1
|
Connolly BJ, Saxton SN. Recent updates on the influence of iron and magnesium on vascular, renal, and adipose inflammation and possible consequences for hypertension. J Hypertens 2024; 42:1848-1861. [PMID: 39258532 PMCID: PMC11451934 DOI: 10.1097/hjh.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
The inflammatory status of the kidneys, vasculature, and perivascular adipose tissue (PVAT) has a significant influence on blood pressure and hypertension. Numerous micronutrients play an influential role in hypertension-driving inflammatory processes, and recent reports have provided bases for potential targeted modulation of these micronutrients to reduce hypertension. Iron overload in adipose tissue macrophages and adipocytes engenders an inflammatory environment and may contribute to impaired anticontractile signalling, and thus a treatment such as chelation therapy may hold a key to reducing blood pressure. Similarly, magnesium intake has proven to greatly influence inflammatory signalling and concurrent hypertension in both healthy animals and in a model for chronic kidney disease, demonstrating its potential clinical utility. These findings highlight the importance of further research to determine the efficacy of micronutrient-targeted treatments for the amelioration of hypertension and their potential translation into clinical application.
Collapse
Affiliation(s)
- Benjamin J Connolly
- Divison of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
2
|
Ali M, Kumari T, Gupta A, Akhtar S, Verma RD, Ghosh JK. Identification of a 10-mer peptide from the death domain of MyD88 which attenuates inflammation and insulin resistance and improves glucose metabolism. Biochem J 2024; 481:191-218. [PMID: 38224573 DOI: 10.1042/bcj20230369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.
Collapse
Affiliation(s)
- Mehmood Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Tripti Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
| | - Rahul Dev Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| |
Collapse
|
3
|
Kim DM, Lee JH, Pan Q, Han HW, Shen Z, Eshghjoo S, Wu CS, Yang W, Noh JY, Threadgill DW, Guo S, Wright G, Alaniz R, Sun Y. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol Metab 2024; 79:101852. [PMID: 38092245 PMCID: PMC10772824 DOI: 10.1016/j.molmet.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE Obesity-associated chronic inflammation, aka meta-inflammation, is a key pathogenic driver for obesity-associated comorbidity. Growth hormone secretagogue receptor (GHSR) is known to mediate the effects of nutrient-sensing hormone ghrelin in food intake and fat deposition. We previously reported that global Ghsr ablation protects against diet-induced inflammation and insulin resistance, but the site(s) of action and mechanism are unknown. Macrophages are key drivers of meta-inflammation. To unravel the role of GHSR in macrophages, we generated myeloid-specific Ghsr knockout mice (LysM-Cre;Ghsrf/f). METHODS LysM-Cre;Ghsrf/f and control Ghsrf/f mice were subjected to 5 months of high-fat diet (HFD) feeding to induce obesity. In vivo, metabolic profiling of food intake, physical activity, and energy expenditure, as well as glucose and insulin tolerance tests (GTT and ITT) were performed. At termination, peritoneal macrophages (PMs), epididymal white adipose tissue (eWAT), and liver were analyzed by flow cytometry and histology. For ex vivo studies, bone marrow-derived macrophages (BMDMs) were generated from the mice and treated with palmitic acid (PA) or lipopolysaccharide (LPS). For in vitro studies, macrophage RAW264.7 cells with Ghsr overexpression or Insulin receptor substrate 2 (Irs2) knockdown were studied. RESULTS We found that Ghsr expression in PMs was increased under HFD feeding. In vivo, HFD-fed LysM-Cre;Ghsrf/f mice exhibited significantly attenuated systemic inflammation and insulin resistance without affecting food intake or body weight. Tissue analysis showed that HFD-fed LysM-Cre;Ghsrf/f mice have significantly decreased monocyte/macrophage infiltration, pro-inflammatory activation, and lipid accumulation, showing elevated lipid-associated macrophages (LAMs) in eWAT and liver. Ex vivo, Ghsr-deficient macrophages protected against PA- or LPS-induced pro-inflammatory polarization, showing reduced glycolysis, increased fatty acid oxidation, and decreased NF-κB nuclear translocation. At molecular level, GHSR metabolically programs macrophage polarization through PKA-CREB-IRS2-AKT2 signaling pathway. CONCLUSIONS These novel results demonstrate that macrophage GHSR plays a key role in the pathogenesis of meta-inflammation, and macrophage GHSR promotes macrophage infiltration and induces pro-inflammatory polarization. These exciting findings suggest that GHSR may serve as a novel immunotherapeutic target for the treatment of obesity and its associated comorbidity.
Collapse
Affiliation(s)
- Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Jong Han Lee
- Department of Marine Bioindustry, Hanseo University, Seosan 31962, South Korea; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Quan Pan
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Sahar Eshghjoo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Agilent technologies, Aanta Clara, CA 95051, USA
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Wanbao Yang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - David W Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Genome Sciences and Society, Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Gus Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Robert Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Tlaloc Therapeutics Inc., College Station, TX 77845, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Han BH, Jang SH, Jang YJ, Na SW, Yoon JJ, Moon HG, Kim SY, Seo CS, Lee HS, Lee YM, Kang DG, Lee YJ. Diesel vehicles-derived PM2.5 induces lung and cardiovascular injury attenuates by Securiniga suffruticosa: Involvement of NF-κB-mediated NLRP3 inflammasome activation pathway. Biomed Pharmacother 2023; 162:114637. [PMID: 37027986 DOI: 10.1016/j.biopha.2023.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Respiratory exposure to Particulate matter (PM), including Diesel exhaust particulate (DEP), causes oxidative stress-induced lung inflammation. Especially, fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) is a serious air pollutant associated with various health problems including cardiovascular diseases. The present study aimed to examine the inhibitory effect of Securiniga suffruticosa (S. suffruiticosa) on DEP and PM-induced lung and cardiovascular diseases. Mice inhaled DEP by using nebulizer chamber for two weeks. Treatment with S. suffruiticosa reduced the expression of C-X-C motif ligand 1/2 in bronchoalveolar lavage fluid and Muc5ac, ICAM-1, TNF-⍺, IL-6 mRNA in lung were also attenuated by S. suffruiticosa. In thoracic aorta, DEP increased CAMs, TNF-⍺ and inflammasome markers such as NLRP3, Caspase-1, and ASC. However, S. suffruiticosa suppressed these levels. S. suffruiticosa inhibited PM2.5 induced production of intracellular reactive oxygen species (ROS); and inhibited the translocation of NF-κB p65 to the nucleus in human umbilical vein endothelial cells. Taken together, this study proved that exposure to PM2.5 induced both lung and vascular inflammation, however, S. suffruiticosa attenuated this injury via the downregulation of the NLRP3 signaling pathway. These findings suggest that S. suffruiticosa may have potential therapeutic benefit against air pollution-mediated lung and cardiovascular diseases.
Collapse
Affiliation(s)
- Byung Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Se Hoon Jang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Youn Jae Jang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Se Won Na
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hi Gyu Moon
- Center for Ecological Risk Assessment, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Soo Yeon Kim
- Center for Ecological Risk Assessment, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Chang Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, 34054 Daejeon, Republic of Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Young Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korea Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Yun Jung Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea.
| |
Collapse
|
5
|
Zhao Y, Knight CM, Jiang Z, Delgado E, Van Hoven AM, Ghanny S, Zhou Z, Zhou H, Yu H, Hu W, Li H, Li X, Perez-Basterrechea M, Zhao L, Zhao Y, Giangola J, Weinberg R, Mazzone T. Stem Cell Educator therapy in type 1 diabetes: From the bench to clinical trials. Clin Exp Rheumatol 2022; 21:103058. [PMID: 35108619 DOI: 10.1016/j.autrev.2022.103058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that causes a deficit of pancreatic islet β cells. Millions of individuals worldwide have T1D, and its incidence increases annually. Recent clinical trials have highlighted the limits of conventional immunotherapy in T1D and underscore the need for novel treatments that not only overcome multiple immune dysfunctions, but also help restore islet β-cell function. To address these two key issues, we have developed a unique and novel procedure designated the Stem Cell Educator therapy, based on the immune education by cord-blood-derived multipotent stem cells (CB-SC). Over the last 10 years, this technology has been evaluated through international multi-center clinical studies, which have demonstrated its clinical safety and efficacy in T1D and other autoimmune diseases. Mechanistic studies revealed that Educator therapy could fundamentally correct the autoimmunity and induce immune tolerance through multiple molecular and cellular mechanisms such as the expression of a master transcription factor autoimmune regulator (AIRE) in CB-SC for T-cell modulation, an expression of Galectin-9 on CB-SC to suppress activated B cells, and secretion of CB-SC-derived exosomes to polarize human blood monocytes/macrophages into type 2 macrophages. Educator therapy is the leading immunotherapy to date to safely and efficiently correct autoimmunity and restore β cell function in T1D patients.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA.
| | - Colette M Knight
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
| | - Zhaoshun Jiang
- Department of Endocrinology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, China.
| | - Elias Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Department of Medicine, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain.
| | - Anne Marie Van Hoven
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Steven Ghanny
- Department of Pediatric, Division of Endocrinology and Diabetes, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huimin Zhou
- Section of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, USA
| | - Heng Li
- Section of Neurology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250020, China
| | - Xia Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Marcos Perez-Basterrechea
- Unit of Cell Therapy and Regenerative Medicine, Hematology and Hemotherapy, Central University Hospital of Asturias, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yeqian Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Joseph Giangola
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Rona Weinberg
- MPN Laboratory, New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
6
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
7
|
Lu B, Huang L, Cao J, Li L, Wu W, Chen X, Ding C. Adipose tissue macrophages in aging-associated adipose tissue function. J Physiol Sci 2021; 71:38. [PMID: 34863096 PMCID: PMC10717320 DOI: 10.1186/s12576-021-00820-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
"Inflammaging" refers to the chronic, low-grade inflammation that characterizes aging. Aging, like obesity, is associated with visceral adiposity and insulin resistance. Adipose tissue macrophages (ATMs) have played a major role in obesity-associated inflammation and insulin resistance. Macrophages are elevated in adipose tissue in aging. However, the changes and also possibly functions of ATMs in aging and aging-related diseases are unclear. In this review, we will summarize recent advances in research on the role of adipose tissue macrophages with aging-associated insulin resistance and discuss their potential therapeutic targets for preventing and treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Bangchao Lu
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Liang Huang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Lingling Li
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Wenhui Wu
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Xiaolin Chen
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Congzhu Ding
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China.
| |
Collapse
|
8
|
Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA. Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases. Front Med (Lausanne) 2021; 8:667315. [PMID: 34211985 PMCID: PMC8239134 DOI: 10.3389/fmed.2021.667315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lung development is not completed at birth, but expands beyond infancy, rendering the lung highly susceptible to injury. Exposure to various influences during a critical window of organ growth can interfere with the finely-tuned process of development and induce pathological processes with aberrant alveolarization and long-term structural and functional sequelae. This concept of developmental origins of chronic disease has been coined as perinatal programming. Some adverse perinatal factors, including prematurity along with respiratory support, are well-recognized to induce bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar and microvascular formation as well as lung matrix remodeling. While the pathogenesis of various experimental models focus on oxygen toxicity, mechanical ventilation and inflammation, the role of nutrition before and after birth remain poorly investigated. There is accumulating clinical and experimental evidence that intrauterine growth restriction (IUGR) as a consequence of limited nutritive supply due to placental insufficiency or maternal malnutrition is a major risk factor for BPD and impaired lung function later in life. In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal weight gain and early childhood obesity is associated with wheezing and adverse clinical course of chronic lung diseases, such as asthma. While the link between perinatal nutrition and lung health has been described, the underlying mechanisms remain poorly understood. There are initial data showing that inflammatory and nutrient sensing processes are involved in programming of alveolarization, pulmonary angiogenesis, and composition of extracellular matrix. Here, we provide a comprehensive overview of the current knowledge regarding the impact of perinatal metabolism and nutrition on the lung and beyond the cardiopulmonary system as well as possible mechanisms determining the individual susceptibility to CLD early in life. We aim to emphasize the importance of unraveling the mechanisms of perinatal metabolic programming to develop novel preventive and therapeutic avenues.
Collapse
Affiliation(s)
- Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Member of the German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Gießen, Germany
| |
Collapse
|
9
|
Mohamed DA, Mohamed NM, Abdelrahaman S. Histological and Biochemical Changes in Adult Male Rat Liver after Spinal Cord Injury with Evaluation of the Role of Granulocyte-Colony Stimulating Factor. Ultrastruct Pathol 2020; 44:395-411. [PMID: 33280459 DOI: 10.1080/01913123.2020.1844829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease leading to motor disability. Metabolic dysfunction is another complication of SCI. Thus, we aimed to study the effect of SCI on the histological and biochemical structure of the liver in adult male rats and to delineate the role of post-injury administration of G-CSF. Thirty adult male Sprague-Dawley rats were assigned into three groups: Group I; control (18 rats subdivided equally into three subgroups), and 12 rats underwent SCI and were divided into an SCI group II and G-SCF-treated group III. Twenty-one days post-injury, liver sections were processed for light and electron microscopic examinations and immunohistochemical staining for PCNA and CD68 antibodies. The biochemical assay was carried out for detection of serum levels of ALT, AST, total proteins, albumin, total cholesterol, triglycerides, HDL-c, GSH and MDA. Liver tissue levels of GPx and MDA as well as semiquantitative RT-PCR analysis of hepatic cytokine expression were also conducted. In the SCI group, results showed liver tissue damage in the form of lipid infiltration, blood vessel congestion, vacuolated cells with apoptotic nuclei and increased collagen deposition. Increased CD68-positive macrophages and a decreased number of PCNA-positive cells was detected. Moreover, liver enzymes, total cholesterol and triglycerides were increased while serum albumin, total proteins and HDL-c were decreased in the SCI group. Oxidative stress and increased expression of inflammatory cytokines were detected. Administration of G-CSF induced significant liver improvement with retained liver function by anti-inflammatory, immune-modulatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Dalia A Mohamed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University , Zagazig, Egypt.,Anatomy and Histology Department, College of Medicine, Qassim University , Elmulida, KSA
| | - Noura Mostafa Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University , Zagazig, Egypt.,Department of Science, Faculty of Preparatory Year of Health Sciences, PNU University , Riyadh, KSA
| | - Shaimaa Abdelrahaman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University , Zagazig, Egypt
| |
Collapse
|
10
|
Wang Y, Zhang X, Xie X, Chen W, Li M, Diao D, Dang C. Obesity and metabolic syndrome related macrophage promotes PD-L1 expression in TNBC through IL6/JAK/STAT pathway and can be reversed by telmisartan. Cancer Biol Ther 2020; 21:1179-1190. [PMID: 33218268 DOI: 10.1080/15384047.2020.1838032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women. Its incidence is associated with obesity and metabolic syndrome (MetS), which are highly prevalent world widely and have been identified as poorer prognosis factors in breast cancer including triple-negative breast cancer (TNBC), which has poorer response to chemotherapy, radiotherapy, and endocrine therapy. Programmed death ligand 1 (PD-L1) is one of the immune checkpoints ligands that facilitates tumor escape and progress. Obesity/MetS could cause systemic inflammation and immune disorders, however, whether and how obesity/MetS affect PD-L1 expression in breast cancer had not been clarified. In the present study, we examined the PD-L1 expression profile in breast cancer either in online database or cell lines. We found higher PD-L1 mRNA level but not DNA copy number in breast cancer than normal breast tissue, and higher PD-L1 expression in TNBC than other subtypes. Moreover, we found a positive relationship between PD-L1 expression in TNBC and metabolic complications in patients. Next, obesity/MetS related M1 macrophage was found to promote the expression of PD-L1 in breast cancer cells cocultured with polarized macrophages derived from either monocyte-like cell line THP-1 or Wistar rat models. IL6/JAK/STAT pathway was further identified to be involved in the process. In addition, we discovered that the PD-L1 expression promoted by obesity/MetS could be restored by telmisartan, one of the angiotensin II receptor blockers (ARBs) and could affect macrophage polarization, through its selective peroxisome proliferator-activated receptor-gamma (PPARG) activation and NFKB p65 inhibition and therefore downregulates IL6 secretion from M1 macrophage.
Collapse
Affiliation(s)
- Ying Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Xin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Min Li
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Dongmei Diao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Han BH, Song CH, Yoon JJ, Kim HY, Seo CS, Kang DG, Lee YJ, Lee HS. Anti-Vascular Inflammatory Effect of Ethanol Extract from Securinega suffruticosa in Human Umbilical Vein Endothelial Cells. Nutrients 2020; 12:nu12113448. [PMID: 33182831 PMCID: PMC7697010 DOI: 10.3390/nu12113448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/08/2023] Open
Abstract
Securiniga suffruticosa is known as a drug that has the effect of improving the blood circulation and relaxing muscles and tendons, thereby protects and strengthen kidney and spleen. Therefore, in this study, treatment of Securiniga suffruticosa showed protective effect of inhibiting the vascular inflammation in human umbilical vein endothelial cells (HUVECs) by inducing nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) coupling pathway. In this study, Securiniga suffruticosa suppressed TNF-α (Tumor necrosis factor–α) induced protein and mRNA levels of cell adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and Interleukin-6 (IL-6). Pretreatment of HUVEC with Securiniga suffruticosa decreased the adhesion of HL-60 cells to Ox-LDL (Oxidized Low-Density-Lipoprotein)-induced HUVEC. Moreover, Securiniga suffruticosa inhibited TNF-α induced intracellular reactive oxygen species (ROS) production. Securiniga suffruticosa also inhibited phosphorylation of IκB-α in cytoplasm and translocation of NF-κB (Nuclear factor-kappa B) p65 to the nucleus. Securiniga suffruticosa increased NO production, as well increased the phosphorylation of eNOS and Akt (protein kinase B) which are related with NO production. In addition, Securiniga suffruticosa increased the protein expression of GTPCH (Guanosine triphosphate cyclohydrolase Ⅰ) and the production of BH4 in HUVEC which are related with eNOS coupling pathway. In conclusion, Securiniga suffruticosa has a protective effect against vascular inflammation and can be a potential therapeutic agent for early atherosclerosis.
Collapse
Affiliation(s)
- Byung Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Chun Ho Song
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Chang Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
- Correspondence: (Y.J.L.); (H.S.L.); Tel.: +82-63-850-6841 (Y.J.L. & H.S.L.); Fax: +82-63-850-7260 (Y.J.L. & H.S.L.)
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea; (B.H.H.); (C.H.S.); (J.J.Y.); (H.Y.K.); (D.G.K.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Jeonbuk, Korea
- Correspondence: (Y.J.L.); (H.S.L.); Tel.: +82-63-850-6841 (Y.J.L. & H.S.L.); Fax: +82-63-850-7260 (Y.J.L. & H.S.L.)
| |
Collapse
|
12
|
Jung DS, Son YJ, Shin JM, Won HJ, Le TT, Jung SH, Lee CH, Nho CW. Gymnaster Koraiensis Extract Alleviated Metabolic Syndrome Symptoms and Stimulated UCP1-Independent Energy Consumption via AMPK Activation in White Adipose Tissue. Mol Nutr Food Res 2020; 64:e2000490. [PMID: 33022138 DOI: 10.1002/mnfr.202000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Indexed: 12/29/2022]
Abstract
SCOPE Metabolic syndrome and obesity are rising worldwide concerns that are accompanied by adverse health consequences. Here, it is hypothesized that the ethanol extract from Gymnaster koraiensis (GK), an edible Korean plant known for its anti-cancer and hepatoprotective properties, could attenuate metabolic syndrome-related symptoms in high-fat dietary-induced obese (DIO) mice. METHODS AND RESULTS Administration of 100 mg kg-1 GK extract to DIO mice effectively reduces body and white adipose tissue (WAT) weight. It also reduces cardiovascular disease risk and improves insulin resistance by lowering the fasting blood glucose levels and mitigating oxidative stress and inflammation. Moreover, supplementation with GK causes elevated energy expenditure in WAT by increasing the mitochondrial oxidative capacity and lipid catabolism through upregulated adenosine monophosphate-activated protein kinase (AMPK) signaling. Orlistat is used as a positive control drug due to its widespread use in previous studies. It is found that GK extract causes weight loss, similar to Orlistat, and it additionally shows unique functions, such as upregulation of energy consumption in WAT. CONCLUSION GK extract treatment prominently reduces obesity and its associated metabolic complications, such as hyperlipidemia, hyperglycemia, and insulin resistance. Hence, It can be used as a promising multi-target functional food that can improve metabolic syndrome-related symptoms.
Collapse
Affiliation(s)
- Da Seul Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, Republic of Korea
| | - Yang-Ju Son
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Ji Min Shin
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyo Jun Won
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tam Thi Le
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.,Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Sang Hoon Jung
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.,Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Chang-Ho Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
13
|
Kahn JH, Goddi A, Sharma A, Heiman J, Carmona A, Li Y, Hoffman A, Schoenfelt K, Ye H, Bobe AM, Becker L, Hollenberg AN, Cohen RN. SMRT Regulates Metabolic Homeostasis and Adipose Tissue Macrophage Phenotypes in Tandem. Endocrinology 2020; 161:bqaa132. [PMID: 32770234 PMCID: PMC7478322 DOI: 10.1210/endocr/bqaa132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) is a nuclear corepressor, regulating the transcriptional activity of many transcription factors critical for metabolic processes. While the importance of the role of SMRT in the adipocyte has been well-established, our comprehensive understanding of its in vivo function in the context of homeostatic maintenance is limited due to contradictory phenotypes yielded by prior generalized knockout mouse models. Multiple such models agree that SMRT deficiency leads to increased adiposity, although the effects of SMRT loss on glucose tolerance and insulin sensitivity have been variable. We therefore generated an adipocyte-specific SMRT knockout (adSMRT-/-) mouse to more clearly define the metabolic contributions of SMRT. In doing so, we found that SMRT deletion in the adipocyte does not cause obesity-even when mice are challenged with a high-fat diet. This suggests that adiposity phenotypes of previously described models were due to effects of SMRT loss beyond the adipocyte. However, an adipocyte-specific SMRT deficiency still led to dramatic effects on systemic glucose tolerance and adipocyte insulin sensitivity, impairing both. This metabolically deleterious outcome was coupled with a surprising immune phenotype, wherein most genes differentially expressed in the adipose tissue of adSMRT-/- mice were upregulated in pro-inflammatory pathways. Flow cytometry and conditioned media experiments demonstrated that secreted factors from knockout adipose tissue strongly informed resident macrophages to develop a pro-inflammatory, MMe (metabolically activated) phenotype. Together, these studies suggest a novel role for SMRT as an integrator of metabolic and inflammatory signals to maintain physiological homeostasis.
Collapse
Affiliation(s)
- Jonathan H Kahn
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Anna Goddi
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Aishwarya Sharma
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Joshua Heiman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Alanis Carmona
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, Illinois
| | - Alexandria Hoffman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kelly Schoenfelt
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Honggang Ye
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alexandria M Bobe
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Lev Becker
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | | | - Ronald N Cohen
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
- Department of Medicine, University of Chicago, Chicago, Illinois
- Section of Endocrinology, Diabetes, and Metabolism; University of Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
15
|
Hu W, Song X, Yu H, Sun J, Zhao Y. Released Exosomes Contribute to the Immune Modulation of Cord Blood-Derived Stem Cells. Front Immunol 2020; 11:165. [PMID: 32161585 PMCID: PMC7052489 DOI: 10.3389/fimmu.2020.00165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Clinical studies demonstrated the immune modulation of cord blood-derived stem cells (CB-SC) for the treatment of type 1 diabetes and other autoimmune diseases, with long-lasting clinical efficacy. To determine the molecular mechanisms underlying the immune modulation of CB-SC, the actions of exosomes released from CB-SC were explored in this study. Methods: Exosomes were isolated from CB-SC cultures using ultracentrifugation and confirmed with different markers. The activated T cells and purified monocytes from peripheral blood mononuclear cells (PBMC) were treated with CB-SC in the presence or absence of the purified exosomes, followed by functional and flow cytometry analysis of phenotypic changes with different immune cell markers. Results: CB-SC-derived exosomes displayed the exosome-specific markers including CD9, CD63, and Alix, at the size of 85.95 ± 22.57 nm. In comparison with the treatment of CB-SC, functional analysis demonstrated that the CB-SC-derived exosomes inhibited the proliferation of activated PBMC, reduced the production of inflammatory cytokines, downregulated the percentage of activated CD4+ T and CD8+ T cells, and increased the percentage of naive CD4+ T and CD8+ T cells. Using the fluorescence dye DiO-labeled exosomes, flow cytometry revealed that exosomes preferably bound to the monocytes in the PBMC, leading to an improvement of mitochondrial membrane potential of treated monocytes. Further study indicated that the purified monocytes gave rise to spindle-like macrophages displaying type 2 macrophage (M2) surface markers and upregulating an expression of immune tolerance-related cytokines after the treatment with exosomes. Conclusions: CB-SC-derived exosomes display multiple immune modulations and primarily on monocytes, contributing to the immune education of CB-SC in the clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| |
Collapse
|
16
|
Savaş EM, Oğuz SH, Samadi A, Yılmaz Işıkhan S, Ünlütürk U, Lay İ, Gürlek A. Apoptosis Inhibitor of Macrophage, Monocyte Chemotactic Protein-1, and C-Reactive Protein Levels Are Increased in Patients with Metabolic Syndrome: A Pilot Study. Metab Syndr Relat Disord 2020; 18:197-205. [PMID: 32096694 DOI: 10.1089/met.2019.0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Apoptosis inhibitor of macrophage (AIM) and monocyte chemotactic protein-1 (MCP-1) are molecules that cause migration of M1 macrophages to visceral adipocytes, which is the first step in development of metabolic syndrome. The aim of this study is to evaluate the status of AIM and MCP-1 in metabolic syndrome and to investigate their use as biomarkers. Methods: Forty metabolic syndrome patients and 40 healthy individuals were enrolled in the study. Serum AIM, MCP-1, and C-reactive protein (CRP) levels were measured by enzyme-linked immunosorbent assay. Results: AIM, MCP-1, and CRP levels were significantly higher in the metabolic syndrome group (P < 0.01, P < 0.01, and P < 0.05, respectively). There was a positive correlation of serum AIM, MCP-1, and CRP levels with waist circumference (r = 0.480, r = 0.663, and r = 0.418, respectively; P < 0.01). Receiver operating characteristic (ROC) curve analyses revealed AIM, MCP-1, and CRP cutoff points as 2383.7 ng/mL, 172.8 pg/mL, and 0.366 mg/dL, which could be used in the diagnosis of metabolic syndrome with highest sensitivity and specificity. In the logistic regression model, including age, AIM, CRP, and MCP-1 as covariates, having serum AIM and CRP levels above cutoffs were significant independent predictors for metabolic syndrome (odds ratios 13.8 and 21.3), whereas the serum MCP-1 level was not a significant independent predictor, although the odds ratio was 2.6 (P = 0.193). Conclusions: These results suggest that AIM and MCP-1 may play a role in the pathogenesis of metabolic syndrome. AIM and CRP levels may be used as biomarkers in the diagnosis of metabolic syndrome. Although MCP-1 is not an independent predictor, its elevation in metabolic syndrome is noteworthy, which warrants further analyses in larger groups.
Collapse
Affiliation(s)
- Emine Merve Savaş
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Seda Hanife Oğuz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Afshin Samadi
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Selen Yılmaz Işıkhan
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Uğur Ünlütürk
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - İncilay Lay
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alper Gürlek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2019; 325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Zhang N, Wei MY, Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front Bioeng Biotechnol 2019; 7:369. [PMID: 31850329 PMCID: PMC6892756 DOI: 10.3389/fbioe.2019.00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Blood disorder diseases (BDDs), also known as hematologic, is one of the diseases owing to hematopoietic system disorder. Chemotherapy, bone marrow transplantation, and stem cells therapy have been used to treat BDDs. However, the cure rates are still low due to the availability of the right type of bone marrow and the likelihood of recurrence and infection. With the rapid development of nanotechnology in the field of biomedicine, artificial blood or blood substitute has shown promising features for the emergency treatment of BDDs. Herein, we surveyed recent advances in the development of artificial blood components: gas carrier components (erythrocyte substitutes), immune response components (white blood cell substitutes), and hemostasis-responsive components (platelet substitutes). Platelet-inspired nanomedicines for cancer treatment were also discussed. The challenges and prospects of these treatment options in future nanomedicine development are discussed.
Collapse
Affiliation(s)
- Nan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Ming-Yuan Wei
- Texas Commission on Environmental Quality, Austin, TX, United States
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
19
|
Srivastava A, Srivastava P, Verma R. Role of bone marrow-derived macrophages (BMDMs) in neurovascular interactions during stroke. Neurochem Int 2019; 129:104480. [DOI: 10.1016/j.neuint.2019.104480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
|
20
|
Kielbassa K, Vegna S, Ramirez C, Akkari L. Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers. Front Immunol 2019; 10:2215. [PMID: 31611871 PMCID: PMC6773830 DOI: 10.3389/fimmu.2019.02215] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor immune microenvironment (TIME) and are associated with a poor prognostic factor in several cancers. TAMs promote tumor growth by facilitating immunosuppression, angiogenesis, and inflammation, and can promote tumor recurrence post-therapeutic intervention. Major TAM-targeted therapies include depletion, reprogramming, as well as disrupting the balance of macrophage recruitment and their effector functions. However, intervention-targeting macrophages have been challenging, since TAM populations are highly plastic and adaptation or resistance to these approaches often arise. Defining a roadmap of macrophage dynamics in the TIME related to tissue and tumor type could represent exploitable vulnerabilities related to their altered functions in cancer malignancy. Here, we review multiple macrophage-targeting strategies in brain, liver, and lung cancers, which all emerge in tissues rich in resident macrophages. We discuss the successes and failures of these therapeutic approaches as well as the potential of personalized macrophage-targeting treatments in combination therapies.
Collapse
Affiliation(s)
| | | | | | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
21
|
Yang J, Chang N, Yang L, Ji X, Zhou X, Tian L, Ma Y, Yang Y, Liu Y, Yang L, Li L. Sphingosine 1-Phosphate Receptor Blockade Affects Pro-Inflammatory Bone Marrow-Derived Macrophages and Relieves Mouse Fatty Liver Injury. Int J Mol Sci 2019; 20:ijms20194695. [PMID: 31546702 PMCID: PMC6801987 DOI: 10.3390/ijms20194695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Fatty liver injury is characterized by liver fat accumulation and results in serious health problems worldwide. There is no effective treatment that reverses fatty liver injury besides etiological therapy. Inflammation is an important macrophage-involving pathological process of liver injury. Here, we investigated the role of sphingosine 1-phosphate receptors (S1PRs) in fatty liver injury and explored whether S1PR2/3 blockade could cure fatty liver injury. A methionine-choline-deficient and a high-fat (MCDHF) diet was used to induce fatty liver injury, and the number of macrophages was evaluated by flow cytometry. Gene expressions were detected using RT-qPCR and cytometric bead array. In MCDHF-diet-fed mice, pro-inflammatory factor expressions were upregulated by fatty liver injury. The S1P level and S1PR2/3 expressions were significantly elevated. Moreover, increased S1P level and S1PR2/3 mRNA expressions were positively correlated with pro-inflammatory factor expressions in the liver. Furthermore, the number of pro-inflammatory macrophages (iMφ) increased in injured liver, and they were mainly bone-marrow-derived macrophages. In vivo, S1PR2/3 blockade decreased the amount of iMφ and inflammation and attenuated liver injury and fibrosis, although liver fat accumulation was unchanged. These data strongly suggest that anti-inflammatory treatment by blocking the S1P/S1PR2/3 axis attenuates fatty liver injury, which might serve as a potential target for fatty liver injury.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Xiaofang Ji
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lei Tian
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuehan Ma
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuran Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Smani T, Gallardo-Castillo I, Ávila-Médina J, Jimenez-Navarro MF, Ordoñez A, Hmadcha A. Impact of Diabetes on Cardiac and Vascular Disease: Role of Calcium Signaling. Curr Med Chem 2019; 26:4166-4177. [DOI: 10.2174/0929867324666170523140925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/14/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
The pathophysiology linking diabetes and cardiovascular disease (CVD) is
complex and multifactorial. The specific type of cardiomyopathy associated with diabetes,
known as diabetic cardiomyopathy (DCM), is recognized as asymptomatic progression
of structural and functional remodeling in the heart of diabetic patients in the absence
of coronary atherosclerosis and hypertension. In other words, the presence of heart disease
specifically in diabetic patients is also known as diabetic heart disease. This article
reviews the impact of diabetes in heart and vascular beds focusing on molecular mechanisms
involving the oxidative stress, the inflammation, the endothelium dysfunction and
the alteration of the homeostasis of calcium, among others mechanisms. Understanding
these mechanisms will help identify and treat CVD in patients with diabetes, as well as to
plan efficient strategies to mitigate DCM impact in those patients.
Collapse
Affiliation(s)
- Tarik Smani
- Group of Cardiovascular Physiopathology, Institute of Biomedicine of Seville-IBiS, HUVR/University of Seville/CSIC, Seville, Spain
| | | | - Javier Ávila-Médina
- Group of Cardiovascular Physiopathology, Institute of Biomedicine of Seville-IBiS, HUVR/University of Seville/CSIC, Seville, Spain
| | - Manuel F. Jimenez-Navarro
- UGC del Corazon, Instituto de Biomedicina de Malaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - Antonio Ordoñez
- Group of Cardiovascular Physiopathology, Institute of Biomedicine of Seville-IBiS, HUVR/University of Seville/CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Unversity of Pablo de Olavide- University of Seville-CSIC, Seville, Spain
| |
Collapse
|
23
|
Kiaie N, Gorabi AM, Penson PE, Watts G, Johnston TP, Banach M, Sahebkar A. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today 2019; 25:58-72. [PMID: 31525463 DOI: 10.1016/j.drudis.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
The consequences of atherosclerotic cardiovascular disease (ASCVD) include myocardial infarction, ischemic stroke, and angina pectoris, which are major causes of mortality and morbidity worldwide. Despite current therapeutic strategies to reduce risk, patients still experience the consequences of ASCVD. Consequently, a current goal is to enhance visualization of early atherosclerotic lesions to improve residual ASCVD risk. The uses of liposomes, in the context of ASCVD, can include as contrast agents for imaging techniques, as well as for the delivery of antiatherosclerotic drugs, genes, and cells to established sites of plaque. Additionally, liposomes have a role as vaccine adjuvants against mediators of atherosclerosis. Here. we review the scientific and clinical evidence relating to the use of liposomes in the diagnosis and management of ASCVD.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gerald Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MI, USA
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Abstract
Diabetes mellitus is a chronic, progressive, incompletely understood metabolic disorder whose prevalence has been increasing steadily worldwide. Even though little attention has been paid to lung disorders in the context of diabetes, its prevalence has recently been challenged by newer studies of disease development. In this review, we summarize and discuss the role of diabetes mellitus involved in the progression of pulmonary diseases, with the main focus on pulmonary fibrosis, which represents a chronic and progressive disease with high mortality and limited therapeutic options.
Collapse
Affiliation(s)
- Saeed Kolahian
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
- Department of Pharmacogenomics, University of Tübingen, Wilhelmstrasse. 56, D-72074, Tübingen, Germany.
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
25
|
Celastrol-loaded PEG-PCL nanomicelles ameliorate inflammation, lipid accumulation, insulin resistance and gastrointestinal injury in diet-induced obese mice. J Control Release 2019; 310:188-197. [DOI: 10.1016/j.jconrel.2019.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
26
|
Reddy P, Lent-Schochet D, Ramakrishnan N, McLaughlin M, Jialal I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin Chim Acta 2019; 496:35-44. [PMID: 31229566 DOI: 10.1016/j.cca.2019.06.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) describes a cluster of cardio-metabolic factors that predispose to type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD). While 35% of Americans suffer from this disorder, the specific pathways related to this disease are largely underexplored. The prevailing consensus is that inflammatory pathways contribute to the pathogenesis of this disease, and therefore new research has uncovered how inflammation plays a critical role in the development and progression of MetS. The purpose of this review is to understand the role of major inflammatory mechanisms and their role in MetS. Our review identifies that adipose tissue (AT) contributes to the inflammatory pathways through the release of pro-inflammatory adipokines such as leptin and chemerin and dysregulation of anti-inflammatory adiponectin. Chemokines and cytokines deriving from monocytes are also altered and promote inflammation and insulin resistance. Circulating inflammatory biomarkers including C-reactive protein (CRP), fibrinogen, Serum amyloid A (SAA), cytokines, and chemokines have also been linked to the pathogenesis of MetS. Researchers have identified the significance of CRP levels in predicting future sequelae of MetS such as ASCVD. Mast cells in subcutaneous adipose tissue (SAT) promote both inflammation and fibrosis. Thus, both AT and phagocyte activity define MetS as an inflammatory disorder.
Collapse
Affiliation(s)
- Priya Reddy
- California Northstate University, College of Medicine, Elk Grove, CA 95757, USA
| | | | - Neeraj Ramakrishnan
- California Northstate University, College of Medicine, Elk Grove, CA 95757, USA
| | - Matthew McLaughlin
- California Northstate University, College of Medicine, Elk Grove, CA 95757, USA
| | - Ishwarlal Jialal
- California Northstate University, College of Medicine, Elk Grove, CA 95757, USA; VA Medical Center, Mather, CA 95757, USA.
| |
Collapse
|
27
|
Ho CM, Ho SL, Jeng YM, Lai YS, Chen YH, Lu SC, Chen HL, Chang PY, Hu RH, Lee PH. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. JOURNAL OF INFLAMMATION-LONDON 2019; 16:7. [PMID: 30983887 PMCID: PMC6444889 DOI: 10.1186/s12950-019-0211-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Background Macrophages engulf oxidized-LDL (oxLDL) leading to accumulation of cellular cholesterol and formation of foam cells, which is a hallmark of atherosclerosis. Moreover, recent studies showed that accumulation of free cholesterol in macrophages leading to activation of NLRP3 inflammasome and production of interleukin-1β (IL-1β) has been linked to atherosclerosis-associated inflammation. However, it is not clear if cholesterol accumulation is associated with hepatic inflammation and fibrosis in the liver. In this study, we investigated the association of free cholesterol and oxLDL accumulation in portal vein with the inflammation, atherosclerosis, and fibrosis in human nonalcoholic fatty liver disease (NAFLD). Methods Serial sections derived from surgical specimens of NAFLD were stained with filipin and antibodies against IL-1β, CD68, α-smooth muscle actin (α-SMA), oxLDL and lectin-like oxLDL receptor-1 (LOX-1). Results We show that free cholesterol was colocalized with oxLDL in the wall of portal vein, and which was associated with lumen narrowing, plaque formation, endothelium deformation, and portal venous inflammation. The inflammation was evidenced by the colocalization of Kupffer cells and IL-1β and the expression of LOX-1. Notably, ruptured plaque was closely associated with portal venous inflammation. Moreover, free cholesterol and oxLDL accumulation in periportal and sinusoidal fibrosis, which was associated with regional stellate cell activation and chicken-wire fibrosis. Conclusion These findings reveal a direct association between cholesterol accumulation, portal venous inflammation and fibrosis in NAFLD. Electronic supplementary material The online version of this article (10.1186/s12950-019-0211-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng-Maw Ho
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan
| | - Shu-Li Ho
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan.,8Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Ming Jeng
- 3Department of Pathology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Sheng Lai
- 4Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, 1, Jen Ai Rd, Sec 1, Taipei, 100 Taiwan
| | - Ya-Hui Chen
- 2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan.,5Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Shao-Chun Lu
- 4Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, 1, Jen Ai Rd, Sec 1, Taipei, 100 Taiwan
| | - Hui-Ling Chen
- 2Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100 Taiwan
| | - Po-Yuan Chang
- 6Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Rey-Heng Hu
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Po-Huang Lee
- 1Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,7Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Albeituni S, Stiban J. Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:169-191. [PMID: 31562630 DOI: 10.1007/978-3-030-21735-8_15] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
29
|
Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 2018; 59:921-946. [DOI: 10.1080/10408398.2018.1491022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
30
|
Bhagwandin C, Ashbeck EL, Whalen M, Bandola-Simon J, Roche PA, Szajman A, Truong SM, Wertheim BC, Klimentidis YC, Ishido S, Renquist BJ, Lybarger L. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS One 2018; 13:e0204898. [PMID: 30356278 PMCID: PMC6200199 DOI: 10.1371/journal.pone.0204898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is typified by insulin-resistance in adipose tissue, skeletal muscle, and liver, leading to chronic hyperglycemia. Additionally, obesity and type 2 diabetes are characterized by chronic low-grade inflammation. Membrane-associated RING-CH-1 (MARCH1) is an E3 ubiquitin ligase best known for suppression of antigen presentation by dendritic and B cells. MARCH1 was recently found to negatively regulate the cell surface levels of the insulin receptor via ubiquitination. This, in turn, impaired insulin sensitivity in mouse models. Here, we report that MARCH1-deficient (knockout; KO) female mice exhibit excessive weight gain and excessive visceral adiposity when reared on standard chow diet, without increased inflammatory cell infiltration of adipose tissue. By contrast, male MARCH1 KO mice had similar weight gain and visceral adiposity to wildtype (WT) male mice. MARCH1 KO mice of both sexes were more glucose tolerant than WT mice. The levels of insulin receptor were generally higher in insulin-responsive tissues (especially the liver) from female MARCH1 KO mice compared to males, with the potential to account in part for the differences between male and female MARCH1 KO mice. We also explored a potential role for MARCH1 in human type 2 diabetes risk through genetic association testing in publicly-available datasets, and found evidence suggestive of association. Collectively, our data indicate an additional link between immune function and diabetes, specifically implicating MARCH1 as a regulator of lipid metabolism and glucose tolerance, whose function is modified by sex-specific factors.
Collapse
Affiliation(s)
- Candida Bhagwandin
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Erin L. Ashbeck
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Michael Whalen
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Adam Szajman
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Sarah Mai Truong
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Betsy C. Wertheim
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Yann C. Klimentidis
- Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, United States of America
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Benjamin J. Renquist
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Lonnie Lybarger
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
31
|
Li W, Huang H, Li L, Wang L, Li Y, Wang Y, Guo S, Li L, Wang D, He Y, Chen L. The Pathogenesis of Atherosclerosis Based on Human Signaling Networks and Stem Cell Expression Data. Int J Biol Sci 2018; 14:1678-1685. [PMID: 30416382 PMCID: PMC6216023 DOI: 10.7150/ijbs.27896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a common and complex disease, whose morbidity increased significantly. Here, an integrated approach was proposed to elucidate systematically the pathogenesis of atherosclerosis from a systems biology point of view. Two weighted human signaling networks were constructed based on atherosclerosis related gene expression data of stem cells. Then, 37 candidate Atherosclerosis-risk Modules were detected using four kinds of permutation tests. Five Atherosclerosis-risk Modules (three Absent Modules and two Emerging Modules) enriched in functions significantly associated with disease genes were identified and verified to be associated with the maintenance of normal biological process and the pathogenesis and development of atherosclerosis. Especially for Atherosclerosis-risk Emerging Module P96, it could distinguish between normal and disease samples by Supporting Vector Machine with the average expression value of the module as classification feature. These identified modules and their genes may act as potential atherosclerosis biomarkers. Our study would shed light on the signal transduction of atherosclerosis, and provide new insights to its pathogenesis from the perspective of stem cells.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yong Li
- Dean's Office, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liansheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Donghua Wang
- Department of general surgery, General Hospital of Heilongjiang Province Land Reclamation Bureau, 150088, Harbin, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018; 234:475-485. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, promotes the progression of atherosclerosis in association with inflammatory signaling pathway and reverse cholesterol transport (RCT) process. Additionally, hepatic flavin containing monooxygenase 3 (FMO3) is involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism. Hydroxytyrosol (HT), as a major phenolic compound in olive oil, exerts anti-inflammatory and anti-atherogenic activities in vitro and animal models. The current study was designed to evaluate whether FMO3 participated in pro-atherogenic process by acrolein and HT showed protective effect during this process. Here, endothelial cells and macrophage Raw264.7 cells were used as the cell models. Following oxidized low-density lipoprotein (OX-LDL) treatment, acrolein exposure promoted foam cells formation in macrophage Raw264.7 cells. The expression of FMO3 and inflammatory makers such as phospho-NF-κB, IL-1β, TNFα as well as IL-6 were significantly increased. However, ATP-binding cassette transporters subfamily A member 1 (ABCA1), a major transporter in RCT process, was repressed by acrolein. In addition, FMO3 knockdown could suppress inflammatory markers and promote ABCA1 expression. Hydroxytyrosol (HT) was observed to reduce lipid accumulation, FMO3 expression as well as inflammatory response. Moreover, it promoted ABCA1 expression. Therefore, our findings indicated that acrolein-enhanced atherogenesis by increasing FMO3 which increased inflammatory responses and decreased ABCA1 in vitro can be alleviated by HT, which may have a therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Luo D, Guo Y, Cheng Y, Zhao J, Wang Y, Rong J. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging (Albany NY) 2018; 9:2069-2082. [PMID: 29040966 PMCID: PMC5680556 DOI: 10.18632/aging.101302] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022]
Abstract
Macrophage polarization is implicated in the inflammation in obesity. The aim of the present study was to examine the anti-inflammatory activities of botanical triterpene celastrol against diet-induced obesity. We treated diet-induced obese C57BL/6N male mice with celastrol (5, 7.5 mg/kg/d) for 3 weeks, and investigated macrophage M1/M2 polarization in adipose and hepatic tissues. Celastrol reduced fat accumulation and ameliorated glucose tolerance and insulin sensitivity. Celastrol down-regulated the mRNA levels of macrophage M1 biomarkers (e.g., IL-6, IL-1β, TNF-α, iNOS) in cell culture and in mice. The underlying mechanisms were investigated in murine macrophage RAW264.7 cells. Our results demonstrated that celastrol might control macrophage polarization through modulating the cross-talk between the following three mechanisms: 1) suppressing LPS-induced activation of MAP kinases (e.g., ERK1/2, p38, JNK) in a concentration dependent manner; 2) attenuating LPS-induced nuclear translocation of NF-κB p65 subunit in a time dependent manner; 3) activating Nrf2 and subsequently inducing HO-1 expression. HO-1 inhibitor SnPP diminished the inhibitory effects of celastrol on the activation of NF-κB pathway and the pro-inflammatory M1 macrophage polarization. Taken together, celastrol exhibited anti-obesity effects via suppressing pro-inflammatory M1 macrophage polarization. Thus, our results provide new evidence for the potential of celastrol in the treatment of obesity.
Collapse
Affiliation(s)
- Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yumeng Guo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuanyuan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
34
|
Rajendran P, Chen YF, Chen YF, Chung LC, Tamilselvi S, Shen CY, Day CH, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. The multifaceted link between inflammation and human diseases. J Cell Physiol 2018; 233:6458-6471. [PMID: 29323719 DOI: 10.1002/jcp.26479] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Increasing reports on epidemiological, diagnostic, and clinical studies suggest that dysfunction of the inflammatory reaction results in chronic illnesses such as cancer, arthritis, arteriosclerosis, neurological disorders, liver diseases, and renal disorders. Chronic inflammation might progress if injurious agent persists; however, more typically than not, the response is chronic from the start. Distinct to most changes in acute inflammation, chronic inflammation is characterized by the infiltration of damaged tissue by mononuclear cells like macrophages, lymphocytes, and plasma cells, in addition to tissue destruction and attempts to repair. Phagocytes are the key players in the chronic inflammatory response. However, the important drawback is the activation of pathological phagocytes, which might result from continued tissue damage and lead to harmful diseases. The longer the inflammation persists, the greater the chance for the establishment of human diseases. The aim of this review was to focus on advances in the understanding of chronic inflammation and to summarize the impact and involvement of inflammatory agents in certain human diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ya-Fang Chen
- Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, Taiwan.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
35
|
Lim HW, Bernstein DE. Risk Factors for the Development of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis, Including Genetics. Clin Liver Dis 2018; 22:39-57. [PMID: 29128060 DOI: 10.1016/j.cld.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease is emerging as the most common cause of chronic liver disease worldwide. This trend is, in part, secondary, to the growing incidence of obesity, type 2 diabetes, and metabolic syndrome. Other risk factors include age, gender, race/ethnicity, genetic predisposition, and polycystic ovarian disease. With the introduction of genome-wide association studies, genetic mutations contributing to inherited susceptibility to steatosis have been identified, which hold keys to future improvement in diagnosis and management. This article expands on the aforementioned risk factors and summarizes the current available data on genetic and environmental factors associated with this common entity.
Collapse
Affiliation(s)
- Huei-Wen Lim
- Department of Internal Medicine, Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA
| | - David E Bernstein
- Department of Gastroenterology and Hepatology, Northwell Health, Center for Liver Diseases, 400 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
36
|
Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol 2018; 10:1-7. [PMID: 29399273 PMCID: PMC5787673 DOI: 10.4254/wjh.v10.i1.1] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and tumorigenesis are tightly linked pathways impacting cancer development. Inflammasomes are key signalling platforms that detect pathogenic microorganisms, including hepatitis C virus (HCV) infection, and sterile stressors (oxidative stress, insulin resistance, lipotoxicity) able to activate pro-inflammatory cytokines interleukin-1β and IL-18. Most of the inflammasome complexes that have been described to date contain a NOD-like receptor sensor molecule. Redox state and autophagy can regulate inflammasome complex and, depending on the conditions, can be either pro- or anti-apoptotic. Acute and chronic liver diseases are cytokine-driven diseases as several proinflammatory cytokines (IL-1α, IL-1β, tumor necrosis factor-alpha, and IL-6) are critically involved in inflammation, steatosis, fibrosis, and cancer development. NLRP3 inflammasome gain of function aggravates liver disease, resulting in severe liver fibrosis and highlighting this pathway in the pathogenesis of non-alcoholic fatty liver disease. On the other hand, HCV infection is the primary catalyst for progressive liver disease and development of liver cancer. It is well established that HCV-induced IL-1β production by hepatic macrophages plays a critical and central process that promotes liver inflammation and disease. In this review, we aim to clarify the role of the inflammasome in the aggravation of liver disease, and how selective blockade of this main pathway may be a useful strategy to delay fibrosis progression in liver diseases.
Collapse
Affiliation(s)
- José A Del Campo
- Department of Digestive Diseases, Valme University Hospital and CIBERehd, Sevilla 41014, Spain
| | - Paloma Gallego
- Department of Digestive Diseases, Valme University Hospital and CIBERehd, Sevilla 41014, Spain
| | - Lourdes Grande
- Department of Digestive Diseases, Valme University Hospital and CIBERehd, Sevilla 41014, Spain
| |
Collapse
|
37
|
Choi ES, Yoon JJ, Han BH, Jeong DH, Lee YJ, Kang DG, Lee HS. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:12-23. [PMID: 29425644 DOI: 10.1016/j.phymed.2017.09.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 09/30/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ligustilide is a bioactive phthalide derivative isolated from Cnidii Rhizoma (Cnidium officinale, rhizome) and Angelicae Gigantis Radix (Angelica gigas Nakai, root) which are both medicinal herbs used to treat circulatory disorders. Vascular endothelium is a central spot in developing cardiovascular diseases and chronic vascular inflammation might result in atherosclerosis development. PURPOSE We previously found out that a traditional herbal formula, Samul-Tang (Si-Wu-Tang, containing Cnidii Rhizoma and Angelicae Gigantis Radix), attenuated vascular inflammation in human umbilical vein endothelial cells (HUVECs). However, which compound was responsible for vascular protective action remained unclear. Here, we investigated vascular protective potential of an isolated single compound, (Z)-ligustilide. METHODS MTT assay, western blotting, immunofluorescence, electrophoretic mobility shift assay was performed. BCECF-AM, CM-H2DCFDA, DAF-FM diacetate were used as a fluorescent indicator. RESULTS Ligustilide suppressed HL-60 monocyte adhesion and CAMs (ICAM-1, VCAM-1, E-selectin) expression in HUVECs. Ligustilide significantly inhibited TNF-α-increased production of ROS and activated NF-κB signaling pathway. Also, ligustilide treated HUVECs exhibited significant HO-1 induction via Nrf2 nuclear translocation and endothelial NO synthesis. CONCLUSION Present study demonstrates that ligustilde attenuates vascular inflammation and activate defense system of endothelial cell. Ligustilide is a bioactive compound which might prevent cardiovascular complications such as thrombosis or atherosclerosis.
Collapse
Affiliation(s)
- Eun Sik Choi
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea
| | - Jung Joo Yoon
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea
| | - Byung Hyuk Han
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea
| | - Da Hye Jeong
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea
| | - Yun Jung Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea
| | - Dae Gill Kang
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea.
| | - Ho Sub Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksandae-ro, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
38
|
Macrophage alternative activation confers protection against lipotoxicity-induced cell death. Mol Metab 2017; 6:1186-1197. [PMID: 29031719 PMCID: PMC5641682 DOI: 10.1016/j.molmet.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 02/05/2023] Open
Abstract
Objective Alternative activation (M2) of adipose tissue resident macrophage (ATM) inhibits obesity-induced metabolic inflammation. The underlying mechanisms remain unclear. Recent studies have shown that dysregulated lipid homeostasis caused by increased lipolysis in white adipose tissue (WAT) in the obese state is a trigger of inflammatory responses. We investigated the role of M2 macrophages in lipotoxicity-induced inflammation. Methods We used microarray experiments to profile macrophage gene expression regulated by two M2 inducers, interleukin-4 (Il-4), and peroxisome proliferator-activated receptor delta/gamma (Pparδ/Pparγ) agonists. Functional validation studies were performed in bone marrow-derived macrophages and mice deprived of the signal transducer and activator of transcription 6 gene (Stat6; downstream effector of Il-4) or Pparδ/Pparγ genes (downstream effectors of Stat6). Palmitic acid (PA) and β-adrenergic agonist were employed to induce macrophage lipid loading in vitro and in vivo, respectively. Results Profiling of genes regulated by Il-4 or Pparδ/Pparγ agonists reveals that alternative activation promotes the cell survival program, while inhibiting that of inflammation-related cell death. Deletion of Stat6 or Pparδ/Pparγ increases the susceptibility of macrophages to PA-induced cell death. NLR family pyrin domain containing 3 (Nlrp3) inflammasome activation by PA in the presence of lipopolysaccharide is also increased in Stat6−/− macrophages and to a lesser extent, in Pparδ/γ−/− macrophages. In concert, β-adrenergic agonist-induced lipolysis results in higher levels of cell death and inflammatory markers in ATMs derived from myeloid-specific Pparδ/γ−/− or Stat6−/− mice. Conclusions Our data suggest that ATM cell death is closely linked to metabolic inflammation. Within WAT where concentrations of free fatty acids fluctuate, M2 polarization regulated by the Stat6-Ppar axis enhances ATM's tolerance to lipid-mediated stress, thereby maintaining the homeostatic state. Cell survival is transcriptionally regulated by macrophage alternative activation. Fatty acid-triggered cell death is increased in Pparδ/γ−/− or Stat6−/− macrophages. Il-4-Stat6 signaling suppresses lipotoxicity-induced inflammasome activation. The Stat6-Pparδ/γ axis protects ATMs against lipolysis-induced cell death in vivo.
Collapse
|
39
|
Mattarei A, Rossa A, Bombardelli V, Azzolini M, La Spina M, Paradisi C, Zoratti M, Biasutto L. Novel lipid-mimetic prodrugs delivering active compounds to adipose tissue. Eur J Med Chem 2017; 135:77-88. [DOI: 10.1016/j.ejmech.2017.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
|
40
|
Shah A, Alhusayen R, Amini-Nik S. The critical role of macrophages in the pathogenesis of hidradenitis suppurativa. Inflamm Res 2017; 66:931-945. [PMID: 28656364 DOI: 10.1007/s00011-017-1074-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a painful chronic inflammatory disease with a prevalence between 1 and 4% of general population. The pathogenesis of HS long eluded scientists, but growing evidence suggests that it is a consequence of inflammatory dysregulation. FINDINGS Recent studies suggest that dysregulated immune response to skin flora and overexpression of inflammatory cytokines leads to chronic skin inflammation seen in HS. Macrophages are the most numerous inflammatory cells found in HS infiltrates and release numerous pro-inflammatory cytokines such as IL-23, and IL-1β and TNF-α, exacerbating the inflammation and contributing to the pathogenesis of HS. Furthermore, in HS, there is dysregulated function of other immune players closely associated with macrophage function including: matrix metalloproteases (MMP) 2 and 9 overexpression, toll-like receptor upregulation, impaired Notch signalling, NLRP3 inflammasome upregulation, and dysregulated keratinocyte function. Lifestyle factors including obesity and smoking also contribute to macrophage dysfunction and correlate with HS incidence. CONCLUSIONS The overexpression of pro-inflammatory cytokines and subsequent efficacy of anti-cytokine biologic therapies highlights the importance of managing macrophage dysfunction. Future therapies should target key molecular drivers of macrophage dysfunction such as TLR2 and NLRP3 overexpression.
Collapse
Affiliation(s)
- Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Raed Alhusayen
- Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Dermatology, University of Toronto, Toronto, Canada.,Sunnybrook Health Science Center, Sunnybrook Research Institute, Toronto, Canada
| | - Saeid Amini-Nik
- Faculty of Medicine, University of Toronto, Toronto, Canada. .,Department of Surgery, University of Toronto, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, Canada. .,Sunnybrook Health Science Center, Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
41
|
Nishiyama K, Fujimoto Y, Takeuchi T, Azuma YT. Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis. Neurochem Res 2017; 43:19-26. [PMID: 28424949 DOI: 10.1007/s11064-017-2269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
From the immunological point of view, macrophages are required to maintain metabolic homeostasis. Recently, there has been an increased focus on the influence of macrophage phenotypes in adipose tissue on the maintenance of metabolic homeostasis in healthy conditions because dysregulated metabolic homeostasis causes metabolic syndrome. This review notes several types of inflammatory and anti-inflammatory mediators in metabolic homeostasis. M1 macrophage polarization mediates inflammation, whereas M2 macrophage polarization mediates anti-inflammation. Fatty acids and their related factors mediate both inflammatory and anti-inflammatory responses. Saturated fatty acids and polyunsaturated fatty acids mediate inflammation, whereas marine-derived n-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, mediate anti-inflammation. In this review, we discuss the current understanding of the crosstalk between fatty acids and inflammation in macrophages and their influence on metabolic homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
42
|
Yi BG, Park OK, Jeong MS, Kwon SH, Jung JI, Lee S, Ryoo S, Kim SE, Kim JW, Moon WJ, Park K. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages. Int J Biol Macromol 2017; 97:181-189. [DOI: 10.1016/j.ijbiomac.2017.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/25/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
|
43
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
44
|
Nakano T, Fukuda D, Koga JI, Aikawa M. Delta-Like Ligand 4-Notch Signaling in Macrophage Activation. Arterioscler Thromb Vasc Biol 2016; 36:2038-47. [PMID: 27562914 PMCID: PMC5033717 DOI: 10.1161/atvbaha.116.306926] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling pathway regulates the development of various cell types and organs, and also contributes to disease mechanisms in adults. Accumulating evidence suggests its role in cardiovascular and metabolic diseases. Notch signaling components also control the phenotype of immune cells. Delta-like ligand 4 (Dll4) of the Notch pathway promotes proinflammatory activation of macrophages in vitro and in vivo. Dll4 blockade attenuates chronic atherosclerosis, vein graft disease, vascular calcification, insulin resistance, and fatty liver in mice. The Dll4-Notch axis may, thus, participate in the shared mechanisms for cardiometabolic disorders, serving as a potential therapeutic target for ameliorating these global health problems.
Collapse
Affiliation(s)
- Toshiaki Nakano
- From The Center for Excellence in Vascular Biology (T.N., D.F., J.K., M.A.), The Center for Interdisciplinary Cardiovascular Sciences (M.A.), Cardiovascular Division (T.N., D.F., J.K., M.A.), and Channing Division of Network Medicine (M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daiju Fukuda
- From The Center for Excellence in Vascular Biology (T.N., D.F., J.K., M.A.), The Center for Interdisciplinary Cardiovascular Sciences (M.A.), Cardiovascular Division (T.N., D.F., J.K., M.A.), and Channing Division of Network Medicine (M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jun-Ichiro Koga
- From The Center for Excellence in Vascular Biology (T.N., D.F., J.K., M.A.), The Center for Interdisciplinary Cardiovascular Sciences (M.A.), Cardiovascular Division (T.N., D.F., J.K., M.A.), and Channing Division of Network Medicine (M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- From The Center for Excellence in Vascular Biology (T.N., D.F., J.K., M.A.), The Center for Interdisciplinary Cardiovascular Sciences (M.A.), Cardiovascular Division (T.N., D.F., J.K., M.A.), and Channing Division of Network Medicine (M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
45
|
Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta 2016; 462:77-89. [PMID: 27570063 DOI: 10.1016/j.cca.2016.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
There is increasing evidence showing that chronic inflammation is an important pathogenic mediator of the development of type 2 diabetes (T2D). It is now generally accepted that tissue-resident macrophages play a major role in regulation of tissue inflammation. T2D-associated inflammation is characterized by an increased abundance of macrophages in different tissues along with production of inflammatory cytokines. The complexity of macrophage phenotypes has been reported from different human tissues. Macrophages exhibit a phenotypic range that is intermediate between two extremes, M1 (pro-inflammatory) and M2 (anti-inflammatory). Cytokines and chemokines produced by macrophages generate local and systemic inflammation and this condition leads to pancreatic β-cell dysfunction and insulin resistance in liver, adipose and skeletal muscle tissues. Data from human and animal studies also suggest that macrophages contribute to T2D complications such as nephropathy, neuropathy, retinopathy and cardiovascular diseases through cell-cell interactions and the release of pro-inflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. In this review we focus on the functions of macrophages and the importance of these cells in the pathogenesis of T2D. In addition, the contribution of macrophages to diabetes complications such as nephropathy, neuropathy, retinopathy and cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Sanaz Vakili
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
46
|
Kanwar P, Kowdley KV. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin Liver Dis 2016; 20:225-43. [PMID: 27063266 DOI: 10.1016/j.cld.2015.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) and the metabolic syndrome (MetS) are highly prevalent in the Western population. Their pathogenesis is closely linked to insulin resistance, which serves as a therapeutic target for the management of these conditions. This review article reviews the research supporting the influence of MetS on NASH and includes studies supporting their similar epidemiology, pathogenesis, and treatment.
Collapse
Affiliation(s)
- Pushpjeet Kanwar
- Department of Gastroenterology and Hepatology, New York Methodist Hospital, 506, 6th Street, Brooklyn, NY 11215, USA
| | - Kris V Kowdley
- Department of Transplant Hepatology, Swedish Medical Center, 1101, Madison Street, Suite 200, Seattle, WA 98104, USA.
| |
Collapse
|
47
|
Kumar P, Swain MM, Pal A. Hyperglycemia-induced inflammation caused down-regulation of 8-oxoG-DNA glycosylase levels in murine macrophages is mediated by oxidative-nitrosative stress-dependent pathways. Int J Biochem Cell Biol 2016; 73:82-98. [DOI: 10.1016/j.biocel.2016.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
48
|
Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent. Sci Rep 2016; 6:23528. [PMID: 27000434 PMCID: PMC4802322 DOI: 10.1038/srep23528] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/08/2016] [Indexed: 01/28/2023] Open
Abstract
Photoacoustic Tomography (PAT) is a deep-tissue imaging modality, with potential clinical applications in the diagnosis of arthritis, cancer and other disease conditions. Here, we identified Clofazimine (CFZ), a red-pigmented dye and anti-inflammatory FDA-approved drug, as a macrophage-targeting photoacoustic (PA) imaging agent. Spectroscopic experiments revealed that CFZ and its various protonated forms yielded optimal PAT signals at wavelengths −450 to 540 nm. CFZ’s macrophage-targeting chemical and structural forms were detected with PA microscopy at a high contrast-to-noise ratio (CNR > 22 dB) as well as with macroscopic imaging using synthetic gelatin phantoms. In vivo, natural and synthetic CFZ formulations also demonstrated significant anti-inflammatory activity. Finally, the injection of CFZ was monitored via a real-time ultrasound-photoacoustic (US-PA) dual imaging system in a live animal and clinically relevant human hand model. These results demonstrate an anti-inflammatory drug repurposing strategy, while identifying a new PA contrast agent with potential applications in the diagnosis and treatment of arthritis.
Collapse
|
49
|
Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thöne J, Demir S, Müller DN, Gold R, Linker RA. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2016; 43:817-29. [PMID: 26488817 DOI: 10.1016/j.immuni.2015.09.007] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/07/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022]
Abstract
Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Stefanie Jörg
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Alexander Duscha
- Department of Neurology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Johannes Berg
- Department of Neurology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Arndt Manzel
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Anne Waschbisch
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Anna Hammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - De-Hyung Lee
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Caroline May
- Medical Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center & Max-Delbrück Center Berlin, 13125 Berlin, Germany
| | - Andras Balogh
- Experimental and Clinical Research Center & Max-Delbrück Center Berlin, 13125 Berlin, Germany
| | - Annika I Ostermann
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Department of Food Chemistry, University of Wuppertal, 42097 Wuppertal, Germany
| | - Denis A Akkad
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Diana A Grohme
- Translational Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Markus Kleinewietfeld
- Translational Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jan Thöne
- Department of Neurology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Seray Demir
- Department of Neurology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center & Max-Delbrück Center Berlin, 13125 Berlin, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| |
Collapse
|
50
|
Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, Ren B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J Diabetes Res 2016; 2016:2543268. [PMID: 28101517 PMCID: PMC5215175 DOI: 10.1155/2016/2543268] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Significance. With an alarming increase in recent years, diabetes mellitus has become a global challenge. Despite advances in treatment of diabetes mellitus, currently, medications available are unable to control the progression of diabetes and its complications. Growing evidence suggests that inflammation is an important pathogenic mediator in the development of diabetes mellitus. The perspectives including suggestions for new therapies involving the shift from metabolic stress to inflammation should be taken into account. Critical Issues. High-mobility group box 1 (HMGB1), a nonhistone nuclear protein regulating gene expression, was rediscovered as an endogenous danger signal molecule to trigger inflammatory responses when released into extracellular milieu in the late 1990s. Given the similarities of inflammatory response in the development of T2D, we will discuss the potential implication of HMGB1 in the pathogenesis of T2D. Importantly, we will summarize and renovate the role of HMGB1 and HMGB1-mediated inflammatory pathways in adipose tissue inflammation, insulin resistance, and islet dysfunction. Future Directions. HMGB1 and its downstream receptors RAGE and TLRs may serve as potential antidiabetic targets. Current and forthcoming projects in this territory will pave the way for prospective approaches targeting the center of HMGB1-mediated inflammation to improve T2D and its complications.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Jixin Zhong
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiangzhi Zhang
- Department of Medicine, Hospital of Yangtze University, Jingzhou 434000, China
| | - Ziwei Liu
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Yuan Yang
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Quan Gong
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
- *Quan Gong: and
| | - Boxu Ren
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
- *Boxu Ren:
| |
Collapse
|