1
|
Vieira-Lara MA, Bakker BM. The paradox of fatty-acid β-oxidation in muscle insulin resistance: Metabolic control and muscle heterogeneity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167172. [PMID: 38631409 DOI: 10.1016/j.bbadis.2024.167172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid β-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid β-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between β-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how β-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Marcel A Vieira-Lara
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Barbara M Bakker
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2020; 1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
3
|
Godoy-Lugo JA, Miranda-Cruz MM, Rosas-Rodríguez JA, Adan-Bante NP, Icedo-García R, Soñanez-Organis JG. Hypoxia inducible factor -1 regulates WSSV-induced glycolytic genes in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 92:165-171. [PMID: 31146006 DOI: 10.1016/j.fsi.2019.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Hypoxia-inducible factor -1 (HIF-1) is a transcriptional factor that regulates the expression of several glycolytic genes. The white spot syndrome virus (WSSV) induces a shift in glycolysis that favors viral replication in white shrimp Litopenaeus vannamei. HIF-1 is related to the pathogenesis of the WSSV infection through the induction of metabolic changes in infected white shrimp. Although the WSSV infection is associated with metabolic changes, the role of HIF-1 on key glycolytic genes during the WSSV infection has not been examined. In this work, we evaluated the effect of HIF-1α silencing on expression and activity of glycolytic enzymes (Hexokinase-HK, phosphofructokinase-PFK and pyruvate kinase-PK) along with the glucose transporter 1 (Glut1), regulatory enzymes (glucose-6-phosphate dehydrogenase-G6PDH and pyruvate dehydrogenase-PDH), and metabolic intermediates of glycolysis (glucose-6-phosphate-G6P and pyruvate). The expression of Glut1 increased in each tissue evaluated after WSSV infection, while HK, PFK and PK gene expression and enzyme activities increased in a tissue-specific manner. G6PDH activity increased during WSSV infection, and its substrate G6P decreased, while PDH activity decreased and its substrate pyruvate increased. Silencing of HIF-1α blocked the WSSV-induced Glut1 and glycolytic genes upregulation and enzyme activity in a tissue-specific manner. We conclude that HIF-1 regulates the WSSV-induced glycolysis through induction of glycolytic genes contributing to glucose metabolism in tissues of infected shrimp. Also, the inhibition, and activation of regulatory genes are likely to decrease the availability of the raw materials essential for WSSV replication and increase oxidative metabolism.
Collapse
Affiliation(s)
| | - Melissa M Miranda-Cruz
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85880, Navojoa, Sonora, Mexico
| | - Jesús Alfredo Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85880, Navojoa, Sonora, Mexico
| | - Norma Patricia Adan-Bante
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85880, Navojoa, Sonora, Mexico
| | - Ramona Icedo-García
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85880, Navojoa, Sonora, Mexico
| | - José Guadalupe Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85880, Navojoa, Sonora, Mexico.
| |
Collapse
|
4
|
Burmistrova O, Olias-Arjona A, Lapresa R, Jimenez-Blasco D, Eremeeva T, Shishov D, Romanov S, Zakurdaeva K, Almeida A, Fedichev PO, Bolaños JP. Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Sci Rep 2019; 9:11670. [PMID: 31406177 PMCID: PMC6691133 DOI: 10.1038/s41598-019-48196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The glycolytic rate in neurons is low in order to allow glucose to be metabolized through the pentose-phosphate pathway (PPP), which regenerates NADPH to preserve the glutathione redox status and survival. This is controlled by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), the pro-glycolytic enzyme that forms fructose-2,6-bisphosphate, a powerful allosteric activator of 6-phosphofructo-1-kinase. In neurons, PFKFB3 protein is physiologically inactive due to its proteasomal degradation. However, upon an excitotoxic stimuli, PFKFB3 becomes stabilized to activate glycolysis, thus hampering PPP mediated protection of redox status leading to neurodegeneration. Here, we show that selective inhibition of PFKFB3 activity by the small molecule AZ67 prevents the NADPH oxidation, redox stress and apoptotic cell death caused by the activation of glycolysis triggered upon excitotoxic and oxygen-glucose deprivation/reoxygenation models in mouse primary neurons. Furthermore, in vivo administration of AZ67 to mice significantly alleviated the motor discoordination and brain infarct injury in the middle carotid artery occlusion ischemia/reperfusion model. These results show that pharmacological inhibition of PFKFB3 is a suitable neuroprotective therapeutic strategy in excitotoxic-related disorders such as stroke.
Collapse
Affiliation(s)
| | - Ana Olias-Arjona
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | | | | | | | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
5
|
Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, Qian X, Zhang C, Xia Y, Xu D, Guo W, Ding Z, Du L, Zheng Y, Chen Q, Lorenzi PL, Mills GB, Jiang T, Lu Z. EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation. Mol Cell 2018; 70:197-210.e7. [PMID: 29677490 PMCID: PMC6114939 DOI: 10.1016/j.molcel.2018.03.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 02/05/2023]
Abstract
EGFR activates phosphatidylinositide 3-kinase (PI3K), but the mechanism underlying this activation is not completely understood. We demonstrated here that EGFR activation resulted in lysine acetyltransferase 5 (KAT5)-mediated K395 acetylation of the platelet isoform of phosphofructokinase 1 (PFKP) and subsequent translocation of PFKP to the plasma membrane, where the PFKP was phosphorylated at Y64 by EGFR. Phosphorylated PFKP binds to the N-terminal SH2 domain of p85α, which is distinct from binding of Gab1 to the C-terminal SH2 domain of p85α, and recruited p85α to the plasma membrane resulting in PI3K activation. PI3K-dependent AKT activation results in enhanced phosphofructokinase 2 (PFK2) phosphorylation and production of fructose-2,6-bisphosphate, which in turn promotes PFK1 activation. PFKP Y64 phosphorylation-enhanced PI3K/AKT-dependent PFK1 activation and GLUT1 expression promoted the Warburg effect, tumor cell proliferation, and brain tumorigenesis. These findings underscore the instrumental role of PFKP in PI3K activation and enhanced glycolysis through PI3K/AKT-dependent positive-feedback regulation.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rui Liu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xin-Jian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daqian Xu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wei Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhiyong Ding
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Linyong Du
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030, USA.
| |
Collapse
|
6
|
Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, Yang Y, Fan TWM, Linehan WM, Rouault TA. Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 2018. [PMID: 29523684 DOI: 10.1074/jbc.ra118.001885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nunziata Maio
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Michal Jarnik
- Section on Cell Biology and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Ronald G Haller
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Veterans Affairs North Texas Medical Center, Dallas, Texas 75216; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Dallas, Texas 75231
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
7
|
Rueda EM, Johnson JE, Giddabasappa A, Swaroop A, Brooks MJ, Sigel I, Chaney SY, Fox DA. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases. Mol Vis 2016; 22:847-85. [PMID: 27499608 PMCID: PMC4961465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/21/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. METHODS mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. RESULTS The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. CONCLUSIONS Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes.
Collapse
Affiliation(s)
- Elda M. Rueda
- College of Optometry, University of Houston, Houston TX
| | - Jerry E. Johnson
- Department of Natural Sciences, University of Houston-Downtown, Houston TX
- Department of Biology and Biochemistry, University of Houston, Houston TX
| | - Anand Giddabasappa
- Department of Biology and Biochemistry, University of Houston, Houston TX
| | | | | | - Irena Sigel
- College of Optometry, University of Houston, Houston TX
| | - Shawnta Y. Chaney
- Department of Biology and Biochemistry, University of Houston, Houston TX
| | - Donald A. Fox
- College of Optometry, University of Houston, Houston TX
- Department of Biology and Biochemistry, University of Houston, Houston TX
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston TX
| |
Collapse
|
8
|
Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol 2016; 14:15. [PMID: 26791262 PMCID: PMC4721116 DOI: 10.1186/s12957-016-0769-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 01/02/2023] Open
Abstract
Nearly a century ago, Otto Warburg made the ground-breaking observation that cancer cells, unlike normal cells, prefer a seemingly inefficient mechanism of glucose metabolism: aerobic glycolysis, a phenomenon now referred to as the Warburg effect. The finding that rapidly proliferating cancer cells favors incomplete metabolism of glucose, producing large amounts of lactate as opposed to synthesizing ATP to sustain cell growth, has confounded scientists for years. Further investigation into the metabolic phenotype of cancer has expanded our understanding of this puzzling conundrum, and has opened new avenues for the development of anti-cancer therapies. Enhanced glycolytic flux is now known to allow for increased synthesis of intermediates for sustaining anabolic pathways critical for cancer cell growth. Alongside the increase in glycolysis, cancer cells transform their mitochondria into synthesis machines supported by augmented glutaminolysis, supplying lipid production, amino acid synthesis, and the pentose phosphate pathways. Inhibition of several of the key enzymes involved in these pathways has been demonstrated to effectively obstruct cancer cell growth and multiplication, sensitizing them to apoptosis. The modulation of various regulatory proteins involved in metabolic processes is central to cancerous reprogramming of metabolism. The finding that members of one of the major protein families involved in cell death regulation also aberrantly regulated in cancers, the Bcl-2 family of proteins, are also critical mediators of metabolic pathways, provides strong evidence for the importance of the metabolic shift to cancer cell survival. Targeting the anti-apoptotic members of the Bcl-2 family of proteins is proving to be a successful way to selectively target cancer cells and induce apoptosis. Further understanding of how cancer cells modify metabolic regulation to increase channeling of substrates into biosynthesis will allow for the discovery of novel drug targets to treat cancer. In the present review, we focused on the recent developments in therapeutic targeting of different steps in glycolysis, glutaminolysis and on the metabolic regulatory role of Bcl-2 family proteins.
Collapse
|
9
|
Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu WS. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 2015; 10:e0121561. [PMID: 25806512 PMCID: PMC4373774 DOI: 10.1371/journal.pone.0121561] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn't. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Simon Grimm
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
11
|
Mulukutla BC, Yongky A, Daoutidis P, Hu WS. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 2014; 9:e98756. [PMID: 24911170 PMCID: PMC4049617 DOI: 10.1371/journal.pone.0098756] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Nagasaki H, Nakashima A, Kaneko YS, Kodani Y, Takayanagi T, Itoh M, Kondo K, Nagatsu T, Hamada Y, Ota M, Ota A. Aripiprazole increases NADPH level in PC12 cells: the role of NADPH oxidase. J Neural Transm (Vienna) 2013; 121:91-103. [PMID: 23934573 DOI: 10.1007/s00702-013-1075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/26/2013] [Indexed: 12/28/2022]
Abstract
In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis. Therefore, we assayed intracellular amounts of NADPH, ROS, and the activities of the enzymes generating or consuming NADPH (G6PD, NADP(+)-dependent isocitrate dehydrogenase, NADP(+)-dependent malic enzyme, glutathione reductase, and NADPH oxidase [NOX]) and estimated glycolysis in 50 μM aripiprazole-, clozapine-, and haloperidol-treated PC12 cells. NADPH levels were enhanced only in aripiprazole-treated ones. Only haloperidol increased ROS. However, the enzyme activities did not show significant changes toward enhancing NADPH level except for the aripiprazole-induced decrease in NOX activity. Thus, the lowered NOX activity could have contributed to the aripiprazole-induced increase in the NADPH level by lowering ROS generation, resulting in maintained Δψm. Although the aforementioned assumption was invalid, the ratio of fructose-1,6-bisphosphate to fructose-6-phosphate was decreased by all antipsychotics examined. Pyruvate kinase activity was enhanced only by aripiprazole. In summary, these observations indicate that aripiprazole possibly possesses the pharmacological superiority to clozapine and haloperidol in the ROS generation and the adjustment of glycolytic pathway.
Collapse
Affiliation(s)
- Hiroshi Nagasaki
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta Rev Cancer 2012; 1826:370-84. [PMID: 22750268 DOI: 10.1016/j.bbcan.2012.06.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022]
Abstract
A common set of functional characteristics of cancer cells is that cancer cells consume a large amount of glucose, maintain high rate of glycolysis and convert a majority of glucose into lactic acid even in the presence of oxygen compared to that of normal cells (Warburg's Effects). In addition, cancer cells exhibit substantial alterations in several energy metabolism pathways including glucose transport, tricarboxylic acid (TCA) cycle, glutaminolysis, mitochondrial respiratory chain oxidative phosphorylation and pentose phosphate pathway (PPP). In the present work, we focused on reviewing the current knowledge about the dysregulation of the proteins/enzymes involved in the key regulatory steps of glucose transport, glycolysis, TCA cycle and glutaminolysis by several oncogenes including c-Myc and hypoxia inducible factor-1 (HIF-1) and tumor suppressor, p53, in cancer cells. The dysregulation of glucose transport and energy metabolism pathways by oncogenes and lost functions of the tumor suppressors have been implicated as important biomarkers for cancer detection and as valuable targets for the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
14
|
Zhao LF, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Okazaki M, Nakayama S, Kambayashi M, Fujimoto S, Hashimoto K, Murao K, Terada Y. Liver X receptor α is involved in the transcriptional regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Diabetes 2012; 61:1062-71. [PMID: 22415873 PMCID: PMC3331782 DOI: 10.2337/db11-1255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The activity of 6-phosphofructo-1-kinase is strictly controlled by fructose-2,6-bisphosphate, the level of which is regulated by another enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBP2). PFK2/FBP2 is a bifunctional enzyme, having kinase and phosphatase activities, and regulates both glycolysis and gluconeogenesis. Here, we examined the hormonal regulation of the PFK2/FBP2 gene in vitro using the reporter assay, the electromobility shift assay (EMSA), and the chromatin immunoprecipitation (ChIP) assay in HuH7 cells and also using the mouse liver in vivo. We found that the transcriptional activity of the PFK2/FBP2 gene was stimulated by insulin and inhibited by cAMP and glucocorticoid. Liver X receptor (LXR) α showed a potent and specific stimulatory effect on PFK2/FBP2 gene transcription. Deletion and mutagenesis analyses identified the LXR response element (LXRE) in the 5'-promoter region of the PFK2/FBP2 gene. Binding of LXRα was confirmed by the EMSA and ChIP assay. Endogenous PFK2/FBP2 mRNA in the mouse liver was increased in the fasting/refeeding state compared with the fasting state. Altogether, PFK2/FBP2 gene transcription is found to be regulated in a way that is more similar to other glycolytic enzyme genes than to gluconeogenic genes. Furthermore, our data strongly suggest that LXRα is one of the key regulators of PFK2/FBP2 gene transcription.
Collapse
Affiliation(s)
- Li-Feng Zhao
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yasumasa Iwasaki
- Health Care Center, Kochi University, Kochi, Japan
- Corresponding author: Yasumasa Iwasaki,
| | - Mitsuru Nishiyama
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Takafumi Taguchi
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Makoto Tsugita
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mizuho Okazaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shuichi Nakayama
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Koshi Hashimoto
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koji Murao
- Department of Advanced Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
15
|
Šmerc A, Sodja E, Legiša M. Posttranslational modification of 6-phosphofructo-1-kinase as an important feature of cancer metabolism. PLoS One 2011; 6:e19645. [PMID: 21573193 PMCID: PMC3087806 DOI: 10.1371/journal.pone.0019645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/12/2011] [Indexed: 01/12/2023] Open
Abstract
Background Human cancers consume larger amounts of glucose compared to normal tissues with most being converted and excreted as lactate despite abundant oxygen availability (Warburg effect). The underlying higher rate of glycolysis is therefore at the root of tumor formation and growth. Normal control of glycolytic allosteric enzymes appears impaired in tumors; however, the phenomenon has not been fully resolved. Methodology/Principal Findings In the present paper, we show evidence that the native 85-kDa 6-phosphofructo-1-kinase (PFK1), a key regulatory enzyme of glycolysis that is normally under the control of feedback inhibition, undergoes posttranslational modification. After proteolytic cleavage of the C-terminal portion of the enzyme, an active, shorter 47-kDa fragment was formed that was insensitive to citrate and ATP inhibition. In tumorigenic cell lines, only the short fragments but not the native 85-kDa PFK1 were detected by immunoblotting. Similar fragments were detected also in a tumor tissue that developed in mice after the subcutaneous infection with tumorigenic B16-F10 cells. Based on limited proteolytic digestion of the rabbit muscle PFK-M, an active citrate inhibition-resistant shorter form was obtained, indicating that a single posttranslational modification step was possible. The exact molecular masses of the active shorter PFK1 fragments were determined by inserting the truncated genes constructed from human muscle PFK1 cDNA into a pfk null E. coli strain. Two E. coli transformants encoding for the modified PFK1s of 45,551 Da and 47,835 Da grew in glucose medium. The insertion of modified truncated human pfkM genes also stimulated glucose consumption and lactate excretion in stable transfectants of non-tumorigenic human HEK cell, suggesting the important role of shorter PFK1 fragments in enhancing glycolytic flux. Conclusions/Significance Posttranslational modification of PFK1 enzyme might be the pivotal factor of deregulated glycolytic flux in tumors that in combination with altered signaling mechanisms essentially supports fast proliferation of cancer cells.
Collapse
Affiliation(s)
- Andreja Šmerc
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Eva Sodja
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matic Legiša
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
16
|
Usenik A, Legiša M. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase. PLoS One 2010; 5:e15447. [PMID: 21124851 PMCID: PMC2990764 DOI: 10.1371/journal.pone.0015447] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022] Open
Abstract
As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A) as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.
Collapse
Affiliation(s)
- Aleksandra Usenik
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matic Legiša
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
17
|
Gybina AA, Prohaska JR. Fructose-2,6-bisphosphate is lower in copper deficient rat cerebellum despite higher content of phosphorylated AMP-activated protein kinase. Exp Biol Med (Maywood) 2008; 233:1262-70. [PMID: 18703756 DOI: 10.3181/0804-rm-132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Limitation in copper (Cu) leads to pathophysiology in developing brain. Cu deficiency impairs brain mitochondria and results in high brain lactate suggesting augmented anaerobic glycolysis. AMP activated protein kinase (AMPK) is a cellular energy "master-switch" that is thought to augment glycolysis through phosphorylation and activation phosphofructokinase 2 (PFK2) resulting in increases of the glycolytic stimulator fructose-2,6-bisphosphate (F2,6BP). Previously, Cu deficiency has been shown to augment cerebellar AMPK activation. Cerebella of Cu-adequate (Cu+) and Cu-deficient (Cu-) rat pups were assessed to evaluate if AMPK activation in Cu- cerebella functioned to enhance PFK2 activation and increase F2,BP concentration. Higher levels of pAMPK were detected in Cu- cerebella. However, PFK2 activity, mRNA, and protein abundance were not affected by Cu deficiency. Surprisingly, F2,6BP levels were markedly lower in Cu- cerebella. Lower F2,6BP may be due to inhibition of PFK2 by citrate, as citrate concentration was significantly higher in Cu- cerebella. Data suggest AMPK activation in Cu- cerebellum does not augment glycolysis through a PFK2 mechanism. Furthermore, other metabolite data suggest that glycolysis may actually be blunted, since levels of glucose and glucose-6-phosphate were higher in Cu- cerebella than controls.
Collapse
Affiliation(s)
- Anna A Gybina
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School Duluth, Duluth, MN 55812, USA
| | | |
Collapse
|
18
|
Ozeki T, Mitsui Y, Sugiya H, Furuyama S. Ribose 1,5-bisphosphate regulates rat kidney cortex phosphofructokinase. Comp Biochem Physiol B Biochem Mol Biol 1999; 124:327-32. [PMID: 10631808 DOI: 10.1016/s0305-0491(99)00127-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phosphofructokinase (EC 2.7.1.11) is a major enzyme of the glycolytic pathway, catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate. In this study, we demonstrated the effect of ribose 1,5-bisphosphate on phosphofructokinase purified from rat kidney cortex. Ribose 1,5-bisphosphate relieved the phosphofructokinase from ATP inhibition and increased the affinity for fructose 6-phosphate at nanomolar concentrations. These activating effects of ribose 1,5-bisphosphate were enhanced in the presence of AMP. Ribose 1,5-bisphosphate reduced the inhibition of the phosphofructokinase induced by citrate. These results suggest that ribose 1,5-bisphosphate is an activator of rat kidney cortex phosphofructokinase and synergistically regulates the enzyme activity with AMP.
Collapse
Affiliation(s)
- T Ozeki
- Department of Physiology, Nihon University School of Dentistry, Chiba, Japan
| | | | | | | |
Collapse
|
19
|
Gualix J, Abal M, Pintor J, Garcia-Carmona F, Miras-Portugal MT. Nucleotide vesicular transporter of bovine chromaffin granules. Evidence for a mnemonic regulation. J Biol Chem 1996; 271:1957-65. [PMID: 8567644 DOI: 10.1074/jbc.271.4.1957] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide vesicular transport has been studied with the fluorescent substrate analogues, the (1,N6-ethenoadenosine) nucleotides. The transport experiments were carried out with granular preparations from bovine adrenal medulla, and epsilon-ATP, epsilon-ADP, and epsilon-AMP were quantified after separation by high performance liquid chromatography. The granular concentration increase of all three nucleotides was time-dependent. The concentration dependence of epsilon-nucleotide transport to chromaffin granules did not follow the Michaelis-Menten kinetics and presented a similar three-step curve with cooperativity. This shape can be considered to be the result of the addition of three sigmoidal curves with their corresponding kinetic parameters. epsilon-ATP exhibited K values of 0.25, 1, and 3 mM and Vmax values of 0.02, 0.04 and 0.19 nmol.min-1.mg of protein-1, for the first, second, and third curves for each step, respectively. epsilon-ADP exhibited K values of 0.15, 0.9, and 3.6 mM and Vmax values of 0.025, 0.035, and 0.3 nmol.min-1.mg of protein-1, respectively for the first, second, and third curves. epsilon-AMP exhibited K values of 0.2, 1.2, and 3.2 mM, and Vmax values of 0.01, 0.04, and 0.055 nmol.min-1.mg of protein-1, also for the first to third steps. The Hill numbers for epsilon-ATP, epsilon-ADP, and epsilon-AMP were not constant but a function of the transport saturation. The nonhydrolyzable ATP analogues AMPPNP, ATP gamma S, and ADP beta S were activators of epsilon-nucleotide transport at concentrations under 1 mM and inhibitors at higher concentrations. Atractyloside and N-ethylmaleimide partially inhibited the nucleotide granular transport. High extragranular ATP concentrations specifically induced the exit of the previously transporter granular epsilon-ATP.
Collapse
Affiliation(s)
- J Gualix
- Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Espino A, Tortosa A, Bendahan G, Bartrons R, Calopa M, Ferrer I, Ambrosio S. Stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) decreases striatal fructose 2,6-bisphosphate in rats. J Neurochem 1994; 62:1913-20. [PMID: 8158139 DOI: 10.1046/j.1471-4159.1994.62051913.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) into the neostriatum of male rats caused a lesion that resulted in a large dose-dependent loss of striatal fructose 2,6-bisphosphate; initial values were restored 5 days after the treatment. This effect was not protected by systemic administration of MK-801 or by nitroarginine. The content of hexose 6-phosphates and ATP was also reduced by MPP+ treatment, whereas lactate was increased. Biochemical and histological results suggested that MPP+ caused a nonselective cell death, followed by a pronounced astroglial response, parallel to fructose 2,6-bisphosphate recovery. The stereotaxic administration of rotenone showed a different time effect on fructose 2,6-bisphosphate cerebral content, with a significantly faster recovery. These results indicate that cerebral fructose 2,6-bisphosphate may be a sensitive metabolite related to brain damage caused by potent neurotoxins such as MPP+. On the other hand, they show that MPP+ acts in the brain through a quick, strong cytotoxic mechanism, which probably involves mechanisms other than mitochondrial chain blockage.
Collapse
Affiliation(s)
- A Espino
- Unitat de Bioquímica, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Ackermann E, Kempner E, Dennis E. Ca(2+)-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37098-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Ventura F, Rosa J, Ambrosio S, Pilkis S, Bartrons R. Bovine brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Evidence for a neural-specific isozyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37133-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Fukushima E, Sugiya H. Purification and characterization of phosphofructokinase in bovine parotid gland. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1307-14. [PMID: 1386580 DOI: 10.1016/0020-711x(92)90206-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Phosphofructokinase (PFK) was purified from bovine parotid gland to 750-fold with the specific activity of 67.5 units/mg protein by Cibacron Blue F3GA affinity chromatography, and TSK DEAE-5PW ion-exchange and TSK G4000SW size exclusion chromatographies on HPLC. 2. On gel-filtration, molecular weight of the native PFK was estimated to 400,000. 3. PFK was a heterotetramer composed of three kinds of subunit with molecular weights of 92,000 (C-type), 88,000 (M-type) and 86,000 (L-type), by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Densitometrically, relative amounts of C-, M- and L-type subunit were 1:1:2. 4. Under the physiological conditions of fructose 6-phosphate (Fru-6-P) and ATP concentrations and pH, PFK activity was suppressed and hardly detectable. 5. Fru-6-P relieved PFK from the ATP inhibition. 6. Fructose 2,6-bisphosphate (Fru-2,6-P2) and AMP activated PFK with a reduction of S0.5 for Fru-6-P and subunit cooperativity. Fru-2,6-P2 was more effective than AMP.
Collapse
Affiliation(s)
- E Fukushima
- Department of Physiology, Nihon University School of Dentistry, Matsudo, Chiba, Japan
| | | |
Collapse
|
24
|
Kostanyan A, Nazaryan K. Rat brain glycolysis regulation by estradiol-17 beta. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1133:301-6. [PMID: 1531302 DOI: 10.1016/0167-4889(92)90051-c] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of estradiol-17 beta on the activities of glycolytic enzymes from female rat brain was studied. The following enzymes were examined: hexokinase (HK, EC 2.7.1.1), phosphofructokinase (PFK, EC 2.7.1.11), aldolase (EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), phosphoglycerate mutase (EC 2.7.5.3), enolase (EC 4.2.1.11) and pyruvate kinase (PK, EC 2.7.1.40). The activities of HK (soluble and membrane-bound), PFK and PK were increased after 4 h of hormone treatment, while the others remained constant. The changes in activity were not seen in the presence of actinomycin D. The significant rise of the activities of the key glycolytic enzymes was also observed in the cell culture of mouse neuroblastoma C1300 treated with hormone. Only three of the studied isozymes, namely, HKII, B4 and K4 were found to be estradiol-sensitive for HK, PFK and PK, respectively. The results obtained suggest that rat brain glycolysis regulation by estradiol is carried out in neurons due to definite isozymes induction.
Collapse
Affiliation(s)
- A Kostanyan
- Institute of Experimental Biology, Armenian Academy of Sciences, Yerevan
| | | |
Collapse
|
25
|
Abstract
Fructose 2,6-bisphosphate has been studied during hypoglycemia induced by insulin administration (40 IU/kg). No changes in content of cerebral fructose 2,6-bisphosphate were found in mild hypoglycemia, but the level of this compound was markedly decreased in hypoglycemic coma and recovered after 30 min of glucose administration. To correlate a possible modification of the concentration of the metabolite with selective regional damage occurring during hypoglycemic coma, we have analyzed four cerebral areas (cortex, striatum, cerebellum, and hippocampus). Fructose 2,6-bisphosphate concentrations were similar in the four areas analyzed; severe hypoglycemia decreased levels of the metabolite to the same extent in all the brain areas studied. The decrease in content of fructose 2,6-bisphosphate was not always accompanied by a parallel decrease in ATP levels, a result suggesting that the low levels of the bisphosphorylated metabolite during hypoglycemic coma could be due to the decreased 6-phosphofructo-2-kinase activity, mainly as a consequence of the fall in concentration of its substrate (fructose 6-phosphate). These results suggest that fructose 2,6-bisphosphate could play a permissive role in cerebral tissue, maintaining activation of 6-phosphofructo-1-kinase and glycolysis.
Collapse
Affiliation(s)
- S Ambrosio
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Ventura F, Rosa JL, Ambrosio S, Gil J, Bartrons R. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat brain. Biochem J 1991; 276 ( Pt 2):455-60. [PMID: 1646601 PMCID: PMC1151113 DOI: 10.1042/bj2760455] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The concentration of fructose 2,6-bisphosphate in the brain remained stable during starvation and early stages of ischaemia, but decreased in diabetes or after lengthened ischaemia. 6-Phosphofructo-1-kinase activity was also decreased in diabetic and ischaemic animals, whereas 6-phosphofructo-2-kinase was not modified. The concentration of the bisphosphorylated metabolite seems to be remarkably constant under a wide variety of experimental conditions, suggesting that it plays an essential role in the basal activation of 6-phosphofructo-1-kinase. Purified 6-phosphofructo-2-kinase also showed fructose-2,6-bisphosphatase activity with an activity ratio similar to that of the purified heart isoenzyme. The brain enzyme also has a net charge similar to that of the heart isoenzyme. Its activity is not modified by sn-glycerol 3-phosphate, and it is more sensitive to citrate than the liver or muscle isoenzyme. Moreover, the enzyme from brain, similarly to that from heart and muscle, is not modified by the cyclic AMP-dependent protein kinase or protein kinase C. A near-full-length cDNA probe from liver hybridized with RNA from brain and heart. In both cases, a major band of 6.8 kb of RNA and a minor one of 4 kb of RNA were detected. All these properties support the hypothesis that brain contains a different isoenzymic form from that of liver and muscle, and it is probably related to the heart isoform.
Collapse
Affiliation(s)
- F Ventura
- Departament de Ciències Fisiològiques, Zona Universitària Bellvitge, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Sola MM, Salto R, Oliver J, Vargas AM. Kinetic characterization of phosphofructokinase isolated from rat kidney cortex. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 98:495-500. [PMID: 1831095 DOI: 10.1016/0305-0491(91)90243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. Phosphofructokinase from rat kidney cortex has been purified by affinity chromatography to a final specific activity of 15 units per mg of protein, measured at 25 degrees C and pH 8. 2. This lower spec. act., compared with that of the enzyme from other sources, shows the enzyme in proximal tubules to be less active, which would account for the main gluconeogenic role of these nephron sections. 3. The binding of fructose-6-phosphate to the enzyme is co-operative. ATP increases the Hill coefficient and produces a marked allosteric inhibition on the activity. 4. Fructose-2,6-bis-phosphate is a potent activator of the enzyme from this source. It reduces the Hill coefficient of the enzyme and the inhibition constant of ATP. A marked difference between this and the liver enzyme is that the activation is not co-operative.
Collapse
Affiliation(s)
- M M Sola
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
28
|
Hamano E, Yamazaki T, Saito M, Kawashima H, Ozeki T, Furuyama S. Comparison of phosphofructokinases in submandibular glands of immature and adult rats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1989; 94:697-701. [PMID: 2532590 DOI: 10.1016/0305-0491(89)90152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Phosphofructokinases (PFKs) in immature and adult rat submandibular glands were purified to near homogeneity, and their properties were compared. 2. PFK in immature gland was less sensitive to inhibition by ATP than adult PFK. 3. Saturation curve for fructose 6-phosphate of PFK in immature gland was less sigmoidal than that of adult PFK indicating the lower cooperativity of subunits in immature PFK. 4. Fructose 2,6-bisphosphate relieved PFK from inhibition by ATP in adult gland, but a similar effect was not clearly observed in immature gland PFK. 5. Adult PFK was a heterotetramer consisting of C-, M-, L-subunits, but in immature PFK another type of subunit, which was slightly smaller than L-subunit, existed in addition to C-, M- and L-subunits.
Collapse
Affiliation(s)
- E Hamano
- Department of Physiology, Nihon University School of Dentistry, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Koyama T, Ema T, Hashizume N, Hachimori A, Iizuka E. Phosphofructokinase from porcine heart, liver and erythrocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1989; 93:517-21. [PMID: 2527141 DOI: 10.1016/0305-0491(89)90369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Phosphofructokinase from porcine heart, liver and erythrocytes were purified by affinity chromatographies on Cibacron Blue Sepharose and N6-ATP agarose. 2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that the heart and liver enzymes consist of only one kind of subunit, namely, M and L type subunits, respectively, whereas the erythrocyte enzyme comprises of three kinds of subunits, M, L and C types. 3. Some kinetic and regulatory properties of the enzymes were also measured.
Collapse
Affiliation(s)
- T Koyama
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shishu University, Nagano, Japan
| | | | | | | | | |
Collapse
|
30
|
Harvey JW, Sussman WA, Pate MG. Effect of 2,3-diphosphoglycerate concentration on the alkaline fragility of phosphofructokinase-deficient canine erythrocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1988; 89:105-9. [PMID: 2965634 DOI: 10.1016/0305-0491(88)90269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. Erythrocytes in whole blood samples from dogs with phosphofructokinase (PFK) deficiency had lower 2,3-diphosphoglycerate (2,3-DPG) concentrations, higher ATP concentrations, and were more alkaline fragile than normal canine erythrocytes. 2. Reticulocytes from a PFK-deficient dog contained nearly three times the ATP concentration of normal canine erythrocytes, and had 2,3-DPG concentrations similar to normal canine erythrocytes. 3. PFK-deficient reticulocytes are not alkaline fragile. 4. The erythrocyte 2,3-DPG concentration in whole blood samples from PFK-deficient dogs was increased to normal by in vitro incubation with dihydroxyacetone, pyruvate and phosphate. This incubation resulted in only a slight increase in ATP concentration. 5. The alkaline fragility of these 2,3-DPG replenished PFK-deficient erythrocytes was normal. 6. Findings in this study indicate that the increased alkaline fragility of canine PFK-deficient erythrocytes is the result of decreased intracellular 2,3-DPG concentration.
Collapse
Affiliation(s)
- J W Harvey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville 32610
| | | | | |
Collapse
|
31
|
Bristow J, Bier D, Lange L. Regulation of adult and fetal myocardial phosphofructokinase. Relief of cooperativity and competition between fructose 2,6-bisphosphate, ATP, and citrate. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61634-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Levanon D, Danciger E, Dafni N, Groner Y. Genomic clones of the human liver-type phosphofructokinase. Biochem Biophys Res Commun 1986; 141:374-80. [PMID: 2948503 DOI: 10.1016/s0006-291x(86)80379-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genomic clones of human liver phosphofructokinase (PFK) were isolated by screening a gene bank enriched for chromosome 21 sequences with two synthetic oligonucleotide probes designed from peptide sequences of purified human liver PFK. A 3.3 Kb fragment derived from the genomic clones was sub-cloned and designated to pG-PFKL 3.3. It hybridized with a 3.5 Kb mRNA on Northern blots and was able to enrich selectively for liver PFK mRNA by hybrid-selection. These results demonstrated that the isolated clones contain sequences homologous to human PFKL mRNA. When hybridized to genomic DNA blots pG-PFKL 3.3 reacted with the same 3.3 Kb BamHI fragment in both human DNA and DNA of the mouse/human hybrid line WA17 which contains human chromosome 21 as the only human chromosome. These data confirm the assignment of the PFKL gene to chromosome 21.
Collapse
|
33
|
Dunaway GA, Kasten T. Are the rat tissue/organ proportions of 6-phosphofructo-1-kinase subunits strain-specific? Biochem J 1986; 237:157-61. [PMID: 2948488 PMCID: PMC1146960 DOI: 10.1042/bj2370157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies suggest that the tissue/organ proportions of 6-phosphofructo-1-kinase (PFK) subunits from diverse strains of rat may be drastically different. To test this possibility rigorously, the PFK isoenzyme populations and subunit contents in muscle, liver, brain and heart were examined in the following strains: Wistar, ACI, Long Evans, Norway Brown and Wag/Rij. Regardless of the strain, adult muscle possessed only the M-type subunit; adult liver contained predominantly the L-type subunit as well as M-type and C-type subunits; and the adult brain and heart exhibited all three subunit types.
Collapse
|
34
|
Abstract
A cDNA for human muscle 6-phosphofructokinase (EC.2.7.1.11) has been isolated from a human fibroblast cDNA library made using the Okayama-Berg procedure. The cDNA isolated as a Bam H1 fragment of the pcD recombinant, pO4, is approximately 2000 bp in length. It represents approximately 1350 bp of the C-terminus coding sequence of the enzyme, approximately 500 bp of the 3'-untranslated region and approximately 150 bp of the vector sequences. The identity of the pO4 cDNA was established by the observation of a high degree of homology (approximately 95%) between the deduced amino acid sequence with the published protein sequence of rabbit muscle 6-phosphofructokinase, and the assignment of the sequence to human chromosome 1 (the known location of PFKM) by using somatic cell hybrids. Based on immunochemical evidence, we had previously predicted not only a remarkable structural conservation of the vertebrate muscle PFK, but also partial structural identity among all three vertebrate PFK isozymes. The pO4 cDNA is, therefore, expected to permit isolation of cDNAs for muscle and non-muscle PFKs from a wide variety of vertebrate species.
Collapse
|
35
|
Vora S, Giger U, Turchen S, Harvey JW. Characterization of the enzymatic lesion in inherited phosphofructokinase deficiency in the dog: an animal analogue of human glycogen storage disease type VII. Proc Natl Acad Sci U S A 1985; 82:8109-13. [PMID: 2933748 PMCID: PMC391452 DOI: 10.1073/pnas.82.23.8109] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mammalian phosphofructokinase (PFK; ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) exists in multimolecular forms, which result from random tetramerization of three distinct subunits, M (muscle-type), L (liver-type), and P (platelet-type), each under a separate genetic control. Human muscle and liver contain homotetramers M4 and L4, respectively, whereas erythrocytes contain a mixture of M4, M3L, M2L2, ML3, and L4 isozymes. Homozygous deficiency of the M subunit in man results in glycogen storage disease (GSD) type VII, which is characterized by exertional muscle weakness and compensated hemolysis; the residual erythrocyte PFK consists of isolated L4 isozyme. Recently, PFK deficiency associated with isolated hemolytic anemia has been identified among English springer spaniel dogs. We investigated the genetic control of the dog PFK system and the nature of the enzymatic defect in two PFK-deficient animals, using chromatographic and immunological techniques. Our studies indicate the existence of a trilocus isozyme system for the dog, as is the case with other mammals. Muscle PFK consists of M4 isozyme, whereas the predominant species of liver and platelet consists, respectively, of the L4 and P4 isozyme; erythrocyte PFK consists of a three- or four-membered set composed of M and P subunits. PFK deficiency in the dogs was found to result from a total and universal lack of the M subunit, as is the case in man. However, the probands consistently exhibited L4 isozyme in their muscle; P4, L4, and hybrids thereof in their erythrocytes; and an increase in the L-containing isozymes in their platelets, indicating a generalized anomalous presence of the L subunit. The apparent absence of muscle disease in these animals is most likely accounted for by both the well-known high oxidative potential of the canine muscle in general and the presence of liver PFK in the M-deficient muscle in particular. In contrast, presence of hemolysis despite residual P4 and hybrids of P and L in the erythrocytes may be inferred to result in severe glycolytic handicap under existing intraerythrocytic conditions.
Collapse
|