Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France.,Functional Genomics Institute of Lyon, University of Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laurence Legeai-Mallet
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
33
|
de Sousa Neto IV, Tibana RA, da Silva LGDO, de Lira EM, do Prado GPG, de Almeida JA, Franco OL, Durigan JLQ, Adesida AB, de Sousa MV, Ricart CAO, Damascena HL, Castro MS, Fontes W, Prestes J, Marqueti RDC. Paternal Resistance Training Modulates Calcaneal Tendon Proteome in the Offspring Exposed to High-Fat Diet. Front Cell Dev Biol 2020; 8:380. [PMID: 32656202 PMCID: PMC7325979 DOI: 10.3389/fcell.2020.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8–12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father’s lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil.,Graduate Program in Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | | | - Eliene Martins de Lira
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Gleyce Pires Gonçalves do Prado
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Jeeser Alves de Almeida
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Octavio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Universidade Católicade Brasília, Distrito Federal, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Adetola B Adesida
- University of Alberta, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, AB, Canada
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Hylane Luiz Damascena
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|
34
|
Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol 2020; 11:757. [PMID: 32528290 PMCID: PMC7264100 DOI: 10.3389/fphar.2020.00757] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic bio-environment with precisely regulated mechanical and biochemical properties. In bone, ECMs are involved in regulating cell adhesion, proliferation, and responses to growth factors, differentiation, and ultimately, the functional characteristics of the mature bone. Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the rapid development of bone regenerative medicine, the osteoinductive, osteoconductive, and osteogenic potential of ECM-based scaffolds has attracted increasing attention. ECM-based scaffolds for bone tissue engineering can be divided into two types, that is, ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering strategies that utilize the functional ECM are superior at guiding the formation of specific tissues at the implantation site. In this review, we provide an overview of the function of various types of bone ECMs in bone tissue and their regulation roles in the behaviors of osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM in bone repair and regeneration. A better understanding of the role of bone ECM in guiding cellular behavior and tissue function is essential for its future applications in bone repair and regenerative medicine.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Suryaji Patil
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong-Guang Gao
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
35
|
Wietecha MS, Pensalfini M, Cangkrama M, Müller B, Jin J, Brinckmann J, Mazza E, Werner S. Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds. Nat Commun 2020; 11:2604. [PMID: 32451392 PMCID: PMC7248062 DOI: 10.1038/s41467-020-16409-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Matrix deposition is essential for wound repair, but when excessive, leads to hypertrophic scars and fibrosis. The factors that control matrix deposition in skin wounds have only partially been identified and the consequences of matrix alterations for the mechanical properties of wounds are largely unknown. Here, we report how a single diffusible factor, activin A, affects the healing process across scales. Bioinformatics analysis of wound fibroblast transcriptome data combined with biochemical and histopathological analyses of wounds and functional in vitro studies identify that activin promotes pro-fibrotic gene expression signatures and processes, including glycoprotein and proteoglycan biosynthesis, collagen deposition, and altered collagen cross-linking. As a consequence, activin strongly reduces the wound and scar deformability, as identified by a non-invasive in vivo method for biomechanical analysis. These results provide mechanistic insight into the roles of activin in wound repair and fibrosis and identify the functional consequences of alterations in the wound matrisome at the biomechanical level. The relationship between histopathology, gene expression, and biochemical and mechanical properties of wounds is largely unknown. Here, the authors show that activin A alters wound healing at multiple levels by promoting pro-fibrotic gene expression and matrix deposition, thereby affecting biomechanical properties of skin wounds.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Marco Pensalfini
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Michael Cangkrama
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Bettina Müller
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Juyoung Jin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany.,Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland. .,EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland.
| |
Collapse
|
36
|
Hummitzsch K, Hatzirodos N, Macpherson AM, Schwartz J, Rodgers RJ, Irving-Rodgers HF. Transcriptome analyses of ovarian stroma: tunica albuginea, interstitium and theca interna. Reproduction 2020; 157:545-565. [PMID: 30925461 DOI: 10.1530/rep-18-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/29/2019] [Indexed: 01/15/2023]
Abstract
The ovary has specialised stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterise the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6). RNA microarray analysis showed minimal differences between interstitial stroma and pre-theca, and these were combined for some analyses and referred to as stroma. Genes significantly upregulated in theca interna compared to stroma included INSL3, LHCGR, HSD3B1, CYP17A1, ALDH1A1, OGN, POSTN and ASPN. Quantitative RT-PCR showed significantly greater expression of OGN and LGALS1 in interstitial stroma and theca interna versus tunica and greater expression of ACD in tunica compared to theca interna. PLN was significantly higher in interstitial stroma compared to tunica and theca. Ingenuity pathway, network and upstream regulator analyses were undertaken. Cell survival was also upregulated in theca interna. The tunica albuginea was associated with GPCR and cAMP signalling, suggesting tunica contractility. It was also associated with TGF-β signalling and increased fibrous matrix. Western immunoblotting was positive for OGN, LGALS1, ALDH1A1, ACD and PLN with PLN and OGN highly expressed in tunica and interstitial stroma (each n = 6), but not in theca interna from antral follicles (n = 24). Immunohistochemistry localised LGALS1 and POSTN to extracellular matrix and PLN to smooth muscle cells. These results have identified novel differences between the ovarian stromal compartments.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jeff Schwartz
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
37
|
Expression of ArfGAP3 in Vaginal Anterior Wall of Patients With Pelvic Floor Organ Prolapse in Pelvic Organ Prolapse and Non-Pelvic Organ Prolapse Patients. Female Pelvic Med Reconstr Surg 2020; 27:e64-e69. [PMID: 31868832 PMCID: PMC7774809 DOI: 10.1097/spv.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to study the expression of adenosine diphosphate ribosylation factor GTPase-activating protein 3 (ArfGAP3) in the anterior vaginal wall of patients with pelvic organ prolapse (POP).
Collapse
|
38
|
Pang X, Dong N, Zheng Z. Small Leucine-Rich Proteoglycans in Skin Wound Healing. Front Pharmacol 2020; 10:1649. [PMID: 32063855 PMCID: PMC6997777 DOI: 10.3389/fphar.2019.01649] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Healing of cutaneous wounds is a complex and well-coordinated process requiring cooperation among multiple cells from different lineages and delicately orchestrated signaling transduction of a diversity of growth factors, cytokines, and extracellular matrix (ECM) at the wound site. Most skin wound healing in adults is imperfect, characterized by scar formation which results in significant functional and psychological sequelae. Thus, the reconstruction of the damaged skin to its original state is of concern to doctors and scientists. Beyond the traditional treatments such as corticosteroid injection and radiation therapy, several growth factors or cytokines-based anti-scarring products are being or have been tested in clinical trials to optimize skin wound healing. Unfortunately, all have been unsatisfactory to date. Currently, accumulating evidence suggests that the ECM not only functions as the structural component of the tissue but also actively modulates signal transduction and regulates cellular behaviors, and thus, ECM should be considered as an alternative target for wound management pharmacotherapy. Of particular interest are small leucine-rich proteoglycans (SLRPs), a group of the ECM, which exist in a wide range of connecting tissues, including the skin. This manuscript summarizes the most current knowledge of SLRPs regarding their spatial-temporal expression in the skin, as well as lessons learned from the genetically modified animal models simulating human skin pathologies. In this review, particular focus is given on the diverse roles of SLRP in skin wound healing, such as anti-inflammation, pro-angiogenesis, pro-migration, pro-contraction, and orchestrate transforming growth factor (TGF)β signal transduction, since cumulative investigations have indicated their therapeutic potential on reducing scar formation in cutaneous wounds. By conducting this review, we intend to gain insight into the potential application of SLRPs in cutaneous wound healing management which may pave the way for the development of a new generation of pharmaceuticals to benefit the patients suffering from skin wounds and their sequelae.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nuo Dong
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
39
|
Hartanti MD, Hummitzsch K, Irving-Rodgers HF, Bonner WM, Copping KJ, Anderson RA, McMillen IC, Perry VEA, Rodgers RJ. Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary. Reprod Fertil Dev 2019; 31:482-495. [PMID: 30501845 DOI: 10.1071/rd18218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
During ovarian development stroma from the mesonephros penetrates and expands into the ovarian primordium and thus appears to be involved, at least physically, in the formation of ovigerous cords, follicles and surface epithelium. Cortical stromal development during gestation in bovine fetal ovaries (n=27) was characterised by immunohistochemistry and by mRNA analyses. Stroma was identified by immunostaining of stromal matrix collagen type I and proliferating cells were identified by Ki67 expression. The cortical and medullar volume expanded across gestation, with the rate of cortical expansion slowing over time. During gestation, the proportion of stroma in the cortex and total volume in the cortex significantly increased (P<0.05). The proliferation index and numerical density of proliferating cells in the stroma significantly decreased (P<0.05), whereas the numerical density of cells in the stroma did not change (P>0.05). The expression levels of 12 genes out of 18 examined, including osteoglycin (OGN) and lumican (LUM), were significantly increased later in development (P<0.05) and the expression of many genes was positively correlated with other genes and with gestational age. Thus, the rate of cortical stromal expansion peaked in early gestation due to cell proliferation, whilst late in development expression of extracellular matrix genes increased.
Collapse
Affiliation(s)
- M D Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - K Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - H F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - W M Bonner
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - K J Copping
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - R A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - I C McMillen
- The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia
| | - V E A Perry
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - R J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
40
|
Farzadi A, Renner T, Calomeni EP, Presley KF, Karn N, Lannutti J, Dasi LP, Agarwal G. Modulation of biomimetic mineralization of collagen by soluble ectodomain of discoidin domain receptor 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109905. [PMID: 31499975 PMCID: PMC6741439 DOI: 10.1016/j.msec.2019.109905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Collagen fibrils serve as the major template for mineral deposits in both biologically derived and engineered tissues. In recent years certain non-collagenous proteins have been elucidated as important players in differentially modulating intra vs. extra-fibrillar mineralization of collagen. We and others have previously shown that the expression of the collagen receptor, discoidin domain receptor 2 (DDR2) positively correlates with matrix mineralization. The objective of this study was to examine if the ectodomain (ECD) of DDR2 modulates intra versus extra-fibrillar mineralization of collagen independent of cell-signaling. For this purpose, a decellularized collagenous substrate, namely glutaraldehyde fixed porcine pericardium (GFPP) was subjected to biomimetic mineralization protocols. GFPP was incubated in modified simulated body fluid (mSBF) or polymer-induced liquid precursor (PILP) solutions in the presence of recombinant DDR2 ECD (DDR2-Fc) to mediate extra or intra-fibrillar mineralization of collagen. Thermogravimetric analysis revealed that DDR2-Fc increased mineral content in GFPP calcified in mSBF while no significant differences were observed in PILP mediated mineralization. Electron microscopy approaches were used to evaluate the quality and quantity mineral deposits. An increase in the matrix to mineral ratio, frequency of particles and size of mineral deposits was observed in the presence of DDR2-Fc in mSBF. Von Kossa staining and immunohistochemistry analysis of adjacent sections indicated that DDR2-Fc bound to both the matrix and mineral phase of GFPP. Further, DDR2-Fc was found to bind to hydroxyapatite (HAP) particles and enhance the nucleation of mineral deposits in mSBF solutions independent of collagen. Taken together, our results elucidate DDR2 ECD as a novel player in the modulation of extra-fibrillar mineralization of collagen.
Collapse
Affiliation(s)
- Arghavan Farzadi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Theodore Renner
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Edward P Calomeni
- Renal Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Kayla F Presley
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Nicole Karn
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - John Lannutti
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Gunjan Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
41
|
Zhan S, Li J, Ge W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front Oncol 2019; 9:948. [PMID: 31608236 PMCID: PMC6771297 DOI: 10.3389/fonc.2019.00948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family consists of 18 members categorized into five distinct classes, the traditional classes I–III, and the non-canonical classes IV–V. Unlike the other class I SLRPs (decorin and biglycan), asporin contains a unique and conserved stretch of aspartate (D) residues in its N terminus, and germline polymorphisms in the D-repeat-length are associated with osteoarthritis and prostate cancer progression. Since the first discovery of asporin in 2001, previous studies have focused mainly on its roles in bone and joint diseases, including osteoarthritis, intervertebral disc degeneration and periodontal ligament mineralization. Recently, asporin gene expression was also reported to be dysregulated in tumor tissues of different types of cancer, and to act as oncogene in pancreatic, colorectal, gastric, and prostate cancers, and some types of breast cancer, though it is also reported to function as a tumor suppressor gene in triple-negative breast cancer. Furthermore, asporin is also positively or negatively correlated with tumor proliferation, migration, invasion, and patient prognosis through its regulation of different signaling pathways, including the TGF-β, EGFR, and CD44 pathways. In this review, we seek to elucidate the signaling pathways and functions regulated by asporin in different types of cancer and to highlight some important issues that require investigation in future research.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
42
|
Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, Theodros D, Haffner MC, Lotan T, Huang J, Davicioni E, An SS, Riddle RC, Thorek DLJ, Garraway IP, Fertig EJ, Isaacs JT, Brennen WN, Park BH, Hurley PJ. Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression. Cancer Res 2019; 79:3636-3650. [PMID: 31123087 PMCID: PMC6734938 DOI: 10.1158/0008-5472.can-18-2931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Tumor progression to metastasis is not cancer cell autonomous, but rather involves the interplay of multiple cell types within the tumor microenvironment. Here we identify asporin (ASPN) as a novel, secreted mesenchymal stromal cell (MSC) factor in the tumor microenvironment that regulates metastatic development. MSCs expressed high levels of ASPN, which decreased following lineage differentiation. ASPN loss impaired MSC self-renewal and promoted terminal cell differentiation. Mechanistically, secreted ASPN bound to BMP-4 and restricted BMP-4-induced MSC differentiation prior to lineage commitment. ASPN expression was distinctly conserved between MSC and cancer-associated fibroblasts (CAF). ASPN expression in the tumor microenvironment broadly impacted multiple cell types. Prostate tumor allografts in ASPN-null mice had a reduced number of tumor-associated MSCs, fewer cancer stem cells, decreased tumor vasculature, and an increased percentage of infiltrating CD8+ T cells. ASPN-null mice also demonstrated a significant reduction in lung metastases compared with wild-type mice. These data establish a role for ASPN as a critical MSC factor that extensively affects the tumor microenvironment and induces metastatic progression. SIGNIFICANCE: These findings show that asporin regulates key properties of mesenchymal stromal cells, including self-renewal and multipotency, and asporin expression by reactive stromal cells alters the tumor microenvironment and promotes metastatic progression.
Collapse
Affiliation(s)
- Robert M Hughes
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian W Simons
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hamda Khan
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rebecca Miller
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Valentina Kugler
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Samantha Torquato
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tamara Lotan
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessie Huang
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elai Davicioni
- Genome Dx Biosciences, Inc., Vancouver, British Columbia, Canada
| | - Steven S An
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan C Riddle
- The Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel L J Thorek
- The Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Isla P Garraway
- The Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elana J Fertig
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - W Nathaniel Brennen
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ben H Park
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Paula J Hurley
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Kim IS, Song W, Arakawa H. The Role of Low-Level Sodium Fluoride in Periodontal Inflammation. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Il-Shin Kim
- Department of Dental Hygiene, Honam University
| | - Wenqun Song
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | | |
Collapse
|
44
|
Järvinen TAH, Ruoslahti E. Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. Br J Pharmacol 2019; 176:16-25. [PMID: 29847688 PMCID: PMC6284330 DOI: 10.1111/bph.14374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) molecules play important roles in regulating processes such as cell proliferation, migration, differentiation and survival. Decorin is a proteoglycan that binds to ('decorates') collagen fibrils in the ECM. Decorin also interacts with many growth factors and their receptors, the most notable of these interactions being its inhibitory activity on TGF-β, the growth factor responsible for fibrosis formation. We have generated a recombinant, multi-functional, fusion-protein consisting of decorin as a therapeutic domain and a vascular homing and cell-penetrating peptide as a targeting vehicle. This recombinant decorin (CAR-DCN) accumulates at the sites of the targeted disease at higher levels and, as a result, has substantially enhanced biological activity over native decorin. CAR-DCN is an example of how molecular engineering can give a compound the ability to seek out sites of disease and enhance its therapeutic potential. CAR-DCN will hopefully be used to treat severe human diseases. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Tero A H Järvinen
- Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
- Department of Orthopedics and TraumatologyTampere University HospitalTampereFinland
| | - Erkki Ruoslahti
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
45
|
de Melo Pereira D, Habibovic P. Biomineralization-Inspired Material Design for Bone Regeneration. Adv Healthc Mater 2018; 7:e1800700. [PMID: 30240157 DOI: 10.1002/adhm.201800700] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Synthetic substitutes of bone grafts, such as calcium phosphate-based ceramics, have shown some good clinical successes in the regeneration of large bone defects and are currently extensively used. In the past decade, the field of biomineralization has delivered important new fundamental knowledge and techniques to better understand this fascinating phenomenon. This knowledge is also applied in the field of biomaterials, with the aim of bringing the composition and structure, and hence the performance, of synthetic bone graft substitutes even closer to those of the extracellular matrix of bone. The purpose of this progress report is to critically review advances in mimicking the extracellular matrix of bone as a strategy for development of new materials for bone regeneration. Lab-made biomimicking or bioinspired materials are discussed against the background of the natural extracellular matrix, starting from basic organic and inorganic components, and progressing into the building block of bone, the mineralized collagen fibril, and finally larger, 2D and 3D constructs. Moreover, bioactivity studies on state-of-the-art biomimicking materials are discussed. By addressing these different topics, an overview is given of how far the field has advanced toward a true bone-mimicking material, and some suggestions are offered for bridging current knowledge and technical gaps.
Collapse
Affiliation(s)
- Daniel de Melo Pereira
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
46
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
47
|
Simkova D, Kharaishvili G, Korinkova G, Ozdian T, Suchánková-Kleplová T, Soukup T, Krupka M, Galandakova A, Dzubak P, Janikova M, Navratil J, Kahounova Z, Soucek K, Bouchal J. The dual role of asporin in breast cancer progression. Oncotarget 2018; 7:52045-52060. [PMID: 27409832 PMCID: PMC5239534 DOI: 10.18632/oncotarget.10471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Asporin has been reported as a tumor suppressor in breast cancer, while asporin-activated invasion has been described in gastric cancer. According to our in silico search, high asporin expresion associates with significantly better relapse free survival (RFS) in patients with low-grade tumors but RFS is significantly worse in patients with grade 3 tumors. In line with other studies, we have confirmed asporin expression by RNA scope in situ hybridization in cancer associated fibroblasts. We have also found asporin expression in the Hs578T breast cancer cell line which we confirmed by quantitative RT-PCR and western blotting. From multiple testing, we found that asporin can be downregulated by bone morphogenetic protein 4 while upregulation may be facilited by serum-free cultivation or by three dimensional growth in stiff Alvetex scaffold. Downregulation by shRNA inhibited invasion of Hs578T as well as of CAFs and T47D cells. Invasion of asporin-negative MDA-MB-231 and BT549 breast cancer cells through collagen type I was enhanced by recombinant asporin. Besides other investigations, large scale analysis of aspartic acid repeat polymorphism will be needed for clarification of the asporin dual role in progression of breast cancer.
Collapse
Affiliation(s)
- Dana Simkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Korinkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tomas Ozdian
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tereza Suchánková-Kleplová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Adela Galandakova
- Department of Medical Chemistry and Biochemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Maria Janikova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Navratil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Zuzana Kahounova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
48
|
Taipale M, Solovieva S, Leino-Arjas P, Männikkö M. Functional polymorphisms in asporin and CILP together with joint loading predispose to hand osteoarthritis. BMC Genet 2017; 18:108. [PMID: 29233086 PMCID: PMC5727665 DOI: 10.1186/s12863-017-0585-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/07/2017] [Indexed: 01/07/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease afflicting people in the Western world and has a strong genetic influence. The aim of this study was to examine the association of two known functional polymorphisms in the TGF-β inhibiting genes, asporin (ASPN) and cartilage intermediate layer protein (CILP), with hand OA and potential gene-occupational hand loading interaction. Results Statistically significant interaction of the CILP rs2073711 T and ASPN D15 alleles with hand OA was observed (OR = 2.48, 95% CI 1.27–4.85, p = 0.008) in a Finnish hand OA cohort of 543 women (aged 45–63). When stratified by variation in working tasks, low variation of working tasks increased the risk further (OR = 3.00, 95% CI 1.35–6.66, p = 0.007). Based on the analysis of ASPN and CILP protein-coding regions, functional studies were performed with one observed variant, rs41278695 in the ASPN gene. Analyses showed that bone morphogenetic protein 2 (BMP2) mediated expression of aggrecan (Agc1) and type II collagen (Col2a1) was significantly suppressed (p = 0.011 and p = 0.023, respectively) in a murine chondrocytic cell line (ATDC5) with cells stably expressing ASPN rs41278695. Conclusions The carriage of either ASPN D15 or CILP rs2073711 TT is associated with increased risk of symmetrical hand OA, particularly in individuals with low variation in work tasks. ASPN rs41278695 SNP had an effect on Agc1 and Col2a1 gene expression when induced with BMP-2 suggesting an effect on the cartilage extracellular matrix composition.
Collapse
Affiliation(s)
- Mari Taipale
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland.,Biocenter Oulu and Faculty of Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Svetlana Solovieva
- Department of Epidemiology and Biostatistics, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Päivi Leino-Arjas
- Department of Epidemiology and Biostatistics, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland. .,Biocenter Oulu and Faculty of Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
49
|
Environmental and Genetic Determinants of Biofilm Formation in Paracoccus denitrificans. mSphere 2017; 2:mSphere00350-17. [PMID: 28904996 PMCID: PMC5588039 DOI: 10.1128/mspheredirect.00350-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/12/2023] Open
Abstract
The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface. The genome of the denitrifying bacterium Paracoccus denitrificans predicts the expression of a small heme-containing nitric oxide (NO) binding protein, H-NOX. The genome organization and prior work in other bacteria suggest that H-NOX interacts with a diguanylate cyclase that cyclizes GTP to make cyclic di-GMP (cdGMP). Since cdGMP frequently regulates attached growth as a biofilm, we first established conditions for biofilm development by P. denitrificans. We found that adhesion to a polystyrene surface is strongly stimulated by the addition of 10 mM Ca2+ to rich media. The genome encodes at least 11 repeats-in-toxin family proteins that are predicted to be secreted by the type I secretion system (TISS). We deleted the genes encoding the TISS and found that the mutant is almost completely deficient for attached growth. Adjacent to the TISS genes there is a potential open reading frame encoding a 2,211-residue protein with 891 Asp-Ala repeats. This protein is also predicted to bind calcium and to be a TISS substrate, and a mutant specifically lacking this protein is deficient in biofilm formation. By analysis of mutants and promoter reporter fusions, we show that biofilm formation is stimulated by NO generated endogenously by the respiratory reduction of nitrite. A mutant lacking both predicted diguanylate cyclases encoded in the genome overproduces biofilm, implying that cdGMP is a negative regulator of attached growth. Our data are consistent with a model in which there are H-NOX-dependent and -independent pathways by which NO stimulates biofilm formation. IMPORTANCE The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface.
Collapse
|
50
|
Han L, Li X, Zhang G, Xu Z, Gong D, Lu F, Liu X. Pericardial interstitial cell senescence responsible for pericardial structural remodeling in idiopathic and postsurgical constrictive pericarditis. J Thorac Cardiovasc Surg 2017; 154:966-975.e4. [PMID: 28456362 DOI: 10.1016/j.jtcvs.2017.03.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/04/2017] [Accepted: 03/20/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Idiopathic and postsurgical constrictive pericarditis is characterized by pericardial structural remodeling that involves fibrosis, calcification, and inflammation. This study aimed to determine whether cell senescence was responsible for pericardial structural remodeling. METHODS Pericardial interstitial cells derived from patients with idiopathic or postsurgical pericarditis (pericarditis cells) were harvested. Timing of senescence and differences in telomere length were compared between age- and sex-matched controls (nonpericarditis cells). Pericardial interstitial cells derived from normal pericardia were serially passaged until senescence (senescent cells). Apoptosis, collagen matrix, calcium deposition, chemoattractant properties, gene expression profiles, and paracrine effects of senescent cells were compared with nonsenescent cells of passage 2 (nonsenescent cells). RESULTS Pericarditis cells displayed senescent changes, including short telomere length, large flattened cell sizes, positive staining for senescence-associated β-galactosidase, and limited growth capacity. These senescent cells were resistant to apoptosis, produced more collagen matrix, deposited more calcium, and attracted more monocytes/lymphocytes than the nonsenescent cells. A cluster of genes involved in extracellular matrix deposition (connective tissue growth factor, fibronectin, collagen type I, collagen type III, and tissue inhibitors of metalloproteinase-1), calcium deposition (osteopontin, bone sialoprotein, osteonectin, and matrix Gla protein), and inflammatory cell recruitment (interleukin-6, chemoattractant protein-1, and tumor necrosis factor-α) were upregulated in senescent cells, whereas extracellular matrix-degrading enzyme (metalloproteinase-1 and metalloproteinase-3) was downregulated. Furthermore, senescent cells had the ability to promote the proliferation, differentiation, and senescence of neighboring cells. CONCLUSIONS These findings suggest that senescent cells have characteristics promoting pericardial structural remodeling, but further work is needed to establish causation.
Collapse
Affiliation(s)
- Lin Han
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Li
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guanxin Zhang
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiyun Xu
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dejun Gong
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fanglin Lu
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohong Liu
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|