1
|
Li Q, Lin J, Luo S, Schmitz‐Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of striated muscle preferentially expressed protein kinase in skeletal muscle including its relationship with myospryn complex. J Cachexia Sarcopenia Muscle 2024; 15:1003-1015. [PMID: 38725372 PMCID: PMC11154751 DOI: 10.1002/jcsm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.
Collapse
Affiliation(s)
- Qifei Li
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Jasmine Lin
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shiyu Luo
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Klaus Schmitz‐Abe
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rohan Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Melissa Meng
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Behzad Moghadaszadeh
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Alan H. Beggs
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
2
|
Hall DD, Takeshima H, Song LS. Structure, Function, and Regulation of the Junctophilin Family. Annu Rev Physiol 2024; 86:123-147. [PMID: 37931168 PMCID: PMC10922073 DOI: 10.1146/annurev-physiol-042022-014926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.
Collapse
Affiliation(s)
- Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Long-Sheng Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Yang ZF, Panwar P, McFarlane CR, Tuinte WE, Campiglio M, Van Petegem F. Structures of the junctophilin/voltage-gated calcium channel interface reveal hot spot for cardiomyopathy mutations. Proc Natl Acad Sci U S A 2022; 119:e2120416119. [PMID: 35238659 PMCID: PMC8916002 DOI: 10.1073/pnas.2120416119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.
Collapse
Affiliation(s)
- Zheng Fang Yang
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pankaj Panwar
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ciaran R. McFarlane
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wietske E. Tuinte
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Ahn J, Kim J, Jeon JS, Jang YJ. A Microfluidic Stretch System Upregulates Resistance Exercise-Related Pathway. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
6
|
Perni S. The Builders of the Junction: Roles of Junctophilin1 and Junctophilin2 in the Assembly of the Sarcoplasmic Reticulum–Plasma Membrane Junctions in Striated Muscle. Biomolecules 2022; 12:biom12010109. [PMID: 35053257 PMCID: PMC8774113 DOI: 10.3390/biom12010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR) into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilin1 and Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR. This short review focuses on the roles of junctophilins1 and 2 in the formation and organization of SR-PM junctions in skeletal and cardiac muscle and on the functional consequences of the absence or malfunction of these proteins in striated muscle in light of recently published data and recent advancements in protein structure prediction.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Calsequestrin 1 Is an Active Partner of Stromal Interaction Molecule 2 in Skeletal Muscle. Cells 2021; 10:cells10112821. [PMID: 34831044 PMCID: PMC8616366 DOI: 10.3390/cells10112821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.
Collapse
|
8
|
Bardsley OJ, Matthews HR, Huang CLH. Finite element analysis predicts Ca 2+ microdomains within tubular-sarcoplasmic reticular junctions of amphibian skeletal muscle. Sci Rep 2021; 11:14376. [PMID: 34257321 PMCID: PMC8277803 DOI: 10.1038/s41598-021-93083-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
A finite element analysis modelled diffusional generation of steady-state Ca2+ microdomains within skeletal muscle transverse (T)-tubular-sarcoplasmic reticular (SR) junctions, sites of ryanodine receptor (RyR)-mediated SR Ca2+ release. It used established quantifications of sarcomere and T-SR anatomy (radial diameter [Formula: see text]; axial distance [Formula: see text]). Its boundary SR Ca2+ influx densities,[Formula: see text], reflected step impositions of influxes, [Formula: see text] deduced from previously measured Ca2+ signals following muscle fibre depolarization. Predicted steady-state T-SR junctional edge [Ca2+], [Ca2+]edge, matched reported corresponding experimental cytosolic [Ca2+] elevations given diffusional boundary efflux [Formula: see text] established cytosolic Ca2+ diffusion coefficients [Formula: see text] and exit length [Formula: see text]. Dependences of predicted [Ca2+]edge upon [Formula: see text] then matched those of experimental [Ca2+] upon Ca2+ release through their entire test voltage range. The resulting model consistently predicted elevated steady-state T-SR junctional ~ µM-[Ca2+] elevations radially declining from maxima at the T-SR junction centre along the entire axial T-SR distance. These [Ca2+] heterogeneities persisted through 104- and fivefold, variations in D and w around, and fivefold reductions in d below, control values, and through reported resting muscle cytosolic [Ca2+] values, whilst preserving the flux conservation ([Formula: see text] condition, [Formula: see text]. Skeletal muscle thus potentially forms physiologically significant ~ µM-[Ca2+] T-SR microdomains that could regulate cytosolic and membrane signalling molecules including calmodulin and RyR, These findings directly fulfil recent experimental predictions invoking such Ca2+ microdomains in observed regulatory effects upon Na+ channel function, in a mechanism potentially occurring in similar restricted intracellular spaces in other cell types.
Collapse
Affiliation(s)
- Oliver J. Bardsley
- grid.5335.00000000121885934Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG UK
| | - Hugh R. Matthews
- grid.5335.00000000121885934Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG UK
| | - Christopher L.-H. Huang
- grid.5335.00000000121885934Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG UK ,grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| |
Collapse
|
9
|
Liu SX, Matthews HR, Huang CLH. Sarcoplasmic reticular Ca 2+-ATPase inhibition paradoxically upregulates murine skeletal muscle Na v1.4 function. Sci Rep 2021; 11:2846. [PMID: 33531589 PMCID: PMC7854688 DOI: 10.1038/s41598-021-82493-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle Na+ channels possess Ca2+- and calmodulin-binding sites implicated in Nav1.4 current (INa) downregulation following ryanodine receptor (RyR1) activation produced by exchange protein directly activated by cyclic AMP or caffeine challenge, effects abrogated by the RyR1-antagonist dantrolene which itself increased INa. These findings were attributed to actions of consequently altered cytosolic Ca2+, [Ca2+]i, on Nav1.4. We extend the latter hypothesis employing cyclopiazonic acid (CPA) challenge, which similarly increases [Ca2+]i, but through contrastingly inhibiting sarcoplasmic reticular (SR) Ca2+-ATPase. Loose patch clamping determined Na+ current (INa) families in intact native murine gastrocnemius skeletal myocytes, minimising artefactual [Ca2+]i perturbations. A bespoke flow system permitted continuous INa comparisons through graded depolarizing steps in identical stable membrane patches before and following solution change. In contrast to the previous studies modifying RyR1 activity, and imposing control solution changes, CPA (0.1 and 1 µM) produced persistent increases in INa within 1-4 min of introduction. CPA pre-treatment additionally abrogated previously reported reductions in INa produced by 0.5 mM caffeine. Plots of peak current against voltage excursion demonstrated that 1 µM CPA increased maximum INa by ~ 30%. It only slightly decreased half-maximal activating voltages (V0.5) and steepness factors (k), by 2 mV and 0.7, in contrast to the V0.5 and k shifts reported with direct RyR1 modification. These paradoxical findings complement previously reported downregulatory effects on Nav1.4 of RyR1-agonist mediated increases in bulk cytosolic [Ca2+]. They implicate possible local tubule-sarcoplasmic triadic domains containing reduced [Ca2+]TSR in the observed upregulation of Nav1.4 function following CPA-induced SR Ca2+ depletion.
Collapse
Affiliation(s)
- Sean X Liu
- Physiological Laboratory, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
10
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
11
|
Manning JR, Wijeratne AB, Oloizia BB, Zhang Y, Greis KD, Schultz JEJ. Phosphoproteomic analysis identifies phospho-Threonine-17 site of phospholamban important in low molecular weight isoform of fibroblast growth factor 2-induced protection against post-ischemic cardiac dysfunction. J Mol Cell Cardiol 2020; 148:1-14. [PMID: 32853649 DOI: 10.1016/j.yjmcc.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/04/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Among its many biological roles, fibroblast growth factor 2 (FGF2) protects the heart from dysfunction and damage associated with an ischemic attack. Our laboratory demonstrated that its protection against myocardial dysfunction occurs by the low molecular weight (LMW) isoform of FGF2, while the high molecular weight (HMW) isoforms are associated with a worsening in post-ischemic recovery of cardiac function. LMW FGF2-mediated cardioprotection is facilitated by activation of multiple kinases, including PKCalpha, PKCepsilon, and ERK, and inhibition of p38 and JNK. OBJECTIVE Yet, the substrates of those kinases associated with LMW FGF2-induced cardioprotection against myocardial dysfunction remain to be elucidated. METHODS AND RESULTS To identify substrates in LMW FGF2 improvement of post-ischemic cardiac function, mouse hearts expressing only LMW FGF2 were subjected to ischemia-reperfusion (I/R) injury and analyzed by a mass spectrometry (MS)-based quantitative phosphoproteomic strategy. MS analysis identified 50 phosphorylation sites from 7 sarcoendoplasmic reticulum (SR) proteins that were significantly altered in I/R-treated hearts only expressing LMW FGF2 compared to those hearts lacking FGF2. One of those phosphorylated SR proteins identified was phospholamban (PLB), which exhibited rapid, increased phosphorylation at Threonine-17 (Thr17) after I/R in hearts expressing only LMW FGF2; this was further validated using Selected Reaction Monitoring-based MS workflow. To demonstrate a mechanistic role of phospho-Thr17 PLB in LMW FGF2-mediated cardioprotection, hearts only expressing LMW FGF2 and those expressing only LMW FGF2 with a mutant PLB lacking phosphorylatable Thr17 (Thr17Ala PLB) were subjected to I/R. Hearts only expressing LMW FGF2 showed significantly improved recovery of cardiac function following I/R (p < 0.05), and this functional improvement was significantly abrogated in hearts expressing LMW FGF2 and Thr17Ala PLB (p < 0.05). CONCLUSION The findings indicate that LMW FGF2 modulates intracellular calcium handling/cycling via regulatory changes in SR proteins essential for recovery from I/R injury, and thereby protects the heart from post-ischemic cardiac dysfunction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Aruna B Wijeratne
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Brian B Oloizia
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Jo El J Schultz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America.
| |
Collapse
|
12
|
A muscular hypotonia-associated STIM1 mutant at R429 induces abnormalities in intracellular Ca 2+ movement and extracellular Ca 2+ entry in skeletal muscle. Sci Rep 2019; 9:19140. [PMID: 31844136 PMCID: PMC6915709 DOI: 10.1038/s41598-019-55745-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism, which is involved in the physiological functions of various tissues, including skeletal muscle. STIM1 is also associated with skeletal muscle diseases, but its pathological mechanisms have not been well addressed. The present study focused on examining the pathological mechanism(s) of a mutant STIM1 (R429C) that causes human muscular hypotonia. R429C was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-cell Ca2+ imaging of myotubes and transmission electron microscopy (TEM) along with biochemical approaches. R429C did not interfere with the terminal differentiation of myoblasts to myotubes. Unlike wild-type STIM1, there was no further increase of SOCE by R429C. R429C bound to endogenous STIM1 and slowed down the initial rate of SOCE that were mediated by endogenous STIM1. Moreover, R429C increased intracellular Ca2+ movement in response to membrane depolarization by eliminating the attenuation on dihydropyridine receptor-ryanodine receptor (DHPR-RyR1) coupling by endogenous STIM1. The cytosolic Ca2+ level was also increased due to the reduction in SR Ca2+ level. In addition, R429C-expressing myotubes showed abnormalities in mitochondrial shape, a significant decrease in ATP levels, and the higher expression levels of mitochondrial fission-mediating proteins. Therefore, serial defects in SOCE, intracellular Ca2+ movement, and cytosolic Ca2+ level along with mitochondrial abnormalities in shape and ATP level could be a pathological mechanism of R429C for human skeletal muscular hypotonia. This study also suggests a novel clue that STIM1 in skeletal muscle could be related to mitochondria via regulating intra and extracellular Ca2+ movements.
Collapse
|
13
|
Wang LY, Shen H, Yang Q, Min J, Wang Q, Xi W, Yin L, Le SG, Zhang YF, Xiao J, Wang ZN, Ji GY. LncRNA-LINC00472 contributes to the pathogenesis of atrial fibrillation (Af) by reducing expression of JP2 and RyR2 via miR-24. Biomed Pharmacother 2019; 120:109364. [DOI: 10.1016/j.biopha.2019.109364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
|
14
|
Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Lee TYT, Mahmud Z, Schulz R. Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:42. [PMID: 31506724 DOI: 10.1007/s00395-019-0749-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/02/2019] [Indexed: 11/30/2022]
Abstract
Junctophilin-2 is a structural membrane protein that tethers T-tubules to the sarcoplasmic reticulum to allow for coordinated calcium-induced calcium release in cardiomyocytes. Defective excitation-contraction coupling in myocardial ischemia-reperfusion (IR) injury is associated with junctophilin-2 proteolysis. However, it remains unclear whether preventing junctophilin-2 proteolysis improves the recovery of cardiac contractile dysfunction in IR injury. Matrix metalloproteinase-2 (MMP-2) is a zinc and calcium-dependent protease that is activated by oxidative stress in myocardial IR injury and cleaves both intracellular and extracellular substrates. To determine whether junctophilin-2 is targeted by MMP-2, isolated rat hearts were perfused in working mode aerobically or subjected to IR injury with the selective MMP inhibitor ARP-100. IR injury impaired the recovery of cardiac contractile function which was associated with increased degradation of junctophilin-2 and damaged cardiac dyads. In IR hearts, ARP-100 improved the recovery of cardiac contractile function, attenuated junctophilin-2 proteolysis, and prevented ultrastructural damage to the dyad. MMP-2 was co-localized with junctophilin-2 in aerobic and IR hearts by immunoprecipitation and immunohistochemistry. In situ zymography showed that MMP activity was localized to the Z-disc and sarcomere in aerobic hearts and accumulated at sites where the striated JPH-2 staining was disrupted in IR hearts. In vitro proteolysis assays determined that junctophilin-2 is susceptible to proteolysis by MMP-2 and in silico analysis predicted multiple MMP-2 cleavage sites between the membrane occupation and recognition nexus repeats and within the divergent region of junctophilin-2. Degradation of junctophilin-2 by MMP-2 is an early consequence of myocardial IR injury which may initiate a cascade of sequelae leading to impaired contractile function.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Andrej Roczkowsky
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Woo Jung Cho
- Faculty of Medicine and Dentistry Cell Imaging Centre, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Poirier
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Tim Y T Lee
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
15
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
16
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
17
|
Calpena E, López Del Amo V, Chakraborty M, Llamusí B, Artero R, Espinós C, Galindo MI. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 2018; 11:dmm.029082. [PMID: 29208631 PMCID: PMC5818072 DOI: 10.1242/dmm.029082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot–Marie–Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jpDrosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up- and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts. Summary: This work reveals that the Drosophila Junctophilin protein has similar functions to its mammalian homologues and uncovers new interactions of potential biomedical interest with Huntingtin and Notch signalling.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Víctor López Del Amo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Beatriz Llamusí
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Carmen Espinós
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain.,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
| | - Máximo I Galindo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain .,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| |
Collapse
|
18
|
Oh MR, Lee KJ, Huang M, Kim JO, Kim DH, Cho CH, Lee EH. STIM2 regulates both intracellular Ca 2+ distribution and Ca 2+ movement in skeletal myotubes. Sci Rep 2017; 7:17936. [PMID: 29263348 PMCID: PMC5738411 DOI: 10.1038/s41598-017-18256-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) along with Orai1 mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various tissues including skeletal muscle. However, the role(s) of STIM2, a homolog of STIM1, in skeletal muscle has not been well addressed. The present study, first, was focused on searching for STIM2-binding proteins from among proteins mediating skeletal muscle functions. This study used a binding assay, quadrupole time-of-flight mass spectrometry, and co-immunoprecipitation assay with bona-fide STIM2- and SERCA1a-expressing rabbit skeletal muscle. The region for amino acids from 453 to 729 of STIM2 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a). Next, oxalate-supported 45Ca2+-uptake experiments and various single-myotube Ca2+ imaging experiments using STIM2-knockdown mouse primary skeletal myotubes have suggested that STIM2 attenuates SERCA1a activity during skeletal muscle contraction, which contributes to the intracellular Ca2+ distribution between the cytosol and the SR at rest. In addition, STIM2 regulates Ca2+ movement through RyR1 during skeletal muscle contraction as well as SOCE. Therefore, via regulation of SERCA1a activity, STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal muscle, which makes it both similar to, yet different from, STIM1.
Collapse
Affiliation(s)
- Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Ock Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Do Han Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
19
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
20
|
The maintenance ability and Ca 2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med 2016; 48:e278. [PMID: 27932789 PMCID: PMC5192075 DOI: 10.1038/emm.2016.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Sildenafil relaxes vascular smooth muscle cells and is used to treat pulmonary artery hypertension as well as erectile dysfunction. However, the effectiveness of sildenafil on skeletal muscle and the benefit of its clinical use have been controversial, and most studies focus primarily on tissues and organs from disease models without cellular examination. Here, the effects of sildenafil on skeletal muscle at the cellular level were examined using mouse primary skeletal myoblasts (the proliferative form of skeletal muscle stem cells) and myotubes, along with single-cell Ca2+ imaging experiments and cellular and biochemical studies. The proliferation of skeletal myoblasts was enhanced by sildenafil in a dose-independent manner. In skeletal myotubes, sildenafil enhanced the activity of ryanodine receptor 1, an internal Ca2+ channel, and Ca2+ movement that promotes skeletal muscle contraction, possibly due to an increase in the resting cytosolic Ca2+ level and a unique microscopic shape in the myotube membranes. Therefore, these results suggest that the maintenance ability of skeletal muscle mass and the contractility of skeletal muscle could be improved by sildenafil by enhancing the proliferation of skeletal myoblasts and increasing the Ca2+ availability of skeletal myotubes, respectively.
Collapse
|
21
|
Munro ML, Jayasinghe I, Wang Q, Quick A, Wang W, Baddeley D, Wehrens XHT, Soeller C. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci 2016; 129:4388-4398. [PMID: 27802169 PMCID: PMC5201013 DOI: 10.1242/jcs.196873] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/14/2016] [Indexed: 11/20/2022] Open
Abstract
Signalling nanodomains requiring close contact between the plasma membrane and internal compartments, known as 'junctions', are fast communication hubs within excitable cells such as neurones and muscle. Here, we have examined two transgenic murine models probing the role of junctophilin-2, a membrane-tethering protein crucial for the formation and molecular organisation of sub-microscopic junctions in ventricular muscle cells of the heart. Quantitative single-molecule localisation microscopy showed that junctions in animals producing above-normal levels of junctophilin-2 were enlarged, allowing the re-organisation of the primary functional protein within it, the ryanodine receptor (RyR; in this paper, we use RyR to refer to the myocardial isoform RyR2). Although this change was associated with much enlarged RyR clusters that, due to their size, should be more excitable, functionally it caused a mild inhibition in the Ca2+ signalling output of the junctions (Ca2+ sparks). Analysis of the single-molecule densities of both RyR and junctophilin-2 revealed an ∼3-fold increase in the junctophilin-2 to RyR ratio. This molecular rearrangement is compatible with direct inhibition of RyR opening by junctophilin-2 to intrinsically stabilise the Ca2+ signalling properties of the junction and thus the contractile function of the cell.
Collapse
Affiliation(s)
- Michelle L Munro
- Department of Physiology, School of Medical Sciences, University of Auckland, 1023, New Zealand
| | - Izzy Jayasinghe
- School of Physics, University of Exeter, Exeter EX4 4QL, UK
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Qiongling Wang
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann Quick
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Wang
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - David Baddeley
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Soeller
- Department of Physiology, School of Medical Sciences, University of Auckland, 1023, New Zealand
- School of Physics, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
22
|
Mitsugumin 53 regulates extracellular Ca 2+ entry and intracellular Ca 2+ release via Orai1 and RyR1 in skeletal muscle. Sci Rep 2016; 6:36909. [PMID: 27841305 PMCID: PMC5107933 DOI: 10.1038/srep36909] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Mitsugumin 53 (MG53) participates in the membrane repair of various cells, and skeletal muscle is the major tissue that expresses MG53. Except for the regulatory effects of MG53 on SERCA1a, the role(s) of MG53 in the unique functions of skeletal muscle such as muscle contraction have not been well examined. Here, a new MG53-interacting protein, Orai1, is identified in skeletal muscle. To examine the functional relevance of the MG53-Orai1 interaction, MG53 was over-expressed in mouse primary or C2C12 skeletal myotubes and the functional properties of the myotubes were examined using cell physiological and biochemical approaches. The PRY-SPRY region of MG53 binds to Orai1, and MG53 and Orai1 are co-localized in the plasma membrane of skeletal myotubes. MG53-Orai1 interaction enhances extracellular Ca2+ entry via a store-operated Ca2+ entry (SOCE) mechanism in skeletal myotubes. Interestingly, skeletal myotubes over-expressing MG53 or PRY-SPRY display a reduced intracellular Ca2+ release in response to K+-membrane depolarization or caffeine stimulation, suggesting a reduction in RyR1 channel activity. Expressions of TRPC3, TRPC4, and calmodulin 1 are increased in the myotubes, and MG53 directly binds to TRPC3, which suggests a possibility that TRPC3 also participates in the enhanced extracellular Ca2+ entry. Thus, MG53 could participate in regulating extracellular Ca2+ entry via Orai1 during SOCE and also intracellular Ca2+ release via RyR1 during skeletal muscle contraction.
Collapse
|
23
|
Woo JS, Hwang JH, Huang M, Ahn MK, Cho CH, Ma J, Lee EH. Interaction between mitsugumin 29 and TRPC3 participates in regulating Ca(2+) transients in skeletal muscle. Biochem Biophys Res Commun 2015; 464:133-9. [PMID: 26141232 DOI: 10.1016/j.bbrc.2015.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/03/2023]
Abstract
Mitsugumin 29 (MG29) is related to the fatigue and aging processes of skeletal muscle. To examine the roles of MG29 in conjunction with its binding protein, the canonical-type transient receptor potential cation channel 3 (TRPC3), in skeletal muscle, the binding region of MG29 to TRPC3 was studied along with the functional relevance of the binding in mouse primary skeletal myotubes using co-immunoprecipitation assays and Ca(2+) imaging experiments. The N-terminus and the I-II loop of MG29 constitute the binding region for TRPC3. The myotubes that expressed the MG29 mutant missing the entire TRPC3-binding region showed a disrupted binding between endogenous MG29 and TRPC3 and a reduction in Ca(2+) transients in response to membrane depolarization without affecting ryanodine receptor 1 activity, the resting cytosolic Ca(2+) level, and the amount of releasable Ca(2+) from the sarcoplasmic reticulum. Among the proteins mediating Ca(2+) movements in skeletal muscle, TRPC4 expression was significantly decreased by the MG29 mutant. Therefore, MG29 could be a new factor for regulating Ca(2+) transients during skeletal muscle contraction possibly via a correlation with TRPC3 and TRPC4.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Ji-Hye Hwang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Mi Kyoung Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea.
| |
Collapse
|
24
|
Takeshima H, Hoshijima M, Song LS. Ca²⁺ microdomains organized by junctophilins. Cell Calcium 2015; 58:349-56. [PMID: 25659516 PMCID: PMC5159448 DOI: 10.1016/j.ceca.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca2+ channels and ER/SR Ca2+ release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Masahiko Hoshijima
- Department of Medicine and Center for Research in Biological Systems, University of California, San Diego, CA 92093, USA.
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Lee KJ, Hyun C, Woo JS, Park CS, Kim DH, Lee EH. Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1a (SERCA1a) in skeletal muscle. Pflugers Arch 2014; 466:987-1001. [PMID: 24077737 DOI: 10.1007/s00424-013-1361-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
Stromal interaction molecule 1 (STIM1) mediates Ca2+ movements from the extracellular space to the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various cells including skeletal muscle cells. In the present study, to reveal the unidentified functional role of the STIM1 C terminus from 449 to 671 amino acids in skeletal muscle, binding assays and quadrupole time-of-flight mass spectrometry were used to identify proteins binding in this region along with proteins that mediate skeletal muscle contraction and relaxation. STIM1 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) via this region (called STIM1-SBR). The binding was confirmed in endogenous full-length STIM1 in rabbit skeletal muscle and mouse primary skeletal myotubes via co-immunoprecipitation assay and immunocytochemistry. STIM1 knockdown in mouse primary skeletal myotubes decreased Ca2+ uptake from the cytosol to the sarcoplasmic reticulum (SR) through SERCA1a only at micromolar cytosolic Ca2+ concentrations, suggesting that STIM1 could be required for the full activity of SERCA1a possibly during the relaxation of skeletal muscle. Various Ca2+ imaging experiments using myotubes expressing STIM1-SBR suggest that STIM1 is involved in intracellular Ca2+ distributions between the SR and the cytosol via regulating SERCA1a activity without affecting SOCE. Therefore, in skeletal muscle, STIM1 could play an important role in regulating Ca2+ movements between the SR and the cytosol.
Collapse
|
26
|
Abstract
Ca(2+) release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca(2+) influx into cells is store-operated Ca(2+) entry (SOCE), which is activated by the reduction of Ca(2+) concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca(2+) sensors and Orai proteins as Ca(2+) channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Zui Pan
- Department of Internal Medicine-Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marco Brotto
- Muscle Biology Research Group-MUBIG, Schools of Nursing & Medicine, University of Missouri-Kansas City, MO, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
27
|
Pla-Martín D, Calpena E, Lupo V, Márquez C, Rivas E, Sivera R, Sevilla T, Palau F, Espinós C. Junctophilin-1 is a modifier gene of GDAP1-related Charcot-Marie-Tooth disease. Hum Mol Genet 2014; 24:213-29. [PMID: 25168384 DOI: 10.1093/hmg/ddu440] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the GDAP1 gene cause different forms of Charcot-Marie-Tooth (CMT) disease, and the primary clinical expression of this disease is markedly variable in the dominant inheritance form (CMT type 2K; CMT2K), in which carriers of the GDAP1 p.R120W mutation can display a wide range of clinical severity. We investigated the JPH1 gene as a genetic modifier of clinical expression variability because junctophilin-1 (JPH1) is a good positional and functional candidate. We demonstrated that the JPH1-GDAP1 cluster forms a paralogon and is conserved in vertebrates. Moreover, both proteins play a role in Ca(2+) homeostasis, and we demonstrated that JPH1 is able to restore the store-operated Ca(2+) entry (SOCE) activity in GDAP1-silenced cells. After the mutational screening of JPH1 in a series of 24 CMT2K subjects who harbour the GDAP1 p.R120W mutation, we characterized the JPH1 p.R213P mutation in one patient with a more severe clinical picture. JPH1(p.R213P) cannot rescue the SOCE response in GDAP1-silenced cells. We observed that JPH1 colocalizes with STIM1, which is the activator of SOCE, in endoplasmic reticulum-plasma membrane puncta structures during Ca(2+) release in a GDAP1-dependent manner. However, when GDAP1(p.R120W) is expressed, JPH1 seems to be retained in mitochondria. We also established that the combination of GDAP1(p.R120W) and JPH1(p.R213P) dramatically reduces SOCE activity, mimicking the effect observed in GDAP1 knock-down cells. In summary, we conclude that JPH1 and GDAP1 share a common pathway and depend on each other; therefore, JPH1 can contribute to the phenotypical consequences of GDAP1 mutations.
Collapse
Affiliation(s)
- David Pla-Martín
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain
| | - Eduardo Calpena
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain
| | - Vincenzo Lupo
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain
| | | | - Eloy Rivas
- Department of Pathology, Hospital Universitario Virgen del Rocío, Seville 41013, Spain
| | - Rafael Sivera
- Department of Neurology, Hospital Universitari i Politècnic La Fe and Instituto de Investigación Sanitario (IIS)-La Fe, Valencia 46026, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia 46026, Spain
| | - Teresa Sevilla
- Department of Neurology, Hospital Universitari i Politècnic La Fe and Instituto de Investigación Sanitario (IIS)-La Fe, Valencia 46026, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia 46026, Spain Department of Medicine and
| | - Francesc Palau
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain University of Castilla-La Mancha School of Medicine, Ciudad Real 13071, Spain
| | - Carmen Espinós
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain Department of Genetics, Universitat de València, Valencia 46010, Spain and
| |
Collapse
|
28
|
Cozzoli A, Liantonio A, Conte E, Cannone M, Massari AM, Giustino A, Scaramuzzi A, Pierno S, Mantuano P, Capogrosso RF, Camerino GM, De Luca A. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase. Am J Physiol Cell Physiol 2014; 307:C634-47. [PMID: 25080489 DOI: 10.1152/ajpcell.00372.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers.
Collapse
Affiliation(s)
- Anna Cozzoli
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Antonella Liantonio
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Elena Conte
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Maria Cannone
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Ada Maria Massari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Antonia Scaramuzzi
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Paola Mantuano
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | | | - Giulia Maria Camerino
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "A. Moro," Bari, Italy; and
| |
Collapse
|
29
|
Beavers DL, Landstrom AP, Chiang DY, Wehrens XHT. Emerging roles of junctophilin-2 in the heart and implications for cardiac diseases. Cardiovasc Res 2014; 103:198-205. [PMID: 24935431 DOI: 10.1093/cvr/cvu151] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiomyocytes rely on a highly specialized subcellular architecture to maintain normal cardiac function. In a little over a decade, junctophilin-2 (JPH2) has become recognized as a cardiac structural protein critical in forming junctional membrane complexes (JMCs), which are subcellular domains essential for excitation-contraction coupling within the heart. While initial studies described the structure of JPH2 and its role in anchoring junctional sarcoplasmic reticulum and transverse-tubule (T-tubule) membrane invaginations, recent research has an expanded role of JPH2 in JMC structure and function. For example, JPH2 is necessary for the development of postnatal T-tubule in mammals. It is also critical for the maintenance of the complex JMC architecture and stabilization of local ion channels in mature cardiomyocytes. Loss of this function by mutations or down-regulation of protein expression has been linked to hypertrophic cardiomyopathy, arrhythmias, and progression of disease in failing hearts. In this review, we summarize current views on the roles of JPH2 within the heart and how JPH2 dysregulation may contribute to a variety of cardiac diseases.
Collapse
Affiliation(s)
- David L Beavers
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA
| | - Andrew P Landstrom
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - David Y Chiang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Deptartment of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
31
|
Landstrom AP, Beavers DL, Wehrens XHT. The junctophilin family of proteins: from bench to bedside. Trends Mol Med 2014; 20:353-62. [PMID: 24636942 PMCID: PMC4041816 DOI: 10.1016/j.molmed.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Woo JS, Lee KJ, Huang M, Cho CH, Lee EH. Heteromeric TRPC3 with TRPC1 formed via its ankyrin repeats regulates the resting cytosolic Ca2+ levels in skeletal muscle. Biochem Biophys Res Commun 2014; 446:454-9. [PMID: 24613381 DOI: 10.1016/j.bbrc.2014.02.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
Abstract
The main tasks of skeletal muscle are muscle contraction and relaxation, which are mediated by changes in cytosolic Ca(2+) levels. Canonical-type transient receptor potential 3 (TRPC3) contains an ankyrin repeat (AR) region at the N-terminus (38-188 amino acids) and forms extracellular Ca(2+)-entry channels by homo or heteromerization with other TRP subtypes in various cells including skeletal myotubes. However, previous research has not determined which region(s) of TRPC3 is responsible for the heteromerization, whether the AR region participates in the heteromerizations, or what is the role of heteromeric TRPC3s in skeletal muscle. In the present study, the heteromerization of TRPC3 with TRPC1 was first examined by GST pull-down assays of TRPC3 portions with TRPC1. The portion containing the AR region of TRPC3 was bound to the TRPC1, but the binding was inhibited by the very end sub-region of the TRPC3 (1-37 amino acids). In-silico studies have suggested that the very end sub-region possibly induces a structural change in the AR region. Second, the very end sub-region of TRPC3 was expressed in mouse primary skeletal myotubes, resulting in a dominant-negative inhibition of heteromeric TRPC3/1 formation. In addition, the skeletal myotubes expressing the very end sub-region showed a decrease in resting cytosolic Ca(2+) levels. These results suggest that the AR region of TRPC3 could mediate the heteromeric TRPC3/1 formation, and the heteromeric TRPC3/1 could participate in regulating the resting cytosolic Ca(2+) levels in skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
33
|
STIM1 negatively regulates Ca²⁺ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 2013; 453:187-200. [PMID: 23668188 DOI: 10.1042/bj20130178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STIM1 (stromal interaction molecule 1) mediates SOCE (store-operated Ca²⁺ entry) in skeletal muscle. However, the direct role(s) of STIM1 in skeletal muscle, such as Ca²⁺ release from the SR (sarcoplasmic reticulum) for muscle contraction, have not been identified. The times required for the maximal expression of endogenous STIM1 or Orai1, or for the appearance of puncta during the differentiation of mouse primary skeletal myoblasts to myotubes, were all different, and the formation of puncta was detected with no stimulus during differentiation, suggesting that, in skeletal muscle, the formation of puncta is a part of the differentiation. Wild-type STIM1 and two STIM1 mutants (Triple mutant, missing Ca²⁺-sensing residues but possessing the intact C-terminus; and E136X, missing the C-terminus) were overexpressed in the myotubes. The wild-type STIM1 increased SOCE, whereas neither mutant had an effect on SOCE. It was interesting that increases in the formation of puncta were observed in the Triple mutant as well as in wild-type STIM1, suggesting that SOCE-irrelevant puncta could exist in skeletal muscle. On the other hand, overexpression of wild-type or Triple mutant, but not E136X, attenuated Ca²⁺ releases from the SR in response to KCl [evoking ECC (excitation-contraction coupling) via activating DHPR (dihydropyridine receptor)] in a dominant-negative manner. The attenuation was removed by STIM1 knockdown, and STIM1 was co-immunoprecipitated with DHRP in a Ca²⁺-independent manner. These results suggest that STIM1 negatively regulates Ca²⁺ release from the SR through the direct interaction of the STIM1 C-terminus with DHPR, and that STIM1 is involved in both ECC and SOCE in skeletal muscle.
Collapse
|
34
|
Hill JA, Diwan A. Ca(2+) leak in atrial fibrillation: junctophilin-2 stabilizes ryanodine receptor. J Am Coll Cardiol 2013; 62:2020-2022. [PMID: 23973695 DOI: 10.1016/j.jacc.2013.07.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph A Hill
- Departments of Internal Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Abhinav Diwan
- Center for Cardiovascular Research, Department of Internal Medicine (Cardiology), Washington University School of Medicine and John Cochran VAMC, St. Louis, Missouri
| |
Collapse
|
35
|
Beavers DL, Wang W, Ather S, Voigt N, Garbino A, Dixit SS, Landstrom AP, Li N, Wang Q, Olivotto I, Dobrev D, Ackerman MJ, Wehrens XHT. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol 2013; 62:2010-9. [PMID: 23973696 DOI: 10.1016/j.jacc.2013.06.052] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study sought to study the role of junctophilin-2 (JPH2) in atrial fibrillation (AF). BACKGROUND JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca(2+) handling and modulation of ryanodine receptor Ca(2+) channels (RyR2). Whereas defective RyR2-mediated Ca(2+) release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. METHODS Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudoknock-in (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. RESULTS PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF than wild type (WT)-PKI mice, whereas A399S-PKI mice expressing a hypertrophic cardiomyopathy-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca(2+) release events. These changes were attributed to reduced binding of E169K-JPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca(2+) spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients and an increased frequency of spontaneous Ca(2+) release events. CONCLUSIONS Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2/RyR2 ratios can promote SR Ca(2+) leak and atrial arrhythmias, representing a potential novel therapeutic target for AF.
Collapse
Affiliation(s)
- David L Beavers
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Wei Wang
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Sameer Ather
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Alejandro Garbino
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Sayali S Dixit
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Andrew P Landstrom
- Depts of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics/Divisions of Cardiovascular Diseases and Pediatric Cardiology; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Na Li
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Qiongling Wang
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| | - Iacopo Olivotto
- Careggi University Hospital, University of Florence, Florence, Italy
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Michael J Ackerman
- Depts of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics/Divisions of Cardiovascular Diseases and Pediatric Cardiology; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Dept of Molecular Physiology & Biophysics and Medicine (Cardiology), Baylor College of Medicine, Houston, TX
| |
Collapse
|
36
|
Mitsugumin 53 attenuates the activity of sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a) in skeletal muscle. Biochem Biophys Res Commun 2012; 428:383-8. [PMID: 23103543 DOI: 10.1016/j.bbrc.2012.10.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
Mitsugumin 53 (MG53) is a member of the membrane repair system in skeletal muscle. However, the roles of MG53 in the unique functions of skeletal muscle have not been addressed, although it is known that MG53 is expressed only in skeletal and cardiac muscle. In the present study, MG53-binding proteins were examined along with proteins that mediate skeletal muscle contraction and relaxation using the binding assays of various MG53 domains and quadrupole time-of-flight mass spectrometry. MG53 binds to sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a) via its tripartite motif (TRIM) and PRY domains. The binding was confirmed in rabbit skeletal muscle and mouse primary skeletal myotubes by co-immunoprecipitation and immunocytochemistry. MG53 knockdown in mouse primary skeletal myotubes increased Ca(2+)-uptake through SERCA1a (more than 35%) at micromolar Ca(2+) but not at nanomolar Ca(2+), suggesting that MG53 attenuates SERCA1a activity possibly during skeletal muscle contraction or relaxation but not during the resting state of skeletal muscle. Therefore MG53 could be a new candidate for the diagnosis and treatment of patients with Brody syndrome, which is not related to the mutations in the gene coding for SERCA1a, but still accompanies exercise-induced muscle stiffness and delayed muscle relaxation due to a reduction in SERCA1a activity.
Collapse
|
37
|
Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med 2012; 12:507-18. [PMID: 22515980 DOI: 10.2174/156652412800620020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 12/30/2022]
Abstract
Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium-handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
Collapse
Affiliation(s)
- A P Landstrom
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
38
|
Liang X, Mei Y, Huang X, Shen G, Zhu D, Yu Y, Wang J, Lou Y. Junctophilin 2 knockdown interfere with mitochondrium status in ESC-CMs and cardiogenesis of ES cells. J Cell Biochem 2012; 113:2884-94. [DOI: 10.1002/jcb.24164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Avdonin PV. Orai and TRP channels in skeletal muscle cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Evolving concepts on the age-related changes in "muscle quality". J Cachexia Sarcopenia Muscle 2012; 3:95-109. [PMID: 22476917 PMCID: PMC3374023 DOI: 10.1007/s13539-011-0054-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/26/2011] [Indexed: 01/06/2023] Open
Abstract
The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term "muscle quality" to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system-starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers-that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power).
Collapse
|
41
|
Woo JS, Cho CH, Lee KJ, Kim DH, Ma J, Lee EH. Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated Ca2+ entry via Orai1. J Biol Chem 2012; 287:14336-48. [PMID: 22389502 DOI: 10.1074/jbc.m111.304808] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Junctophilins (JPs) play an important role in the formation of junctional membrane complexes (JMC) in striated muscle by physically linking the transverse-tubule and sarcoplasmic reticulum (SR) membranes. Researchers have found five JP2 mutants in humans with hypertrophic cardiomyopathy. Among these, Y141H and S165F are associated with severely altered Ca(2+) signaling in cardiomyocytes. We previously reported that S165F also induced both hypertrophy and altered intracellular Ca(2+) signaling in mouse skeletal myotubes. In the present study, we attempted to identify the dominant-negative role(s) of Y141H in primary mouse skeletal myotubes. Consistent with S165F, Y141H led to hypertrophy and altered Ca(2+) signaling (a decrease in the gain of excitation-contraction coupling and an increase in the resting level of myoplasmic Ca(2+)). However, unlike S165F, neither ryanodine receptor 1-mediated Ca(2+) release from the SR nor the phosphorylation of the mutated JP2 by protein kinase C was related to the altered Ca(2+) signaling by Y141H. Instead, abnormal JMC and increased SOCE via Orai1 were found, suggesting that the hypertrophy caused by Y141H progressed differently from S165F. Therefore JP2 can be linked to skeletal muscle hypertrophy via various Ca(2+) signaling pathways, and SOCE could be one of the causes of altered Ca(2+) signaling observed in muscle hypertrophy.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Ko JK, Choi KH, Zhao X, Komazaki S, Pan Z, Weisleder N, Ma J. A versatile single-plasmid system for tissue-specific and inducible control of gene expression in transgenic mice. FASEB J 2011; 25:2638-49. [PMID: 21518849 DOI: 10.1096/fj.11-181560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe a novel transgenic system for tissue-specific and inducible control of gene expression in mice. The system employs a tetracycline-responsive CMV promoter that controls transcription of a short-hairpin RNA (shRNA) that remains nonfunctional until an interrupting reporter cassette is excised by Cre recombinase. Insertion of Dicer and Drosha RNase processing sites within the shRNA allows generation of siRNA to knock down a target gene efficiently. Tissue-specific shRNA expression is achieved through the use of appropriate inducer mice with tissue-specific expression of Cre. We applied this system to regulate expression of junctophilins (JPs), genes essential for maintenance of membrane ultrastructure and Ca(2+) signaling in muscle. Transgenic mice with skeletal muscle-specific expression of shRNA against JP mRNAs displayed no basal change of JP expression before treatment with doxycycline (Dox), while inducible and reversible knockdown of JPs was achieved by feeding mice with Dox-containing water. Dox-induced knockdown of JPs led to abnormal junctional membrane structure and Ca(2+) signaling in adult muscle fibers, consistent with essential roles of JPs in muscle development and function. This transgenic approach can be applied for inducible and reversible gene knockdown or gene overexpression in many different tissues, thus providing a versatile system for elucidating the physiological gene function in viable animal models.
Collapse
Affiliation(s)
- Jae-Kyun Ko
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kiviluoto S, Decuypere JP, De Smedt H, Missiaen L, Parys JB, Bultynck G. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 2011; 1:16. [PMID: 21798093 PMCID: PMC3156639 DOI: 10.1186/2044-5040-1-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/04/2011] [Indexed: 12/17/2022] Open
Abstract
Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging.Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination.
Collapse
Affiliation(s)
- Santeri Kiviluoto
- Laboratory of Molecular and Cellular Signaling, Department Molecular Cell Biology, K,U, Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Woo JS, Cho CH, Kim DH, Lee EH. TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp Mol Med 2011; 42:614-27. [PMID: 20644344 DOI: 10.3858/emm.2010.42.9.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca(2+) channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca(2+)-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca(2+) release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca(2+)-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without alpha1((S))DHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in alpha1((S))DHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or alpha1((S))DHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca(2+) content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | |
Collapse
|