1
|
Mubarok W, Elvitigala KCML, Kotani T, Sakai S. Visible light photocrosslinking of sugar beet pectin for 3D bioprinting applications. Carbohydr Polym 2023; 316:121026. [PMID: 37321724 DOI: 10.1016/j.carbpol.2023.121026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Herein, we report the hydrogelation of sugar beet pectin (SBP) via visible light-mediated photocrosslinking and its applications in extrusion-based 3D bioprinting. Rapid hydrogelation (<15 s) was achieved by applying 405 nm visible light to an SBP solution in the presence of tris(bipyridine)ruthenium(II) chloride hexahydrate ([Ru(bpy)3]2+) and sodium persulfate (SPS). The mechanical properties of the hydrogel could be tuned by controlling the visible light irradiation time and concentrations of SBP, [Ru(bpy)3]2+, and SPS. High-fidelity 3D hydrogel constructs were fabricated by extruding inks containing 3.0 wt% SBP, 1.0 mM [Ru(bpy)3]2+, and 1.0 mM SPS. Human hepatoblastoma (HepG2) cells encapsulated in SBP hydrogels remained viable and metabolically active after 14 d of culture. Overall, this study demonstrates the feasibility of applying SBP and a visible light-mediated photocrosslinking system to the 3D bioprinting of cell-laden constructs for tissue engineering applications.
Collapse
Affiliation(s)
- Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Kelum Chamara Manoj Lakmal Elvitigala
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Takashi Kotani
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Balk M, Sofia P, Neffe AT, Tirelli N. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int J Mol Sci 2023; 24:11668. [PMID: 37511430 PMCID: PMC10380785 DOI: 10.3390/ijms241411668] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
At a time when environmental considerations are increasingly pushing for the application of circular economy concepts in materials science, lignin stands out as an under-used but promising and environmentally benign building block. This review focuses (A) on understanding what we mean with lignin, i.e., where it can be found and how it is produced in plants, devoting particular attention to the identity of lignols (including ferulates that are instrumental for integrating lignin with cell wall polysaccharides) and to the details of their coupling reactions and (B) on providing an overview how lignin can actually be employed as a component of materials in healthcare and energy applications, finally paying specific attention to the use of lignin in the development of organic shape-memory materials.
Collapse
Affiliation(s)
- Maria Balk
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Pietro Sofia
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia (ARC@IIT), Via Morego 30, 16163 Genova, Italy
| | - Axel T Neffe
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
3
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Parkar SG, Rosendale DI, Stoklosinski HM, Jobsis CMH, Hedderley DI, Gopal P. Complementary Food Ingredients Alter Infant Gut Microbiome Composition and Metabolism In Vitro. Microorganisms 2021; 9:microorganisms9102089. [PMID: 34683410 PMCID: PMC8540059 DOI: 10.3390/microorganisms9102089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants’ growth needs and support the maturation of the infant gut microbiome.
Collapse
|
5
|
Mason PJ, Furtado A, Marquardt A, Hodgson-Kratky K, Hoang NV, Botha FC, Papa G, Mortimer JC, Simmons B, Henry RJ. Variation in sugarcane biomass composition and enzymatic saccharification of leaves, internodes and roots. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:201. [PMID: 33298135 PMCID: PMC7724889 DOI: 10.1186/s13068-020-01837-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The composition of biomass determines its suitability for different applications within a biorefinery system. The proportion of the major biomass fractions (sugar, cellulose, hemicellulose and lignin) may vary in different sugarcane genotypes and growth environments and different parts of the plant. This study investigated the composition of mature and immature internodes, roots and mature leaves of sugarcane. RESULTS Internodes were found to have a significantly larger alcohol-soluble component than leaves and roots. The primary difference between the immature and mature internodes was the ratio of soluble sugars. In mature tissues, sucrose content was significantly higher, whereas in immature internodal tissues there was lower sucrose and heightened concentrations of reducing sugars. Carbon (C) partitioning in leaf tissues was characterised by low levels of soluble components and high "other" and cell wall fractions. Root tissue had low ratios of soluble fractions relative to their cell wall contents, indicating a lack of storage of soluble carbon. There was no significant difference in the ratio of the major cell wall fractions between the major organ types. Characterisation of individual non-cellulosic monomers indicated leaf and root tissues had significantly higher arabinose and galactose fractions. Significantly larger proportions of syringyl lignin compounds and the hydroxycinnamic compound, p-coumaric acid were observed in mature internodal tissues compared to the other tissue types. Tissue-specific differences in composition were shown to greatly affect the recalcitrance of the cell wall to enzymatic saccharification. CONCLUSIONS Overall, this study displayed clear evidence of the differential partitioning of C throughout the sugarcane plant in specific organs. These organ-specific differences have major implications in their utility as a bioproduct feedstock. For example, the inclusion of trash (leaves) with the culms (internodes) may alter processing efficiency.
Collapse
Affiliation(s)
- Patrick J Mason
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Annelie Marquardt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Level 3, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
- Sugar Research Australia Limited (SRA), PO Box 86, Indooroopilly, QLD, 4068, Australia
| | - Katrina Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nam V Hoang
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
- College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Frederik C Botha
- Sugar Research Australia Limited (SRA), PO Box 86, Indooroopilly, QLD, 4068, Australia
| | - Gabriella Papa
- Amyris, 5885 Hollis St, Ste. 100, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory (LBNL), Joint Bioenergy Institute (JBEI), 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Jenny C Mortimer
- Lawrence Berkeley National Laboratory (LBNL), Joint Bioenergy Institute (JBEI), 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Blake Simmons
- Lawrence Berkeley National Laboratory (LBNL), Joint Bioenergy Institute (JBEI), 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Jana S, Mukherjee S, Ali I, Ray B, Ray S. Isolation, structural features, in vitro antioxidant activity and assessment of complexation ability with β-lactoglobulin of a polysaccharide from Borassus flabellifer fruit. Heliyon 2020; 6:e05499. [PMID: 33294661 PMCID: PMC7700886 DOI: 10.1016/j.heliyon.2020.e05499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
This research was intended to investigate the structural feature, antioxidative activity and interaction with β-lactoglobulin (β-lg) of a polysaccharide (P) isolated from Borassus flabellifer fruit thru aqueous extraction, protein elimination and chromatographic techniques. Polysaccharide P (molecular weight: 21,000 g mol-1) was constituted of arabinose, galactose, glucose, and rhamnose in a 50:24:20:6 M ratio alongside 9% (w/w) galacturonic acid. It encompassed a petite backbone entailing galacturonopyranosyl and rhamnopyranosyl units substituted with sizable side chains comprising of arabinofuranosyl, galactopyranosyl and esterified coumaric acid (CA) residues. Various series of oligosaccharides including (i) Gal1,2,4-9Ac5-29, (ii) Ara2-3Ac6-8, (iii) Gal3Ara1-3Ac13-17, (iv) Gal4-6Ara2Ac18-24, (v) Gal6Ara1Ac22 and (vi) Gal1Ara2CA1Ac7 and Gal1Ara3CA1Ac9 epitomizing polysaccharide structure were generated and characterised. Fraction P exhibited dose-dependent antioxidant activity and possessed a strong β-lactoglobulin binding capability. Accordingly, B. flabellifer fruit offers an antioxidative polysaccharide having novel structure that can associate with β-lg and, hence, useful in formulating novel food possessing adjustable composition.
Collapse
Affiliation(s)
| | | | - Imran Ali
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| |
Collapse
|
7
|
Banerjee P, Jana S, Mukherjee S, Bera K, Majee SK, Ali I, Pal S, Ray B, Ray S. The heteropolysaccharide of Mangifera indica fruit: Isolation, chemical profile, complexation with β-lactoglobulin and antioxidant activity. Int J Biol Macromol 2020; 165:93-99. [PMID: 32980416 DOI: 10.1016/j.ijbiomac.2020.09.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
A 91 kDa heteropolysaccharide (F2) was isolated from Mangifera indica fruit via extraction with H2O, purification by C2H5OH, starch removal and ion exchange chromatography. This polymer was made up mostly of Ara, Gal, Glc, Rha, Xyl, and GalA in a 37: 29: 9:3:2:19 molar proportion. It inherited a small backbone containing GalpA and Rhap units substituted with very large side chains containing differently linked Ara and Gal units plus esterified gallic acid (GA) residue. Several enzymes generated oligosaccharides including (i) Ara2-10Ac6-22, (ii) Gal1-8Ac5-26 and (iii) GA1Gal1Ac7 were characterized. This polysaccharide, which showed dose dependent antioxidant activity, exhibited synergism with gallic acid, and formed a complex (K = 1.2 × 106 M-1) with β-lactoglobulin. Accordingly, H2O treatment produces a polysaccharide with desired biochemical properties; this could be effective in designing innovative functional food with flexible makeup.
Collapse
Affiliation(s)
- Pallabi Banerjee
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Subrata Jana
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Shuvam Mukherjee
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Kaushik Bera
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Sujay Kumar Majee
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Imran Ali
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Saikat Pal
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India.
| |
Collapse
|
8
|
Coelho MN, Soares PAG, Frattani FS, Camargo LMM, Tovar AMF, de Aguiar PF, Zingali RB, Mourão PAS, Costa SS. Polysaccharide composition of an anticoagulant fraction from the aqueous extract of Marsypianthes chamaedrys (Lamiaceae). Int J Biol Macromol 2020; 145:668-681. [PMID: 31883887 DOI: 10.1016/j.ijbiomac.2019.12.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Marsypianthes chamaedrys (Lamiaceae) is a medicinal plant popularly used against envenomation by snakebite. Pharmacological studies have shown that extracts of M. chamaedrys have antiophidic, anti-inflammatory and anticoagulant properties, supporting the ethnopharmacological use. In this study, an aqueous extract of aerial parts of M. chamaedrys showed anticoagulant activity in the activated partial thromboplastin time assay (0.54 IU/mg). The bioassay-guided fractionation using ethanol precipitation and gel filtration chromatography on Sephadex G-50 and Sephadex G-25 resulted in a water-soluble fraction with increased anticoagulant activity (Fraction F2-A; 2.94 IU/mg). A positive correlation was found between the amount of uronic acids and the anticoagulant potential of the active samples. Chemical and spectroscopic analyses indicated that F2-A contained homogalacturonan, type I rhamnogalacturonan, type II arabinogalactan and α-glucan. UV and FT-IR spectra indicated the possible presence of ferulic acid. Pectic polysaccharides and type II arabinogalactans may be contributing to the anticoagulant activity of the aqueous extract of M. chamaedrys in the APTT assay.
Collapse
Affiliation(s)
- Mariana N Coelho
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Paulo A G Soares
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Flávia S Frattani
- Laboratório de Hemostasia e Trombose (LHT), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Luiza M M Camargo
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ana M F Tovar
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Paula F de Aguiar
- Laboratório de Quimiometria (LABQUIM), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Sônia S Costa
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
9
|
Lapierre C, Voxeur A, Boutet S, Ralph J. Arabinose Conjugates Diagnostic of Ferulate-Ferulate and Ferulate-Monolignol Cross-Coupling Are Released by Mild Acidolysis of Grass Cell Walls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12962-12971. [PMID: 31644281 DOI: 10.1021/acs.jafc.9b05840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ferulate (FA) units esterified to grass arabinoxylans are involved in cross-linking cell wall polymers. In this work, this contention is strengthened by the identification of FA homo- and heterodimers esterified to methyl arabinofuranoside (MeAra) units after their release from the xylan by mild acidolysis in dioxane/methanol/HCl. Acidolysis of poorly lignified maize bran cell walls provided diferulate (DFA) isomers, including those from 8-5, 8-O-4, and 5-5 interunit bonding, esterified to one or two MeAra units. Acidolysis of lignified grass samples released crossed dimers esterified to one MeAra unit and derived from the β-O-4 coupling of coniferyl alcohol to FA esters. The evaluation of these heterodimeric esters by LC-UV of their aglycones revealed that the parent structures occur in significant amounts in lignified cell walls (0.5-1 mg/g expressed as FA equivalents). The present results position mild acidolysis as an efficient strategy to obtain improved details regarding the FA-mediated cross-linking of grass cell walls.
Collapse
Affiliation(s)
- Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS , Université Paris-Saclay , Versailles 75231 , France
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS , Université Paris-Saclay , Versailles 75231 , France
| | - Stéphanie Boutet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS , Université Paris-Saclay , Versailles 75231 , France
| | - John Ralph
- Department of Biochemistry, and The Department of Energy's Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute , University of Wisconsin , Madison , Wisconsin 53726 , United States
| |
Collapse
|
10
|
Fukuhara Y, Takei T, Yoshinaga T, Nishimata H, Yoshida M. Injectable Sugar Beet Pectin/Chitosan Derivative Composite Hydrogel for Wound Care. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.19we102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshiki Fukuhara
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | | | | | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
11
|
Vidot K, Devaux MF, Alvarado C, Guyot S, Jamme F, Gaillard C, Siret R, Lahaye M. Phenolic distribution in apple epidermal and outer cortex tissue by multispectral deep-UV autofluorescence cryo-imaging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:51-59. [PMID: 31128715 DOI: 10.1016/j.plantsci.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 05/13/2023]
Abstract
Phenolic compounds in fruit are involved in responses to biotic and abiotic stresses and are responsible for organoleptic properties. To establish the distribution of these secondary metabolites at the tissue and sub-cellular scales, mapping of fluorescence in apple epidermis and outer cortex tissue in cryogenic condition was performed after deep-UV excitation at 275 nm. Douce Moën and Guillevic cider apple varieties were sampled and frozen after harvest, after 30 days at 4 °C and after 20 days at room temperature. Image analysis of fluorescence emission images acquired between 300 and 650 nm allowed the assignment of fluorescence signals to phenolic compound families based on reference molecules. Emission attributed to monomeric and/or condensed flavanol was localized in whole tissue with major fluorescence in the cuticle region. Hydroxycinnamic acids were found predominantly in the outer cortex and appeared in the cell wall. Fluorescent pigments were mostly found in the epidermis. The distribution of flavanols in the sub-cuticle and phenolic acids in the outer cortex distinguished apple varieties. Storage conditions had no impact on phenolic distribution. The proposed fluorescent imaging and analysis approach enables studies on phenolic distribution in relation to fruit development, biotic/abiotic stress resistance and quality.
Collapse
Affiliation(s)
- Kevin Vidot
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France; USC 1422 GRAPPE, INRA, Ecole Supérieure d'Agricultures, SFR 4207 QUASAV, 49100, Angers, France.
| | - Marie-Françoise Devaux
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| | - Camille Alvarado
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| | - Sylvain Guyot
- UR 1268 Biopolymères Interactions Assemblages, équipe Polyphénols, Réactivité, Procédés (PRP), INRA, 35653, Le Rheu, France.
| | - Frederic Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France.
| | - Cédric Gaillard
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| | - René Siret
- USC 1422 GRAPPE, INRA, Ecole Supérieure d'Agricultures, SFR 4207 QUASAV, 49100, Angers, France.
| | - Marc Lahaye
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| |
Collapse
|
12
|
Banerjee P, Mukherjee S, Bera K, Ghosh K, Ali I, Khawas S, Ray B, Ray S. Polysaccharides from Thymus vulgaris leaf: Structural features, antioxidant activity and interaction with bovine serum albumin. Int J Biol Macromol 2019; 125:580-587. [DOI: 10.1016/j.ijbiomac.2018.11.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/30/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
|
13
|
Wang P, Zhang B, Zhang H, He Y, Ong CN, Yang J. Metabolites change of Scenedesmus obliquus exerted by AgNPs. J Environ Sci (China) 2019; 76:310-318. [PMID: 30528022 DOI: 10.1016/j.jes.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/09/2023]
Abstract
With increasing emission of silver nanoparticles (AgNPs) into the environment, it is important to understand the effects of ambient concentration of AgNPs. The biological effects of AgNPs on Scenedesmus obliquus, a ubiquitous freshwater microalgae, was evaluated. AgNPs exerted a minor inhibitory effect at low doses. Non-targeted metabolomic studies were conducted to understand and analyze the effect of AgNPs on algal cells from a molecular perspective. During the 48 hr of exposure to AgNPs, 30 metabolites were identified, of which nine had significant changes compared to the control group. These include d-galactose, sucrose, and d-fructose. These carbohydrates are involved in the synthesis and repair of cell walls. Glycine, an important constituent amino acid of glutathione, increased with AgNP exposure concentration increasing, likely to counteract an increased intracellular oxidative stress. These results provide a new understanding of the toxicity effects and mechanism of AgNPs. These metabolites could be useful biomarkers for future research, employed in the early detection of environmental risk from AgNPs.
Collapse
Affiliation(s)
- Pu Wang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China; School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Jun Yang
- School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
14
|
Kelly SM, O'Callaghan J, Kinsella M, van Sinderen D. Characterisation of a Hydroxycinnamic Acid Esterase From the Bifidobacterium longum subsp. longum Taxon. Front Microbiol 2018; 9:2690. [PMID: 30473685 PMCID: PMC6237967 DOI: 10.3389/fmicb.2018.02690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
Bifidobacterium longum subsp. longum, a common member of the human gut microbiota with perceived positive health effects, is capable of metabolising certain complex, plant-derived carbohydrates which are commonly found in the (adult) human diet. These plant glycans may be employed to favourably modulate the microbial communities in the intestine. Hydroxycinnamic acids (HCAs) are plant phenolic compounds, which are attached to glycans, and which are associated with anti-oxidant and other beneficial properties. However, very little information is available regarding metabolism of HCA-containing glycans by bifidobacteria. In the current study, a gene encoding a hydroxycinnamic acid esterase was found to be conserved across the B. longum subsp. longum taxon and was present in a conserved locus associated with plant carbohydrate utilisation. The esterase was shown to be active against various HCA-containing substrates and was biochemically characterised in terms of substrate preference, and pH and temperature optima of the enzyme. This novel hydroxycinnamic acid esterase is presumed to be responsible for the release of HCAs from plant-based dietary sources, a process that may have benefits for the gut environment and thus host health.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Mike Kinsella
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Bilska-Kos A, Panek P, Szulc-Głaz A, Ochodzki P, Cisło A, Zebrowski J. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 228:178-188. [PMID: 29945073 DOI: 10.1016/j.jplph.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Miscanthus × giganteus and Zea mays, closely-related C4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO2 assimilation and a clear decrease in F'v/F'm, Fv/Fm and ɸPSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland; Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland.
| | - Piotr Panek
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Anna Szulc-Głaz
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Aneta Cisło
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| |
Collapse
|
16
|
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018; 23:E942. [PMID: 29670040 PMCID: PMC6017442 DOI: 10.3390/molecules23040942] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022] Open
Abstract
Pectins are plant cell wall natural heteropolysaccharides composed mainly of α-1-4 d-galacturonic acid units, which may or may not be methyl esterified, possesses neutral sugars branching that harbor functional moieties. Physicochemical features as pH, temperature, ions concentration, and cosolute presence, affect directly the extraction yield and gelling capacity of pectins. The chemical and structural features of this polysaccharide enables its interaction with a wide range of molecules, a property that scientists profit from to form new composite matrices for target/controlled delivery of therapeutic molecules, genes or cells. Considered a prebiotic dietary fiber, pectins meetmany regulations easily, regarding health applications within the pharmaceutical industry as a raw material and as an agent for the prevention of cancer. Thus, this review lists many emergent pectin-based composite materials which will probably palliate the impact of obesity, diabetes and heart disease, aid to forestall actual epidemics, expand the ken of food additives and food products design.
Collapse
Affiliation(s)
- Claudia Lara-Espinoza
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Elizabeth Carvajal-Millán
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - René Balandrán-Quintana
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Yolanda López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
17
|
Cheng J, Lv Y, Yu Y, Li X, Sun Z. Measuring heavy metal stress in ryegrass using helium-cadmium excitation-based photoluminescence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7059-7066. [PMID: 29275477 DOI: 10.1007/s11356-017-0981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
As the chemical analysis of heavy metal uptake and toxicity in plants is time-consuming, expensive, and destructive, a simple and reliable method for detecting heavy metal transfer from the soil to plants is thus necessary. We aimed to measure copper (Cu), lead (Pb), and cadmium (Cd) stress in ryegrass in vivo using plant photoluminescence based on a helium (He)-cadmium excitation source (wavelength 325 nm). The soils were combined with Cu, Pb and Cd, respectively. Fifteen ryegrass seedlings (Lolium multiflorum) were planted in each pot. After 30 days, leaves from seedlings at the fourth-leaf stage were collected and the fluorescence excitation spectra were detected using a He-Cd laser at an excitation wavelength of 325 nm. Three emission peaks that constitute known chlorophyll wavelengths, namely 450, 690, and 735 nm, were detected. These three peaks were strongly influenced by Cu, Pb, and Cd concentrations in the soil. Higher peak heights at 450 nm were observed with increasing Cu, Pb, and Cd concentrations in the soil, whereas no changes were noted at 690 and 735 nm. The P450/P690 and P450/P735 ratios were positively correlated with Cu, Pb, and Cd soil concentrations, ryegrass uptake, and DTPA-extractable Cu, Pb, and Cd in the soil. The related coefficients were all greater than 0.9. However, no correlation between the P690/P735 ratio, Cu, Pb, and Cd ryegrass uptake, and DTPA-extractable Cu, Pb, and Cd in the soil was observed. The measurement of plant photoluminescence in vivo using a He-Cd excitation source (wavelength 325 nm) may be utilized as an approach for monitoring the response of plants to specific stressors.
Collapse
Affiliation(s)
- Jiemin Cheng
- College of Geography and Environmental Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Yan Lv
- College of Geography and Environmental Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yaqin Yu
- College of Geography and Environmental Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinrui Li
- College of Geography and Environmental Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Zihan Sun
- College of Geography and Environmental Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
18
|
Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Damm T, Pattathil S, Günl M, Jablonowski ND, O'Neill M, Grün KS, Grande PM, Leitner W, Schurr U, Usadel B, Klose H. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr Polym 2017; 168:94-102. [PMID: 28457468 DOI: 10.1016/j.carbpol.2017.03.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 01/25/2023]
Abstract
The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis.
Collapse
Affiliation(s)
- Tatjana Damm
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Nicolai David Jablonowski
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Katharina Susanne Grün
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | - Philipp Michael Grande
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany.
| | - Walter Leitner
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany; Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | - Ulrich Schurr
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Holger Klose
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
20
|
Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Hura T, Tyrka M, Hura K, Ostrowska A, Dziurka K. QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale. Mol Genet Genomics 2016; 292:415-433. [DOI: 10.1007/s00438-016-1276-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/28/2016] [Indexed: 01/16/2023]
|
22
|
Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr Microbiol 2016; 74:247-256. [DOI: 10.1007/s00284-016-1182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
|
23
|
Ma J, Xu ZS, Wang F, Xiong AS. Isolation, Purification and Characterization of Two Laccases from Carrot (Daucus carota L.) and Their Response to Abiotic and Metal Ions Stresses. Protein J 2016; 34:444-52. [PMID: 26626349 DOI: 10.1007/s10930-015-9639-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Laccases, which belong to the blue copper oxidase enzyme family, oxidize many organic and inorganic compounds. The laccase-encoding genes DcLac1 and DcLac2 were isolated from the economically important tuberous root carrot, and their proteins were successfully expressed and purified using the Escherichia coli expression system BL21(DE3). DcLac1 and DcLac2 had molecular masses of approximately 64 and 61.9 kDa, respectively. With 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate acid) as the substrate, DcLac1 and DcLac2 had K m values of 3.9043 and 1.255 mM, respectively, and V max values of 54.0832 and 81.7996 μM mg(-1) min(-1), respectively. Moreover, DcLac1 and DcLac2 had optimal pH values of 2.8 and 2.6, respectively, and optimal temperatures of 45 and 40 °C, respectively. The activities of the two enzymes were promoted by Ca(2+), Mg(2+), Cu(2+), and Na(+) but inhibited by Fe(2+), Zn(2+), Mn(2+), K(+), SDS, and EDTA. Expression profiles showed that the two DcLac genes had almost identical responses to high and low temperature stresses but different responses to salt, drought, and metal stresses. This study provided insights into the characteristics and tolerance response mechanisms of laccase in carrot.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
24
|
Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K. Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale. JOURNAL OF PLANT PHYSIOLOGY 2016; 202:1-9. [PMID: 27450489 DOI: 10.1016/j.jplph.2016.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - Kinga Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
25
|
Skendi A, Biliaderis CG. Gelation of wheat arabinoxylans in the presence of Cu(+2) and in aqueous mixtures with cereal β-glucans. Food Chem 2016; 203:267-275. [PMID: 26948614 DOI: 10.1016/j.foodchem.2016.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/10/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
The effect of copper ions (0.63-0.16 mM) on the rheological behavior of arabinoxylan (AX) aqueous solutions was investigated. Moreover, the influence of β-glucan addition (BG, 0.5-3% w/v) on the gelation of mixed AX/BG solutions with and without addition of the peroxidase/H2O2 was examined. Generally, gels formed with inclusion of transition metal-ions differed from those obtained by adding peroxidase/H2O2. Copper ions induced viscosity increase of the AX-solutions and form stronger thermoreversible gels with increasing ion-concentration; optimal gelation was at 15 °C. For added β-glucan at levels >1%, the lower the concentration and the higher the molecular weight of β-glucan, the weaker the gelling ability of the mixed AX/BG system treated with peroxidase/H2O2. The polysaccharide-ratio affected both the gelling rate and the network melting temperature, with the β-glucan itself giving the strongest network. Calorimetry provided evidence for existence of β-glucan ordered domains in the mixed gel structures of AX/BG1, indicative of phase separation events.
Collapse
Affiliation(s)
- Adriana Skendi
- Laboratory of Food Chemistry & Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University, Greece.
| | - Costas G Biliaderis
- Laboratory of Food Chemistry & Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University, Greece.
| |
Collapse
|
26
|
Marriott PE, Gómez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. THE NEW PHYTOLOGIST 2016; 209:1366-81. [PMID: 26443261 DOI: 10.1111/nph.13684] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/24/2015] [Indexed: 05/17/2023]
Abstract
The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.
Collapse
Affiliation(s)
- Poppy E Marriott
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Leonardo D Gómez
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
27
|
Enzymatic Extraction of Copper Complexes with Phenolic Compounds from Açaí (Euterpe oleracea Mart.) and Bilberry (Vaccinium myrtillus L.) Fruits. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-015-0395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:630. [PMID: 27242834 PMCID: PMC4862258 DOI: 10.3389/fpls.2016.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.
Collapse
Affiliation(s)
- Nathan T. Reem
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Lauran Chambers
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio
University, Athens, OHUSA
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
- *Correspondence: Olga A. Zabotina,
| |
Collapse
|
29
|
Hura K, Hura T, Rapacz M, Płażek A. Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Ralph J, Helm RF. Lignin/Hydroxycinnamic Acid/Polysaccharide Complexes: Synthetic Models for Regiochemical Characterization. FORAGE CELL WALL STRUCTURE AND DIGESTIBILITY 2015. [DOI: 10.2134/1993.foragecellwall.c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- John Ralph
- USDA-ARS, U.S. Dairy Forage Research Center; Madison Wisconsin
| | - Richard F. Helm
- USDA-ARS, U.S. Dairy Forage Research Center; Madison Wisconsin
| |
Collapse
|
31
|
Guerriero G, Hausman J, Strauss J, Ertan H, Siddiqui KS. Lignocellulosic bioma
ss
: Biosynthesis, degradation, and industrial utilization. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400196] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST) Esch/Alzette Luxembourg
| | - Jean‐Francois Hausman
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST) Esch/Alzette Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology Fungal Genetics and Genomics Unit University of Natural Resources and Life Sciences Vienna (BOKU) University and Research Center Campus Tulln‐Technopol Tulln/Donau Austria
- Health and Environment Department Austrian Institute of Technology GmbH ‐ AIT University and Research Center Campus Tulln‐Technopol Tulln/Donau Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney Australia
- Department of Molecular Biology and Genetics Istanbul University Istanbul Turkey
| | - Khawar Sohail Siddiqui
- Life Sciences Department King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Meng F, Babujee L, Jacobs JM, Allen C. Comparative Transcriptome Analysis Reveals Cool Virulence Factors of Ralstonia solanacearum Race 3 Biovar 2. PLoS One 2015; 10:e0139090. [PMID: 26445498 PMCID: PMC4596706 DOI: 10.1371/journal.pone.0139090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
While most strains of the plant pathogenic bacterium Ralstonia solanacearum are tropical, the race 3 biovar 2 (R3bv2) subgroup attacks plants in cooler climates. To identify mechanisms underlying this trait, we compared the transcriptional profiles of R. solanacearum R3bv2 strain UW551 and tropical strain GMI1000 at 20°C and 28°C, both in culture and during tomato pathogenesis. 4.2% of the ORFs in the UW551 genome and 7.9% of the GMI1000 ORFs were differentially expressed by temperature in planta. The two strains had distinct transcriptional responses to temperature change. GMI1000 up-regulated several stress response genes at 20°C, apparently struggling to cope with plant defenses. At the cooler temperature, R3bv2 strain UW551 up-regulated a cluster encoding a mannose-fucose binding lectin, LecM; a quorum sensing-dependent protein, AidA; and a related hypothetical protein, AidC. The last two genes are absent from the GMI1000 genome. In UW551, all three genes were positively regulated by the adjacent SolI/R quorum sensing system. These temperature-responsive genes were required for full virulence in R3bv2. Mutants lacking lecM, aidA, or aidC were each significantly more reduced in virulence on tomato at 20°C than at 28°C in both a naturalistic soil soak inoculation assay and when they were inoculated directly into tomato stems. The lecM and aidC mutants also survived poorly in potato tubers at the seed tuber storage temperature of 4°C, and the lecM mutant was defective in biofilm formation in vitro. Together, these results suggest novel mechanisms, including a lectin, are involved in the unique temperate epidemiology of R3bv2.
Collapse
Affiliation(s)
- Fanhong Meng
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Lavanya Babujee
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Jonathan M. Jacobs
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| |
Collapse
|
33
|
|
34
|
Kong Y, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li X, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1296-306. [PMID: 25673778 PMCID: PMC4378170 DOI: 10.1104/pp.114.255943] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 05/18/2023]
Abstract
Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.
Collapse
Affiliation(s)
- Yingzhen Kong
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Maria J Peña
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Luciana Renna
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Utku Avci
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Sami T Tuomivaara
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Xuemei Li
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Wolf-Dieter Reiter
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Federica Brandizzi
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Michael G Hahn
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Alan G Darvill
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - William S York
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| |
Collapse
|
35
|
Majee SK, Ray S, Ghosh K, Micard V, Ray B. Isolation and structural features of an antiradical polysaccharide of Capsicum annuum that interacts with BSA. Int J Biol Macromol 2015; 75:144-51. [DOI: 10.1016/j.ijbiomac.2015.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/18/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
|
36
|
Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:63-137. [PMID: 25911233 DOI: 10.1016/bs.aambs.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mila Marinović
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - April J M Liwanag
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jussi Sipilä
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Kristiina S Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Design, Synthesis, and In VitroAntiplatelet Aggregation Activities of Ferulic Acid Derivatives. J CHEM-NY 2015. [DOI: 10.1155/2015/376527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to discover new compounds with antiplatelet aggregation activities, some ferulic acid (FA) derivatives were designed and synthesized. Thein vitroantiplatelet aggregation activities of these compounds were assessed by turbidimetric test. The results showed that the target compound7fhad potent antiplatelet aggregation activity with its IC5027.6 μmol/L, and7fcan be regarded as a novel potent antiplatelet aggregation candidate.
Collapse
|
38
|
Müller-Maatsch J, Caligiani A, Tedeschi T, Elst K, Sforza S. Simple and validated quantitative ¹H NMR method for the determination of methylation, acetylation, and feruloylation degree of pectin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9081-9087. [PMID: 25137229 DOI: 10.1021/jf502679s] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The knowledge of pectin esterification degree is of primary importance to predict gelling and other properties of pectin from different sources. This paper reports the development of a simple and rapid (1)H NMR-based method for the simultaneous quantitative determination of methylation, acetylation, and feruloylation degree of pectin isolated from various food sources. Pectin esters are hydrolyzed in NaOH/D2O, and the obtained methanol, acetic acid, and ferulic acid are directly measured by (1)H NMR. High accuracy, repeatability, and reproducibility of the method were obtained, and the analysis time is reduced as compared to conventional chromatography- or titration-based methods.
Collapse
|
39
|
|
40
|
Hromádková Z, Košťálová Z, Vrchotová N, Ebringerová A. Non-cellulosic polysaccharides from the leaves of small balsam (Impatiens parviflora DC.). Carbohydr Res 2014; 389:147-53. [DOI: 10.1016/j.carres.2014.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/11/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
41
|
Stober F, Lichtenthaler HK. Studies on the Localization and Spectral Characteristics of the Fluorescence Emission of Differently Pigmented Wheat Leaves. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1993.tb00762.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Tsujiyama SI, Ueno H. Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2841-2848. [PMID: 23450755 DOI: 10.1002/jsfa.6118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/12/2013] [Accepted: 02/28/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND For effective saccharification of rice straw we focused on enzyme preparations from wood-rotting fungi that have the ability to degrade cell wall polysaccharides and lignin. We tested extracellular enzyme preparations from 14 species of fungi for saccharification activity and examined the factor for saccharification by statistical analysis. RESULTS An enzyme preparation from Schizophyllum commune had the highest saccharification activity of rice straw. This preparation contained highly active endo-β-xylanase, endo-β-glucanase (CMCase), β-d-glucosidase and acetylxylan esterase. Correlation analysis of the 14 enzyme preparations demonstrated that acetylxylan esterase was closely related to saccharification activity in rice straw. Multiple regression analysis also showed that acetylxylan esterase had an important role in saccharification. Ligninolytic enzymes, which are characteristic of white-rot fungi, did not contribute to saccharification activity of rice straw. CONCLUSION Deacetylation is an essential factor for saccharification of rice straw and enzyme preparations for saccharification need to contain highly active acetylxylan esterase as well as highly active cellulolytic and xylanolytic enzymes, but not ligninolytic ones.
Collapse
Affiliation(s)
- Sho-Ichi Tsujiyama
- Laboratory of Chemistry for Forest Bioresources, Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | | |
Collapse
|
43
|
Zhang S, Sun X, Qu F, Kong R. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 112:78-83. [PMID: 23659953 DOI: 10.1016/j.saa.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K(290K)=7.60×10(4) L mol(-1) and K(310K)=4.90×10(4) L mol(-1). The thermodynamic parameters enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy (ΔG°) were calculated to be -1.69×10(4) J mol(-1), 35.36 J K(-1) mol(-1) and -2.79×10(4) J mol(-1) at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA.
Collapse
Affiliation(s)
- Shufang Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Shandong, Qufu 273165, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Wiederoder MS, Liu N(T, Lefcourt AM, Kim MS, Martin Lo Y. Use of a portable hyperspectral imaging system for monitoring the efficacy of sanitation procedures in produce processing plants. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Ibraheem O, Ndimba BK. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci 2013; 9:598-612. [PMID: 23847442 PMCID: PMC3708040 DOI: 10.7150/ijbs.6091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/26/2013] [Indexed: 11/12/2022] Open
Abstract
Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Research and Services Unit, Agricultural Research Council/Infruitech & The University of Western Cape, Biotechnology Department, Private Bag X17, Bellville, Cape Town, South Africa
| | | |
Collapse
|
46
|
Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 2013; 79:5130-6. [PMID: 23793626 DOI: 10.1128/aem.01523-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.
Collapse
|
47
|
Voragen AGJ, Schols HA, Marijs J, Rombouts FM, Angelino SAGF. NON-STARCH POLYSACCHARIDES FROM BARLEY: STRUCTURAL FEATURES AND BREAKDOWN DURING MALTING. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1987.tb04499.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Gutiérrez-Rodríguez E, Lieth HJ, Jernstedt JA, Labavitch JM, Suslow TV, Cantwell MI. Texture, composition and anatomy of spinach leaves in relation to nitrogen fertilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:227-237. [PMID: 22806403 DOI: 10.1002/jsfa.5780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 03/09/2012] [Accepted: 05/28/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The postharvest quality and shelf life of spinach are greatly influenced by cultural practices. Reduced spinach shelf life is a common quandary in the Salinas Valley, California, where current agronomic practices depend on high nitrogen (N) rates. This study aimed to describe the postharvest fracture properties of spinach leaves in relation to N fertilization, leaf age and spinach cultivar. RESULTS Force-displacement curves, generated by a puncture test, showed a negative correlation between N fertilization and the toughness, stiffness and strength of spinach leaves (P > 0.05). Younger leaves (leaves 12 and 16) from all N treatments were tougher than older leaves (leaves 6 and 8) (P > 0.05). Leaves from the 50 and 75 ppm total N treatments irrespective of spinach cultivar had higher fracture properties and nutritional quality than leaves from other N treatments (P > 0.05). Total alcohol-insoluble residues (AIR) and pectins were present at higher concentrations in low-N grown plants. These plants also had smaller cells and intercellular spaces than high-N grown leaves (P > 0.05). CONCLUSION Observed changes in physicochemical and mechanical properties of spinach leaves due to excess nitrogen fertilization were significantly associated with greater postharvest leaf fragility and lower nutritional quality.
Collapse
|
49
|
Hura T, Hura K, Dziurka K, Ostrowska A, Bączek-Kwinta R, Grzesiak M. An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1728-36. [PMID: 22980393 DOI: 10.1016/j.jplph.2012.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 05/12/2023]
Abstract
The objective of this study was to investigate whether the content of cell wall-bound phenolics can simultaneously influence both the productivity and the water status of triticale under soil drought conditions. Two parallel treatments were carried out. The T1 treatment involved plants being subjected to soil drought twice, during the tillering phase and then during the flowering phase. The T2 treatment included drought only during the flowering phase. After T1 treatment, the majority of cultivars exhibited better PSII functioning at the flowering phase in comparison to T2, which could be related to better adaptation of the photosynthetic apparatus to leaf dehydration. Simultaneously, the higher activity of the photosynthetic apparatus of flag leaves for T1 was significantly correlated with the higher content of cell wall-bound phenolics. The dry mass of plants was markedly lower in the T1 treatment and was correlated with a higher content of cell wall-bound phenolics. Moreover, cultivars subjected to the T1 treatment showed a significantly higher water content in comparison to the T2 treatment. The delay in the leaf rolling and the ageing of plants in the T1 treatment, which induced a higher level of cell wall-bound phenolics, was visual proof of the improvement in the water status of plants. Phenolic compounds that form cross-bridges with carbohydrates of the cell wall can be considered a more effective biochemical protective mechanism than free phenolics during the dehydration of leaves. This potentially higher level of effectiveness is likely the result of the double action of phenolic compounds, both as photoprotectors of the photosynthetic apparatus and hydrophobic stabilizers, preventing water loss from the apoplast.
Collapse
Affiliation(s)
- Tomasz Hura
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
50
|
Wiederoder MS, Lefcourt AM, Kim MS, Lo YM. Detection of fresh-cut produce processing residues on food contact surface materials using hyperspectral imaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2012. [DOI: 10.1007/s11694-012-9132-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|