1
|
Boja ES, Phillips D, French SA, Harris RA, Balaban RS. Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 2009; 8:4665-75. [PMID: 19694452 PMCID: PMC2768122 DOI: 10.1021/pr900387b] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With the use of iTRAQ labeling and mass spectrometry on an LTQ-Orbitrap with HCD capability, we assessed relative changes in protein phosphorylation in the mitochondria upon physiological perturbation. As a reference reaction, we monitored the well-characterized regulation of pyruvate dehydrogenase (PDH) activity via phosphorylation/dephosphorylation by pyruvate dehydrogenase kinase/pyruvate dehydrogenase phosphatase in response to dichloroacetate, de-energization and Ca2+. Relative quantification of phosphopeptides of PDH-E1alpha subunit from porcine heart revealed dephosphorylation at three serine sites (Ser231, Ser292 and Ser299). Dephosphorylation at Ser292 (i.e., the inhibitory site) with DCA correlated with an activation of PDH activity as previously reported, consistent with our de-energization data. Calcium also dephosphorylated (i.e., activated) PDH, thus, confirming calcium activation of PDP. With this approach, we successfully monitored other phosphorylation sites of mitochondrial proteins including adenine nucleotide translocase, malate dehydrogenase and mitochondrial creatine kinase. Among them, four proteins exhibited phosphorylation changes with these physiological stimuli: (1) BCKDH-E1alpha subunit increased phosphorylation at Ser337 with DCA and de-energization; (2) apoptosis-inducing factor phosphorylation was elevated at Ser345 with calcium; (3) ATP synthase F1 complex alpha subunit and (4) mitofilin dephosphorylated at Ser65 and Ser264 upon de-energization. This screening validated the iTRAQ/HCD technology as a method for functional quantitation of mitochondrial protein phosphorylation as well as providing insight into the regulation of mitochondria via phosphorylation.
Collapse
Affiliation(s)
- Emily S. Boja
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Darci Phillips
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Stephanie A. French
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202-2111
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| |
Collapse
|
2
|
Medium-chain Fatty Acids as Metabolic Therapy in Cardiac Disease. Cardiovasc Drugs Ther 2008; 22:97-106. [DOI: 10.1007/s10557-008-6084-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 12/18/2022]
|
3
|
Abstract
BCAAs are not synthesized in the body in humans, but they are crucial in protein and neurotransmitter synthesis. The protein anabolic role of BCAAs seems to be mediated not only by their important role as a promoter of the translation process (and possibly acting at the transcription level) but also by inhibition of protein degradation. Leucine may play a critical role in these signaling pathways. Supplementation with BCAAs spares lean body mass during weight loss, promotes wound healing, may decrease muscle wasting with aging, and may have beneficial effects in renal and liver disease. BCAA supplementation is extensively used in the athletic field with the assumption of improved performance and muscle mass. Measuring serum BCAAs has limited clinical utility beyond the controlled setting because levels are affected by a variety of clinical states, and optimal levels in these scenarios have not been completely elucidated. We discuss the effects diet, hormones, stress, aging, and renal or liver dysfunction have on BCAA levels and how understanding the biological effects of BCAAs may help to develop biomarkers of BCAA status. We also discuss potential biomarkers of BCAA status.
Collapse
Affiliation(s)
- Andrea Tom
- Endocrinology Research Unit, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
4
|
Affiliation(s)
- Helene Nørrelund
- Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, Aarhus Sygehus, Norrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Harris RA, Joshi M, Jeoung NH. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 2004; 313:391-6. [PMID: 14684174 DOI: 10.1016/j.bbrc.2003.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.
Collapse
Affiliation(s)
- Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA.
| | | | | |
Collapse
|
6
|
des Robert C, Le Bacquer O, Piloquet H, Rozé JC, Darmaun D. Acute effects of intravenous glutamine supplementation on protein metabolism in very low birth weight infants: a stable isotope study. Pediatr Res 2002; 51:87-93. [PMID: 11756645 DOI: 10.1203/00006450-200201000-00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although very low birth weight infants are subjected to severe stress and glutamine is now considered a conditionally essential amino acid that may attenuate stress-induced protein wasting in adults, current amino acid solutions designed for neonatal parenteral nutrition do not contain glutamine. To determine whether a short-term supplementation with i.v. glutamine would affect protein metabolism in very low birth weight infants, 13 preterm neonates (gestational age, 28-30 wk; birth weight, 820-1610 g) receiving parenteral nutrition supplying 1.5 g x kg(-1) x d(-1) amino acids and approximately 60 nonprotein kcal x kg(-1) x d(-1) were randomized to receive an i.v. supplement made of either 1) natural L-glutamine (0.5 g x kg(-1) x d(-1); glutamine group), or 2) an isonitrogenous glutamine-free amino acid mixture (control group), for 24 h starting on the third day of life. On the fourth day of life, they received a 2-h infusion of NaH(13)CO(3) to assess the recovery of (13)C in breath, immediately followed by a 3-h L-[1-(13)C]leucine infusion. Plasma ammonia did not differ between the groups. Glutamine supplementation was associated with 1) higher plasma glutamine (629 +/- 94 versus 503 +/- 83 microM, mean +/- SD; p < 0.05, one-tailed unpaired t test), 2) lower rates of leucine release from protein breakdown (-16%, p < 0.05) and leucine oxidation (-35%, p < 0.05), 3) a lower rate of nonoxidative leucine disposal, an index of protein synthesis (-20%, p < 0.05), and 4) no change in protein balance (nonoxidative leucine disposal - leucine release from protein breakdown, NS). We conclude that although parenteral glutamine failed to enhance rates of protein synthesis, glutamine may have an acute protein-sparing effect, as it suppressed leucine oxidation and protein breakdown, in parenterally fed very low birth weight infants.
Collapse
Affiliation(s)
- Clotilde des Robert
- Service de Néonatologie et Réanimation Pédiatrique, Hôpital Mère et Enfant, CHU de Nantes, INSERM U.539, Centre de recherche en nutrition humaine, France
| | | | | | | | | |
Collapse
|
7
|
Liet JM, Piloquet H, Marchini JS, Maugère P, Bobin C, Rozé JC, Darmaun D. Leucine metabolism in preterm infants receiving parenteral nutrition with medium-chain compared with long-chain triacylglycerol emulsions. Am J Clin Nutr 1999; 69:539-43. [PMID: 10075342 DOI: 10.1093/ajcn/69.3.539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although medium-chain triacylglycerols (MCTs) may be utilized more efficiently than long-chain triacylglycerols (LCTs), their effect on protein metabolism remains controversial. OBJECTIVE The aim of the study was to compare the effects of mixed MCT-LCT and pure LCT emulsions on leucine metabolism in preterm infants. DESIGN Fourteen preterm [gestational age: 30+/-1 wk; birth weight: 1409+/-78 g (x +/- SE)] neonates were randomly assigned to receive, from the first day of life, either a 50:50 MCT-LCT (mixed MCT group; n = 7) or an LCT (LCT group; n = 7) lipid emulsion as part of an isonitrogenous, isoenergetic total parenteral nutrition program. On the fourth day, infants received intravenous feeding providing 3 g lipid, 15 g glucose, and 3 g amino acids kg(-1) x d(-1) and underwent 1) indirect calorimetry and 2) a primed, 2-h infusion of H13CO3Na to assess the recovery of 13C in breath, immediately followed by 3) a 3-h infusion of L-[1-13C]leucine. RESULTS The respiratory quotient tended to be slightly but not significantly higher in the mixed MCT than in the LCT group (0.96+/-0.06 compared with 0.93+/-0.03). We did not detect a significant difference between the mixed MCT and LCT groups with regard to release of leucine from protein breakdown (B; 309+/-40 compared with 257+/-46 micromol x kg(-1) x h(-1)) and nonoxidative leucine disposal (NOLD; 296+/-36 compared with 285+/-49 micromol x kg(-1) x h(-1)). In contrast, leucine oxidation was greater in the mixed MCT than in the LCT group (113+/-10 compared with 67+/-10 micromol x kg(-1) x h(-1); P = 0.007). Net leucine balance (NOLD - B) was less positive in the mixed MCT than in the LCT group (-14+/-9 compared with 28+/-10 micromol x kg(-1) x h(-1); P = 0.011). CONCLUSION Mixed MCTs may not be as effective as LCT-containing emulsions in promoting protein accretion in parenterally fed preterm neonates.
Collapse
Affiliation(s)
- J M Liet
- Division of Neonatology, Hôpital Mère-Enfant, CHU de Nantes, and Centre de Recherche en Nutrition Humaine, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Interrelations métaboliques entre lipides et protéines en nutrition parentérale. NUTR CLIN METAB 1993. [DOI: 10.1016/s0985-0562(05)80055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Paul H, Adibi S. Mechanism of increased conversion of branched chain keto acid dehydrogenase from inactive to active form by a medium chain fatty acid (octanoate) in skeletal muscle. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49897-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Yudkoff M, Nissim I, Nissim I, Stern J, Pleasure D. Effects of palmitate on astrocyte amino acid contents. Neurochem Res 1989; 14:367-70. [PMID: 2761670 DOI: 10.1007/bf01000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of palmitate on intracellular and extracellular amino acid concentrations of cultured astrocytes was studied. Exposure of astrocytes to either 0.72 mM or 0.36 mM palmitate was associated with a significant reduction in the intracellular pool of glutamine and taurine. In contrast, the intracellular concentration of histidine, glycine, citrulline, isoleucine and leucine were increased in the presence of 0.72 mM palmitate. Comparable changes in the extracellular amino acid pool were not observed. The data suggest that palmitic acid, which accumulates in the brain during periods of anoxia, alters the metabolism of several amino acids in cultured astrocytes. These changes may be of significance in terms of the pathophysiology of a stress such as anoxia.
Collapse
Affiliation(s)
- M Yudkoff
- Division of Metabolism, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine 19104
| | | | | | | | | |
Collapse
|
11
|
Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988; 63:628-34. [PMID: 3136951 DOI: 10.1161/01.res.63.3.628] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The kinetics of [1-14C]acetate oxidation in isolated perfused rat hearts have been determined over a range of perfusion conditions. Effluent measurements demonstrated that 14CO2 cleared biexponentially over 50 minutes after bolus injection of [1-14C]acetate into normoxic hearts perfused with 5 mM glucose and 10 mU/ml insulin. The clearance half-time (t1/2) for the predominant initial clearance phase was 3.1 +/- 0.5 minutes (n = 4). MVO2 was varied over a fourfold range by hypoxia and phenylephrine stimulation (t1/2, 7.2 +/- 1.2 and 2.2 +/- 0.2 minutes, respectively) and in the presence of alternate substrates (lactate, 2 mM; DL-3-hydroxybutyrate, 20 mM; and palmitate, 0.1 mM), which did not modify either tricarboxylic acid (TCA) cycle flux or acetate kinetics. A good correlation (r = 0.93) was observed between k, the rate constant for the initial phase of 14CO2 clearance, and TCA cycle flux, estimated from oxygen consumption. In contrast to results with [1-14C]acetate, lactate (2 mM) increased t1/2 for 14CO2 clearance from a bolus injection of [1-14C]palmitate from 3.0 +/- 0.4 minutes (n = 3) at control to 4.3 +/- 0.2 minutes (n = 3, p less than 0.01). Addition of acetate in nontracer amounts (0.5 or 5 mM) caused significant underestimation of TCA cycle flux when estimated with [1-14C]acetate. 14CO2 clearance accounted for 88-98% of total effluent 14C between 10 and 20 minutes after [1-14C]acetate bolus injection; rate constants for clearance of 14CO2 and total 14C clearance were very similar during this period, and these two rate constants did not differ significantly from each other under any conditions tested.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D B Buxton
- Department of Radiological Sciences, UCLA School of Medicine 90024
| | | | | | | | | |
Collapse
|
12
|
Hildebrandt EF, Buxton DB, Olson MS. Acute regulation of the branched-chain 2-oxo acid dehydrogenase complex by adrenaline and glucagon in the perfused rat heart. Biochem J 1988; 250:835-41. [PMID: 3134009 PMCID: PMC1148931 DOI: 10.1042/bj2500835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.
Collapse
Affiliation(s)
- E F Hildebrandt
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | | | |
Collapse
|
13
|
Wu G, Thompson JR. Effect of pyruvate, octanoate and glucose on leucine degradation in skeletal muscle from fed and fasted chicks. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1988; 20:521-6. [PMID: 3371527 DOI: 10.1016/0020-711x(88)90500-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Pyruvate at 5 mM decreased the rate of leucine oxidative decarboxylation and increased the rate of 2-oxoisocaproate production in extensor digitorum communis (EDC) muscles from both fed and 24-hr fasted chicks. Pyruvate at 5 mM increased the net rate of leucine transamination in EDC muscle from fed chicks and had no effect in EDC muscles from 24-hr fasted chicks. 2. Octanoate at 0.2 and 1 mM markedly increased the rates of net leucine transamination, leucine oxidative decarboxylation and oxidation of decarboxylated leucine carbons 2-6 in EDC muscles from fed chicks, but had no effect on these parameters of leucine degradation in muscles from 24-hr fasted chicks. 3. Glucose at 5 and 12 mM decreased the rates of leucine oxidative decarboxylation and oxidation of decarboxylated leucine carbons 2-6, and increased the net rate of 2-oxoisocaproate production as compared to control (no glucose) group in muscles from fed chicks. Glucose had no effect on these parameters of leucine degradation in muscles from 24-hr fasted chicks.
Collapse
Affiliation(s)
- G Wu
- Department of Animal Science, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
14
|
Lapointe DS, Hildebrandt E, Buxton DB, Patel TB, Waymack PP, Olson MS. Measurement of branched-chain alpha-keto acid dehydrogenase flux rates in perfused heart and liver. Methods Enzymol 1988; 166:484-97. [PMID: 3071723 DOI: 10.1016/s0076-6879(88)66062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The methods described here represent a flexible set of procedures for investigating the metabolism of the branched-chain alpha-keto acids and other substances in perfused organs, notably the rat heart and liver. These procedures have been used to investigate many aspects of the metabolism of the branched-chain alpha-keto acids not discussed here, such as the effects on branched-chain alpha-keto acid metabolism by exposure to alpha-adrenergic agents, by inhibition of the monocarboxylate translocator, and by the coinfusion of other metabolites.
Collapse
|
15
|
Hildebrandt E, Olson MS. Role of activation of myocardial branched-chain 2-oxo acid dehydrogenase complex in the regulation of leucine decarboxylation during cardiac work in vitro. Biochem J 1987; 248:423-8. [PMID: 3435456 PMCID: PMC1148558 DOI: 10.1042/bj2480423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidative decarboxylation of L-[1-14C]leucine was measured in the isolated perfused rat heart under both working and non-working conditions. Stimulation of decarboxylation of the labelled substrate was observed in working hearts as cardiac work was increased, and in Langendorff hearts upon increasing the coronary flow rate. The rate of L-[1-14C]leucine decarboxylation was significantly higher (P less than 0.05) in hearts working against moderate afterload pressure when compared to Langendorff hearts perfused at a matching coronary flow rate. The rate of release of 4-methyl-2-oxo[1-14C]pentanoate to the perfusate was high in Langendorff hearts, and was unaffected by changes in coronary flow. In contrast, perfusate levels of 14C-labelled 4-methyl-2-oxopentanoate decreased significantly upon the establishment of the working condition (P less than 0.05). These findings suggested an enhancement in the efficiency of the decarboxylation of the 2-oxo acid in response to cardiac work. The amount of branched-chain 2-oxo acid dehydrogenase complex present in the active form was measured in freeze-clamped hearts. Cardiac work resulted in a rapid activation of the complex (P less than 0.02) within 5 min of work when compared to control Langendorff hearts perfused at matching coronary flow rates. To a lesser extent, increasing the coronary flow rate in Langendorff-perfused hearts also led to activation of the enzyme complex. These studies suggest the following: a) L-leucine oxidation in myocardial tissue can be accelerated by exercise as it is in other tissues; b) this regulatory response can be evoked by the contractile activity of the heart itself, independent of contributions by circulating factors or nervous stimuli; and c) regulation of the activity state of the branched-chain 2-oxo acid dehydrogenase complex is involved in the mechanism by which metabolic flux through this pathway is controlled during cardiac work.
Collapse
Affiliation(s)
- E Hildebrandt
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
16
|
Wicklmayr M, Rett K, Schwiegelshohn B, Wolfram G, Hailer S, Dietze G. Inhibition of muscular amino acid release by lipid infusion in man. Eur J Clin Invest 1987; 17:301-5. [PMID: 3117566 DOI: 10.1111/j.1365-2362.1987.tb02191.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amino acid balances of healthy postabsorptive volunteers were investigated with the forearm technique under the influence of an intravenous infusion of triglyceride emulsions (LCT; MCT/LCT) [corrected]. A decrease of the basal muscular release of most of the amino acids, respectively an increase of pre-existent uptake rates [corrected]. In parallel, arterial concentrations of these amino acids declined. With constant insulin levels and substantially unchanged blood glucose levels, this inhibition of muscular proteolysis and/or stimulation of proteosynthesis is most probably due to the increased level of free fatty acids.
Collapse
Affiliation(s)
- M Wicklmayr
- 3rd Medical Department, Schwabing Hospital, Munich, FRG
| | | | | | | | | | | |
Collapse
|
17
|
Rodriguez N, Schwenk WF, Beaufrere B, Miles JM, Haymond MW. Trioctanoin infusion increases in vivo leucine oxidation: a lesson in isotope modeling. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 251:E343-8. [PMID: 3752242 DOI: 10.1152/ajpendo.1986.251.3.e343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have reported that infusion of trioctanoin in conscious dogs had little effect on leucine oxidation but decreased the rate of appearance (Ra) and interconversion of leucine and its alpha-keto acid, alpha-ketoisocaproate (KIC). To verify that these conclusions were independent of the leucine tracers and isotope models employed, the studies were repeated using [1-14C]leucine and [4,5-3H]KIC rather than [1-14C]KIC and [4,5-3H]leucine. In the present study, leucine oxidation calculated using the plasma [14C]leucine or [14C]KIC specific activities (SA) increased nearly twofold (P less than 0.001) during trioctanoin infusion in direct contrast to our previous results. When the data from either study were analyzed using the plasma SA of the leucine moiety reciprocal to the infused tracer as a potential indicator of the intracellular leucine SA, similar conclusions were obtained from either study: trioctanoin infusion in conscious dogs appears to increase whole-body leucine oxidation and does not decrease proteolysis. These studies challenge the validity of previously used isotope models of leucine metabolism and suggest that the plasma KIC SA during infusion of labeled leucine may most accurately reflect changes in whole-body leucine metabolism.
Collapse
|
18
|
Harris RA, Paxton R, Powell SM, Goodwin GW, Kuntz MJ, Han AC. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification. ADVANCES IN ENZYME REGULATION 1986; 25:219-37. [PMID: 3028049 DOI: 10.1016/0065-2571(86)90016-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The branched-chain alpha-ketoacid dehydrogenase complex, like the pyruvate dehydrogenase complex, is an intramitochondrial enzyme subject to regulation by covalent modification. Phosphorylation causes inactivation and dephosphorylation causes activation of both complexes. The branched-chain alpha-ketoacid dehydrogenase kinase, believed distinct from pyruvate dehydrogenase kinase, is an integral component of the branched-chain alpha-ketoacid dehydrogenase complex and is sensitive to inhibition by branched-chain alpha-ketoacids, alpha-chloroisocaproate, phenylpyruvate, clofibric acid, octanoate and dichloroacetate. Phosphorylation of branched-chain alpha-ketoacid dehydrogenase occurs at two closely-linked serine residues (sites 1 and 2) of the alpha-subunit of the decarboxylase. HPLC and sequence data suggest homology of the amino acid sequence adjacent to phosphorylation sites 1 and 2 of complexes isolated from several different tissues. Stoichiometry for phosphorylation of all of the complexes studies was about 1 mol P/mol alpha-subunit for 95% inactivation and 1.5 mol P/mol alpha-subunit for maximally phosphorylated complex. Site 1 and site 2 were phosphorylated at similar rates until total phosphorylation exceeded 1 mol P/mol alpha-subunit. The complexes from rabbit kidney, rabbit heart, and rat heart showed 30-40% additional phosphorylation of the alpha-subunit beyond 95% inactivation. Site specificity studies carried out with the kinase partially inhibited with alpha-chloroisocaproate suggest that phosphorylation of site 1 is primarily responsible for regulation of the complex. The capacity of the branched-chain alpha-ketoacid dehydrogenase to oxidize pyruvate (Km = 0.8 mM, Vmax = 20% of that of alpha-ketoisovalerate) interferes with the estimation of activity state of the hepatic pyruvate dehydrogenase complex. The disparity between the activity states of the two complexes in most physiologic states contributes to this interference. An inhibitory antibody for branched-chain alpha-ketoacid dehydrogenase can be used to prevent interference with the pyruvate dehydrogenase assay. Almost all of the hepatic branched-chain alpha-ketoacid dehydrogenase in chow-fed rats is active (greater than 90% dephosphorylated). In contrast, almost all of the hepatic enzyme of rats fed a low-protein (8%) diet is inactive (greater than 85% phosphorylated). Fasting of chow-fed rats has no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e. greater than 90% of the enzyme remains in the active state. However, fasting of rats maintained on low-protein diets greatly activates the hepatic enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
19
|
Beaufrere B, Tessari P, Cattalini M, Miles J, Haymond MW. Apparent decreased oxidation and turnover of leucine during infusion of medium-chain triglycerides. THE AMERICAN JOURNAL OF PHYSIOLOGY 1985; 249:E175-82. [PMID: 3895976 DOI: 10.1152/ajpendo.1985.249.2.e175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A potential effector of the protein-sparing adaptation to fasting could be the increased availability of endogenous long-chain fatty acids. Were this hypothesis correct, infusion of medium-chain triglycerides to increase the plasma concentration of medium-chain fatty acids might also result in protein sparing. However, in most in vitro studies in rat muscle, octanoate increases the oxidation of the essential amino acid leucine. Therefore leucine metabolism was assessed with infusions of [3H]leucine and a-[14C]ketoisocaproate ([14C]KIC) before and during an infusion of trioctanoin in conscious dogs. Plasma octanoate increased from less than 30 to 528 microM over the 3 h of infusion. Plasma leucine and KIC concentrations decreased by 65-70% (P less than 0.01) over the first 2 h of infusion. Leucine oxidation, estimated from the expired 14CO2 and the plasma [14C]KIC specific activity, as well as from an open two-pool model, decreased. By use of these isotope models, the rates of leucine coming from and going to protein decreased (P less than 0.05 to P less than 0.01). Interconversion of leucine and KIC estimated from the open two-pool model decreased by 80% (P less than 0.01). These changes were accompanied by a 36% decrease in the plasma concentration of total plasma amino acids. Within the confines of the isotope models employed, these data are consistent with the hypothesis that increased fatty acid oxidation decreases protein turnover and may spare essential amino acids.
Collapse
|