1
|
Whitfield H, Riley AM, Diogenous S, Godage HY, Potter BVL, Brearley CA. Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations. PLANT AND SOIL 2018; 427:149-161. [PMID: 29880988 PMCID: PMC5984642 DOI: 10.1007/s11104-017-3315-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates. METHODS We employed the enzyme inositol pentakisphosphate 2-kinase, IP5 2-K, to transfer phosphate from [γ-32P]ATP to axial hydroxyl(s) of myo-, neo- and 1D-chiro-inositol phosphate substrates. RESULTS 32P-labeled inositol phosphates were separated by anion exchange HPLC with phosphate eluents. Additional HPLC methods were developed to allow facile separation of myo-, neo-, 1D-chiro- and scyllo-inositol hexakisphosphate on acid gradients. CONCLUSIONS We developed enzymic approaches that allow the synthesis of labeled myo-inositol 1,[32P]2,3,4,5,6-hexakisphosphate; neo-inositol 1,[32P]2,3,4,[32P]5,6 - hexakisphosphate and 1D-chiro-inositol [32P]1,2,3,4,5,[32P]6-hexakisphosphate. Additionally, we describe HPLC separations of all inositol hexakisphosphates yet identified in soils, using a collection of soil inositol phosphates described in the seminal historic studies of Cosgrove, Tate and coworkers. Our study will enable others to perform radiotracer experiments to analyze fluxes of phosphate to/from inositol hexakisphosphates in different soils.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences, University of Norwich, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT UK
| | - Soulla Diogenous
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Himali Y. Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT UK
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Charles A. Brearley
- School of Biological Sciences, University of Norwich, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
2
|
Kuo HF, Hsu YY, Lin WC, Chen KY, Munnik T, Brearley CA, Chiou TJ. Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018. [PMID: 29779236 DOI: 10.1101/270355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 05/27/2023]
Abstract
Emerging studies have suggested that there is a close link between inositol phosphate (InsP) metabolism and cellular phosphate (Pi ) homeostasis in eukaryotes; however, whether a common InsP species is deployed as an evolutionarily conserved metabolic messenger to mediate Pi signaling remains unknown. Here, using genetics and InsP profiling combined with Pi -starvation response (PSR) analysis in Arabidopsis thaliana, we showed that the kinase activity of inositol pentakisphosphate 2-kinase (IPK1), an enzyme required for phytate (inositol hexakisphosphate; InsP6 ) synthesis, is indispensable for maintaining Pi homeostasis under Pi -replete conditions, and inositol 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) plays an equivalent role. Although both ipk1-1 and itpk1 mutants exhibited decreased levels of InsP6 and diphosphoinositol pentakisphosphate (PP-InsP5 ; InsP7 ), disruption of another ITPK family enzyme, ITPK4, which correspondingly caused depletion of InsP6 and InsP7 , did not display similar Pi -related phenotypes, which precludes these InsP species from being effectors. Notably, the level of d/l-Ins(3,4,5,6)P4 was concurrently elevated in both ipk1-1 and itpk1 mutants, which showed a specific correlation with the misregulated Pi phenotypes. However, the level of d/l-Ins(3,4,5,6)P4 is not responsive to Pi starvation that instead manifests a shoot-specific increase in the InsP7 level. This study demonstrates a more nuanced picture of the intersection of InsP metabolism and Pi homeostasis and PSRs than has previously been elaborated, and additionally establishes intermediate steps to phytate biosynthesis in plant vegetative tissues.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Ying Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Kai-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098XH, The Netherlands
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
3
|
Kuo HF, Hsu YY, Lin WC, Chen KY, Munnik T, Brearley CA, Chiou TJ. Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:613-630. [PMID: 29779236 DOI: 10.1111/tpj.13974] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 05/21/2023]
Abstract
Emerging studies have suggested that there is a close link between inositol phosphate (InsP) metabolism and cellular phosphate (Pi ) homeostasis in eukaryotes; however, whether a common InsP species is deployed as an evolutionarily conserved metabolic messenger to mediate Pi signaling remains unknown. Here, using genetics and InsP profiling combined with Pi -starvation response (PSR) analysis in Arabidopsis thaliana, we showed that the kinase activity of inositol pentakisphosphate 2-kinase (IPK1), an enzyme required for phytate (inositol hexakisphosphate; InsP6 ) synthesis, is indispensable for maintaining Pi homeostasis under Pi -replete conditions, and inositol 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) plays an equivalent role. Although both ipk1-1 and itpk1 mutants exhibited decreased levels of InsP6 and diphosphoinositol pentakisphosphate (PP-InsP5 ; InsP7 ), disruption of another ITPK family enzyme, ITPK4, which correspondingly caused depletion of InsP6 and InsP7 , did not display similar Pi -related phenotypes, which precludes these InsP species from being effectors. Notably, the level of d/l-Ins(3,4,5,6)P4 was concurrently elevated in both ipk1-1 and itpk1 mutants, which showed a specific correlation with the misregulated Pi phenotypes. However, the level of d/l-Ins(3,4,5,6)P4 is not responsive to Pi starvation that instead manifests a shoot-specific increase in the InsP7 level. This study demonstrates a more nuanced picture of the intersection of InsP metabolism and Pi homeostasis and PSRs than has previously been elaborated, and additionally establishes intermediate steps to phytate biosynthesis in plant vegetative tissues.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Ying Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Kai-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098XH, The Netherlands
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
4
|
Phillippy BQ, Perera IY, Donahue JL, Gillaspy GE. Certain Malvaceae Plants Have a Unique Accumulation of myo-Inositol 1,2,4,5,6-Pentakisphosphate. PLANTS (BASEL, SWITZERLAND) 2015; 4:267-83. [PMID: 27135328 PMCID: PMC4844327 DOI: 10.3390/plants4020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/19/2015] [Indexed: 01/28/2023]
Abstract
Methods used to quantify inositol phosphates in seeds lack the sensitivity and specificity necessary to accurately detect the lower concentrations of these compounds contained in the leaves of many plants. In order to measure inositol hexakisphosphate (InsP₆) and inositol pentakisphosphate (InsP₅) levels in leaves of different plants, a method was developed to concentrate and pre-purify these compounds prior to analysis. Inositol phosphates were extracted from leaves with diluted HCl and concentrated on small anion exchange columns. Reversed-phase solid phase extraction cartridges were used to remove compounds that give peaks that sometimes interfere during HPLC. The method permitted the determination of InsP₆ and InsP₅ concentrations in leaves as low as 10 µM and 2 µM, respectively. Most plants analyzed contained a high ratio of InsP₆ to InsP₅. In contrast, certain members of the Malvaceae family, such as cotton (Gossypium) and some hibiscus (Hibiscus) species, had a preponderance of InsP₅. Radiolabeling of cotton seedlings also showed increased amounts of InsP₅ relative to InsP₆. Why some Malvaceae species exhibit a reversal of the typical ratios of these inositol phosphates is an intriguing question for future research.
Collapse
Affiliation(s)
- Brian Q Phillippy
- Plant and Microbial Biology, Campus Box 7612, North Carolina State University, Raleigh, NC 27695, USA.
| | - Imara Y Perera
- Plant and Microbial Biology, Campus Box 7612, North Carolina State University, Raleigh, NC 27695, USA.
| | - Janet L Donahue
- Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Glenda E Gillaspy
- Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
5
|
Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, Perera IY, Raboy V, Gillaspy GE. Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:642-53. [PMID: 25231822 DOI: 10.1111/tpj.12669] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 05/24/2023]
Abstract
Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo-inositol hexakisphosphate (InsP6 ). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8 . Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8 , thus synthesis is not confined to tissues with high InsP6 . We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non-redundant or non-overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.
Collapse
Affiliation(s)
- Mintu Desai
- Department of Plant and Microbial Biology, North Carolina State University, Room 4209, Gardner Hall, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Influence of high temperature during filling period on grain phytic acid and its relation to spikelet sterility and grain weight in non-lethal low phytic acid mutations in rice. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Gillaspy GE. The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:141-57. [DOI: 10.1007/978-94-007-6331-9_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|