1
|
Thermodynamic interference with bile acid demicelleization reduces systemic entry and injury during cholestasis. Sci Rep 2020; 10:8462. [PMID: 32439972 PMCID: PMC7242474 DOI: 10.1038/s41598-020-65451-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Bile acids (BA), with their large hydrophobic steroid nucleus and polar groups are amphipathic molecules. In bile, these exist as micelles above their critical micellar concentration (CMC). In blood at low concentrations, these exist as monomers, initiating cellular signals. This micellar to monomer transition may involve complex thermodynamic interactions between bile salts alone or with phospholipids, i.e. mixed micelles and the aqueous environment. We therefore went on to test if therapeutically relevant changes in temperature could influence micellar behavior of bile salts, and in turn whether this affected the biological responses in cells, and in vivo. Sodium taurocholate (STC) belongs to a major class of bile salts. STC has a CMC in the 5–8 mM range and its infusion into the pancreatic duct is commonly used to study pancreatitis. We thus studied micellar breakdown of STC using isothermal titration calorimetry (ITC), dynamic light scattering and cryogenic transmission electron microscopy. Under conditions relevant to the in vivo environment (pH 7.4, Na 0.15 M), ITC showed STC to have a U shaped reduction in micellar breakdown between 37 °C and 15 °C with a nadir at 25 °C approaching ≈90% inhibition. This temperature dependence paralleled pancreatic acinar injury induced by monomeric STC. Mixed micelles of STC and 1-palmitoyl, 2-oleyl phosphatidylcholine, a phospholipid present in high proportions in bile, behaved similarly, with ≈75% reduction in micellar breakdown at 25 °C compared to 37 °C. In vivo pancreatic cooling to 25 °C reduced the increase in circulating BAs after infusion of 120 mM (5%) STC into the pancreatic duct, and duct ligation. Lower BA levels were associated with improved cardiac function, reduced myocardial damage, shock, lung injury and improved survival independent of pancreatic injury. Thus micellar breakdown of bile salts is essential for their entry into the systemic circulation, and thermodynamic interference with this may reduce their systemic entry and consequent injury during cholestasis, such as from biliary pancreatitis.
Collapse
|
2
|
Miotto PM, Horbatuk M, Proudfoot R, Matravadia S, Bakovic M, Chabowski A, Holloway GP. α-Linolenic acid supplementation and exercise training reveal independent and additive responses on hepatic lipid accumulation in obese rats. Am J Physiol Endocrinol Metab 2017; 312:E461-E470. [PMID: 28270444 PMCID: PMC5494579 DOI: 10.1152/ajpendo.00438.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 02/06/2023]
Abstract
α-Linolenic acid (ALA) supplementation or exercise training can independently prevent hepatic lipid accumulation and reduced insulin signaling; however, this may occur through different mechanisms of action. In the current study, obese Zucker rats displayed decreased phospholipid (PL) content in association with hepatic lipid abundance, and therefore, we examined whether ALA and exercise training would prevent these abnormalities differently to reveal additive effects on the liver. To achieve this aim, obese Zucker rats were fed control diet alone or supplemented with ALA and were sedentary or exercise trained for 4 wk (C-Sed, ALA-Sed, C-Ex, and ALA-Ex). ALA-Sed rats had increased microsomal-triglyceride transfer protein (MTTP), a protein required for lipoprotein assembly/secretion, as well as modestly increased PL content in the absence of improvements in mitochondrial content, lipid accumulation, or insulin sensitivity. In contrast, C-Ex rats had increased mitochondrial content and insulin sensitivity; however, this corresponded with minimal improvements in PL content and hepatic lipid accumulation. Importantly, ALA-Ex rats demonstrated additive improvements in PL content and hepatic steatosis, which corresponded with increased mitochondrial content, MTTP and apolipoprotein B100 content, greater serum triacylglyceride, and insulin sensitivity. Overall, these data demonstrate additive effects of ALA and exercise training on hepatic lipid accumulation, as exercise training preferentially increased mitochondrial content, while ALA promoted an environment conducive for lipid secretion. These data highlight the potential for combination therapy to mitigate liver disease progression.
Collapse
Affiliation(s)
- Paula M Miotto
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Meaghan Horbatuk
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Ross Proudfoot
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Sarthak Matravadia
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Marica Bakovic
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
3
|
Gilat T, Sömjen GJ. Phospholipid vesicles and other cholesterol carriers in bile. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:95-115. [PMID: 8652613 DOI: 10.1016/0304-4157(96)00005-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- T Gilat
- Department of Gastroenterology, Tel-Aviv Souaaski Medical Center, Ichilov Hospital, Tel-Aviv, Israel
| | | |
Collapse
|
4
|
|
5
|
Rioux F, Perea A, Yousef IM, Lévy E, Malli L, Carrillo MC, Tuchweber B. Short-term feeding of a diet enriched in phospholipids increases bile formation and the bile acid transport maximum in rats. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1214:193-202. [PMID: 7918600 DOI: 10.1016/0005-2760(94)90044-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Earlier studies suggested that the secretory rate maximum (SRm) of bile acid and the cholestasis which occurs after the SRm is reached may be determined by the hepatic or extrahepatic biliary phospholipid pool. We therefore investigated whether bile formation and the bile acid SRm could be influenced by feeding a diet enriched in phospholipids. Male rats were fed phospholipid (PLD) or triacylglycerol (TgD)-enriched diet for 3 days, and bile formation as well as biliary lipid output were measured on the 4th day. In other similarly fed groups, cholic acid was infused in stepwise increasing doses to determine the effect of PLD on the SRm of cholic acid. The plasma lipid levels were significantly lower in PLD and TgD diets compared to basal diet. But, while the levels of total cholesterol (CH), HDL-CH, and phospholipid (PH) were not significantly altered by PLD compared to TgD, the triacylglycerol levels were markedly increased by PLD. In the liver of PLD fed rats, triacylglycerol and CH ester contents decreased by 39 and 62%, respectively, while free CH and PH contents were not significantly changed. The PLD significantly augmented spontaneous bile flow, bile acid, PH and CH secretion rates compared to TgD diet (65, 124, 164 and 654%, respectively). The enhanced biliary secretory function was associated with an increase in pericanalicular vacuoles and diverticuli in centrilobular hepatocytes. Compared to TgD fed rats, PLD rats showed a 2-fold decrease in the ratio of cholic acid/chenodeoxycholic acid in bile and a significant decrease in the % contribution of taurine conjugated BA. The PH fatty acids in bile were similar in both groups except that in PLD group the % contribution of C18:2 was higher than in TgD group. No differences were found in plasma membrane CH/PH content or total fatty acid composition. During bile acid infusion, the SRm and the total cholic acid secreted were significantly higher in the PLD than in the TgD rats. Moreover, the cholestatic response observed after high bile acid dose was markedly reduced by PLD. The results show that short-term feeding of PLD induces changes in CH and bile acid metabolism which result in enhanced biliary output of CH and PH. The enhanced pool of biliary lipid may protect plasma membranes from the deleterious effects of high bile acid concentrations.
Collapse
Affiliation(s)
- F Rioux
- Centre de Recherche Pediatrique Hospital Ste-Justine, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Shamburek RD, Schwartz CC. Selective composition of biliary phosphatidylcholines is affected by secretion rate but not by bile acid hydrophobicity. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)35101-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Thewles A, Parslow RA, Coleman R. Effect of diosgenin on biliary cholesterol transport in the rat. Biochem J 1993; 291 ( Pt 3):793-8. [PMID: 8387778 PMCID: PMC1132438 DOI: 10.1042/bj2910793] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biliary cholesterol output in rats was stimulated over 3-fold by feeding diosgenin for 5 days, whereas biliary outputs of phospholipid and bile salts were not changed by diosgenin feeding. Isolating and perfusing the liver without bile salts resulted in a rapid and substantial decrease in biliary bile salt output; bile salt depletion abolished the diosgenin-induced increment in biliary cholesterol output, showing that the diosgenin-elevated biliary cholesterol output was bile-salt-dependent. Diosgenin treatment also produced a significant decrease in biliary alkaline phosphodiesterase I. Fresh bile obtained from control and diosgenin-fed rats was subjected to gel-permeation chromatography in order to separate different-sized biliary cholesterol carriers. Two major peaks of cholesterol were eluted, with cholesterol also being eluted between the peaks. The cholesterol peak eluted at the lower molecular mass (20-30 kDa) was observed in all bile samples. The higher-molecular-mass peak, which was eluted at the void volume, was not observed in all biles; control biles contained very little high-molecular-mass form of cholesterol, whereas biles from the diosgenin group contained up to 47% of cholesterol in the high-molecular-mass fraction. Diosgenin treatment produced a range of elevated biliary cholesterol values which positively correlated with the proportion of cholesterol contained in the high-molecular-mass fraction (r = 0.98). The results show that diosgenin induced a marked bile-salt-dependent increase in biliary cholesterol output and a shift in biliary cholesterol transport to higher-molecular-mass structures.
Collapse
Affiliation(s)
- A Thewles
- School of Biochemistry, University of Birmingham, Edgbaston, U.K
| | | | | |
Collapse
|
8
|
Takikawa H, Sano N, Wako Y, Yamanaka M. Effects of organic anions and bile acids on biliary lipid excretion in hyperbilirubinemic mutant Sprague-Dawley rats. J Hepatol 1993; 17:247-52. [PMID: 8445239 DOI: 10.1016/s0168-8278(05)80046-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of organic anions and bile acids on biliary lipid excretion were studied in EHBR, a hyperbilirubinemic mutant Sprague-Dawley rat. A marked delay in the biliary excretion of BSP, cefpiramide, rose bengal and ursodeoxycholate-disulfate was observed in these animals. The marked decrease in the biliary excretion of phospholipids and cholesterol and the uncoupling of biliary bile acids and lipids that occurred after the administration of BSP, cefpiramide and ursodeoxycholate-disulfate in control Sprague-Dawley rats was absent in EHBR. Rose bengal did not change biliary lipid excretion in either the control Sprague-Dawley rats or the EHBR. Although taurocholate markedly increased bile flow and biliary bile acid excretion in both types of rats, the increase in biliary lipid excretion observed in the control Sprague-Dawley rats was absent in EHBR. These findings indicate that EHBR have an impairment of hepatic lipid transfer that is enhanced by bile acids, possibly at the level of intracellular vesicular lipid transport.
Collapse
Affiliation(s)
- H Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- R Coleman
- School of Biochemistry, University of Birmingham, UK
| | | |
Collapse
|
10
|
Herrera MC, el-Mir MY, Monte MJ, Perez-Barriocanal F, Marin JJ. Further evaluation of the interrelationship between the hepatocellular transport of bile acids and endocytosed proteins. Int J Exp Pathol 1992; 73:203-14. [PMID: 1571280 PMCID: PMC2001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experiments on the relationship between the hepatocellular transport of endogenous or exogenously loaded bile acids (sodium taurocholate, TC, 0.5 mumol/min/100 g body wt) and horseradish peroxidase (HRP) or immunoglobulin A (IgA) (0.5 mg/100 g body wt) were carried out on anaesthetized Wistar rats. The time course of HRP excretion into bile (acceleration in the secretory peak), but not the total amount of HRP output, was affected by TC infusion. Administration of HRP was found to have no stimulatory effect on either spontaneous or TC-induced bile flow, bile acid, lecithin or cholesterol output. Spontaneous bile acid output was increased (25 and 67%, respectively) in rats that were treated for 12-h fasting or by oral administration of TC (45 mg/100 g body wt, every 12 h, for 2 days). These manoeuvres did not change the inability of HRP and IgA to increase bile acid output. Exogenous TC load had no stimulatory effect on the hepatocellular transport of endogenous bile acid pool, that was labelled by a combination of fasting and oral administration of 14C-glycocholic acid 12 h before the experiments. Therefore, exogenous bile acid load-induced stimulation of transcytosis had no effect on endogenous bile acid output. Moreover, bile secretion of both endogenous and exogenously loaded bile acids is unaffected by the administration of proteins, irrespective of whether they are endocytosed by a receptor or nonreceptor mediated process.
Collapse
Affiliation(s)
- M C Herrera
- Department of Physiology and Pharmacology, University of Salamanca, Spain
| | | | | | | | | |
Collapse
|
11
|
Feuer G, Di Fonzo CJ. Intrahepatic cholestasis: a review of biochemical-pathological mechanisms. DRUG METABOLISM AND DRUG INTERACTIONS 1992; 10:1-161. [PMID: 1511611 DOI: 10.1515/dmdi.1992.10.1-2.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intrahepatic cholestasis involves impaired excretion of bile via the hepatobiliary system as a consequence of one or more lesions within the liver. In humans, intrahepatic cholestasis most often results as a side-effect of drug therapy and the clinical manifestation of this condition, jaundice, has been estimated to account for hospitalization in 2 to 5% of the cases for the general population and approaches as much as 20% in the elderly. With the aging of the population and the common occurrence of poly-drug therapy in geriatric patients, it is to be expected that jaundice due to drug-induced intrahepatic cholestasis will become even more prevalent, and accordingly the need to understand the basic mechanisms of this disease condition will become more urgent. The list of culprit agents implicated in the induction of intrahepatic cholestasis in humans is continually expanding. These include various steroid hormones, bile acids, drugs and other chemicals. Experimentally, a wide spectrum of agents has been shown to precipitate intrahepatic cholestasis. Over the years, a number of hypotheses on the biochemical and pathological mechanisms of intrahepatic cholestasis has emerged, including the following: impaired sinusoidal membrane function; interference with the distribution and binding of cytoplasmic endogenous carrier proteins; interference with mitochondrial energy supply; defects in the canalicular membrane including altered Na+/K+ -ATP-ase activity; impairment of microfilament and microtubule functions; interference with bile secretion involving bile acid dependent and independent fractions, and altered bile acid metabolism due to "hypoactive hypertrophic smooth endoplasmic reticulum". In partial agreement with the latter hypothesis, our studies indicated that impairment of the endoplasmic reticulum might represent one of the early stages in the development of intrahepatic cholestasis. Various experimental conditions that induce intrahepatic cholestasis to different degrees resulted in an interference of the synthesis of microsomal phospholipids and altered microsomal function. The conditions included the administration of various hepatotoxic compounds or steroids, pregnancy, delayed development of the endoplasmic reticulum in neonates, and dietary methyl donor or choline deficiency. This review reports the biochemical-pathological mechanisms postulated to be involved in the genesis of intrahepatic cholestasis with specific reference to experimental models of drug-induced intrahepatic cholestasis. The important practical implications of cholestasis are also briefly surveyed.
Collapse
Affiliation(s)
- G Feuer
- Department of Clinical Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
|
13
|
Smit MJ, Temmerman AM, Havinga R, Kuipers F, Vonk RJ. Short- and long-term effects of biliary drainage on hepatic cholesterol metabolism in the rat. Biochem J 1990; 269:781-8. [PMID: 2390068 PMCID: PMC1131655 DOI: 10.1042/bj2690781] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study concerns short- and long-term effects of interruption of the enterohepatic circulation (EHC) on hepatic cholesterol metabolism and biliary secretion in rats. For this purpose, we employed a technique that allows reversible interruption of the EHC, during normal feeding conditions, and excludes effects of anaesthesia and surgical trauma. [3H]Cholesteryl oleate-labelled human low-density lipoprotein (LDL) was injected intravenously in rats with (1) chronically (8 days) interrupted EHC, (2) interrupted EHC at the time of LDL injection and (3) intact EHC. During the first 3 h after interruption of the EHC, bile flow decreased to 50% and biliary bile acid, phospholipid and cholesterol secretion to 5%, 11% and 19% of their initial values respectively. After 8 days of bile diversion, biliary cholesterol output and bile flow were at that same level, but bile acid output was increased 2-3-fold and phospholipid output was about 2 times lower. The total amount of cholesterol in the liver decreased after interruption of the EHC, which was mainly due to a decrease in the amount of cholesteryl ester. Plasma disappearance of LDL was not affected by interruption of the EHC. Biliary secretion of LDL-derived radioactivity occurred 2-4 times faster in chronically interrupted rats as compared with the excretion immediately after interruption of the EHC. Radioactivity was mainly in the form of bile acids under both conditions. This study demonstrates the very rapid changes that occur in cholesterol metabolism and biliary lipid composition after interruption of the EHC. These changes must be taken into account in studies concerning hepatic metabolism of lipoprotein cholesterol and subsequent secretion into bile.
Collapse
Affiliation(s)
- M J Smit
- Department of Pediatrics, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Hayakawa T, Ng OC, Ma A, Boyer JL, Cheng O. Taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology 1990; 99:216-28. [PMID: 2344927 DOI: 10.1016/0016-5085(90)91251-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of taurocholate on transcytotic vesicular pathways labeled with horseradish peroxidase was assessed in isolated perfused rat liver preparations. Forty-five minutes after a horseradish peroxidase load in a recirculating system, continuous infusion of taurocholate but not taurodehydrocholate significantly increased horseradish peroxidase excretion in bile by 50% compared with controls. When horseradish peroxidase (25 mg) was pulse loaded for 1 minute in control perfusions, it appeared in bile in early (4-6 minutes) and late (20-25 minutes) peaks, the latter accounting for 90% of total horseradish peroxidase output. Taurocholate infusion significantly increased horseradish peroxidase output in both early and late peaks, whereas only a small increase in the early peak was observed with taurodehydrocholate. Colchicine pretreatment increased the early peak in bile but abolished the second peak. Electron micrographs from control livers revealed the accumulation of horseradish peroxidase-containing vesicles in pericanalicular regions at early (2 minutes) as well as late (18 minutes) periods. When a morphometric analysis of electron micrographs was performed from pericanalicular regions 2 minutes after a 1-minute pulse of horseradish peroxidase (500 mg), taurocholate but not taurodehydrocholate increased both the density and percent area of horseradish peroxidase-containing vesicles compared with controls. In contrast, colchicine pretreatment had no effect on the density of the early-appearing vesicles, although their individual sizes were reduced. Taurocholate but not taurodehydrocholate also increased the percent of tubular structures in the pericanalicular region. These findings indicate that taurocholate stimulates both early and late transcytotic vesicle pathways and therefore probably microtubule-independent vesicle pathway is present in hepatocytes that must be distinguished from paracellular routes.
Collapse
Affiliation(s)
- T Hayakawa
- Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
15
|
Casu A, Camogliano L. Glycerophospholipids and cholesterol composition of bile in bile-fistula rats treated with monensin. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1043:113-5. [PMID: 2310756 DOI: 10.1016/0005-2760(90)90117-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Data regarding the action of monensin on the concentrations of glycerophospholipids and cholesterol in bile of rats subjected to total biliary diversion for 3 h are reported. After monensin their concentration in bile drops significantly in the first 60 min collections with respect to the control. Differences seem to be produced between the rates of transport to the bile of glycerophospholipids and cholesterol, not sufficiently explained by the inhibition of bile salt uptake determined by monensin at the sinusoidal pole of the hepatocyte.
Collapse
Affiliation(s)
- A Casu
- Institute of General Pathology, University of Genoa, Italy
| | | |
Collapse
|
16
|
Hamlin S, Rahman K, Carrella M, Coleman R. Modulation of biliary lipid secretion by forskolin and cyclic AMP analogues. Biochem J 1990; 265:879-85. [PMID: 2154971 PMCID: PMC1133713 DOI: 10.1042/bj2650879] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exposure of isolated perfused rat livers to either 100 microM-forskolin, a potent activator of adenylate cyclase, or to 0.5 mM-concentrations of the cAMP analogues chlorophenylthio cAMP (CPTcAMP), dibutyryl cAMP (dbcAMP) and 8-bromo cAMP (8BrcAMP), to provoke increases in intracellular concentrations of cAMP, resulted in marked changes in bile volume and composition. Bile flow reached a peak after 10 min, before declining towards control levels, and an increase in several secretory parameters was also observed at this time. At 20 min, a substantial decrease in the output of both phospholipid and cholesterol was evident, and this suppression of secretion was maintained throughout the remainder of the experiment. The order of effectiveness of the cAMP-elevating agents at decreasing biliary lipid output was CPTcAMP greater than forskolin greater than dbcAMP greater than 8BrcAMP. Biliary output of bile acids was essentially unaltered compared with controls; similarly, no decrease in the secretion of protein and triacylglycerols into the perfusion medium was observed. This suggests that the elevation of intracellular levels of cAMP may cause a selective inhibition of biliary lipid output rather than a more general inhibition of hepatic secretion.
Collapse
Affiliation(s)
- S Hamlin
- Department of Biochemistry, University of Birmingham, U.K
| | | | | | | |
Collapse
|
17
|
Coleman R, Rahman K, Kan KS, Parslow RA. Retrograde intrabiliary injection of amphipathic materials causes phospholipid secretion into bile. Taurocholate causes phosphatidylcholine secretion, 3-[(3-cholamidopropyl)dimethylammonio]-propane-1-sulphonate (CHAPS) causes mixed phospholipid secretion. Biochem J 1989; 258:17-22. [PMID: 2930503 PMCID: PMC1138318 DOI: 10.1042/bj2580017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The control of biliary phospholipid and cholesterol secretions by bile acid was studied by using the technique of retrograde intrabiliary injection. Taurocholate (TC), a moderately hydrophobic bile acid, taurodehydrocholate (TDHC), a hydrophilic non-micelle-forming bile acid, and 3-[(3-cholamidopropyl)-dimethylammonio]propane-1-sulphonate (CHAPS), a detergent, were individually administered by retrograde intrabiliary injection (RII) into the biliary tree, and bile acids, phospholipids and cholesterol subsequently appearing in the bile were measured. TC (1.3 mumol; 45 microliters) injected retrogradely provoked a 3.5-fold increase in biliary phospholipid output for 40 min, as compared with the saline control. Injection of 2.7 mumol of TC (90 microliters) caused a 7.5-fold increase in phospholipid output, which reached a peak at 12 min after RII, and phospholipid output continued for 40 min. Cholesterol output was also elicited under these conditions, showing both dose-dependency and extended secretion. Injection of 1.8 mumol of TDHC caused very little increase in either biliary phospholipid or cholesterol. Injection of 0.9 mumol of CHAPS (45 microliters) provoked a single substantial peak of phospholipid output in the 3 min bile sample. T.l.c. analysis of the phospholipid extracts of the bile collected after each compound showed, for TC, a single compound which co-migrated with the phosphatidylcholine standard, whereas for CHAPS substantial amounts of other phospholipids were present.
Collapse
Affiliation(s)
- R Coleman
- Department of Biochemistry, University of Birmingham, U.K
| | | | | | | |
Collapse
|
18
|
Abstract
Phospholipids and bile acids, by virtue of their amphiphilic properties, can interact in nonpolar media forming "inverted" structures (micelles) which presumably have an hydrophilic core and might act as diffusional carriers (ionophores) of electrolytes across low dielectric constant media or lipid membranes. The Na+ ionophoretic capability of various purified phospholipids and the modulating effects of bile acids and phosphatidylcholine was examined by: (a) measurement of 22Na+ partition into the organic phase (chloroform) of a two-phase system and (b) direct measurement of the translocation of 22Na+ across a bulk chloroform phase separating two aqueous phases in a Pressman cell. All phospholipids tested, except for phosphatidylcholine, showed ionophoretic capability for Na+ at micromolar concentrations. Cardiolipin and phosphatidylserine were the most efficient Na+ carriers, comparable with monensin, an established Na+ ionophore. In contrast, cholic acid as well as other bile acids demonstrated only marginal or no Na+ ionophoretic capability. However, hydroxylated bile acids (particularly cholic acid), sodium dodecyl sulfate and Triton X-100, which can induce and stabilize inverted structures in lipid membranes, were able to increase 5- to 8-fold the phospholipid-mediated Na+ transport. Interaction of cardiolipin with Na+ in the chloroform phase followed a rectangular hyperbolic function with an apparent Kd within the physiological Na+ concentration range (16.9 +/- 5.1 mM). Addition of cholic acid to the cardiolipin-containing organic phase resulted in a 10-fold increase of maximal Na+ uptake and no change in apparent Kd. The effect of cholic acid on both cardiolipin-mediated Na+ partition and Na+ translocation across the chloroform phase showed a marked dependence on pH, being greater at pH 7.4.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Accatino
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago
| | | |
Collapse
|
19
|
Crawford JM, Berken CA, Gollan JL. Role of the hepatocyte microtubular system in the excretion of bile salts and biliary lipid: implications for intracellular vesicular transport. J Lipid Res 1988. [DOI: 10.1016/s0022-2275(20)38547-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Rahman K, Coleman R. Effect of chloroquine on biliary lipid and lysosomal enzyme output in the isolated perfused rat liver at low bile salt output rates. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 922:395-7. [PMID: 3689819 DOI: 10.1016/0005-2760(87)90065-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chloroquine, when introduced into isolated perfused rat livers, caused a substantial output of cholesterol into bile, occurring after 30 min and peaking at 60 min, whereas the biliary output of acid phosphatase and beta-glucuronidase increased only after 90 min. The origins of this bile-salt-independent cholesterol are discussed.
Collapse
Affiliation(s)
- K Rahman
- Department of Biochemistry, University of Birmingham, U.K
| | | |
Collapse
|
21
|
Abstract
Multiple short pulses of taurocholate (TC) brought about, in isolated perfused rat livers, the secretion of phospholipid and cholesterol into bile; the lipids showed an appreciable lag period behind the bile-salt secretion, and there was considerable variability in response, both between low and high dose pulses of TC and, at the higher dose, even between individual livers. When a background continuous infusion of taurodehydrocholate (a hydrophilic non-micelle-forming bile-salt analogue) was superimposed upon the short TC pulses, the lipid secretion showed much better control, and the lipid peaks were of more uniform size, following more closely, or more coincident with, the bile-salt output peaks. Taurodehydrocholate may provide a signal for the control of the supply and delivery of lipid vesicles to the bile-canalicular membrane, from where the lipid vesicles are then removed by the action of the pulses of TC.
Collapse
Affiliation(s)
- K Rahman
- Department of Biochemistry, University of Birmingham, U.K
| | | |
Collapse
|
22
|
Rahman K, Coleman R. Output of lysosomal contents and cholesterol into bile can be stimulated by taurodehydrocholate. Biochem J 1987; 245:289-92. [PMID: 3663154 PMCID: PMC1148114 DOI: 10.1042/bj2450289] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although biliary secretion of phospholipids and cholesterol is principally dependent on bile-salt secretion, at low bile-salt output secretion of some lipids continues; also the amount of cholesterol secretion is more than that of phospholipid under these conditions, but the origin of this cholesterol is not known. Taurodehydrocholate was continuously infused in isolated perfused rat livers under recycling perfusion conditions and the biliary lysosomal output and lipid output measured. The rate of acid phosphatase and beta-glucuronidase output increased 30-60 and 60-90 min respectively after liver isolation under these conditions. The rate of output of cholesterol and phospholipid increased in all the samples collected from taurodehydrocholate-infused livers. The increase in cholesterol output was approximately twice that of phospholipid output, leading to an increase in the cholesterol/phospholipid ratio in the bile.
Collapse
Affiliation(s)
- K Rahman
- Department of Biochemistry, University of Birmingham, U.K
| | | |
Collapse
|
23
|
Affiliation(s)
- R Coleman
- Department of Biochemistry, University of Birmingham, U.K
| |
Collapse
|
24
|
Rahman K, Coleman R. Selective biliary lipid secretion at low bile-salt-output rates in the isolated perfused rat liver. Effects of phalloidin. Biochem J 1986; 237:301-4. [PMID: 3800886 PMCID: PMC1146983 DOI: 10.1042/bj2370301] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
At high bile-salt-secretion rates the biliary secretion of phospholipids and cholesterol is dependent on that of the bile salts. However, at low bile-salt outputs some secretion remains. Isolated perfused rat livers were used in these experiments in order to study the bile-salt-independent secretion of biliary lipids. The livers were isolated and saline (0.9% NaCl), or phalloidin dissolved in saline, was added to the perfusion fluid after 1 h of liver isolation. The concentration and output of cholesterol was significantly decreased in phalloidin-treated livers compared with the controls, whereas there was no significant decrease in phospholipids; the secretion of cholesterol and phospholipids can thus be uncoupled from each other by the action of phalloidin. These experiments suggest that a proportion of cholesterol gets into bile independently of bile salts and phospholipids. These findings are discussed in relation to the supersaturation of some biles with cholesterol and its relationship to the bile-salt-independent fraction of cholesterol.
Collapse
|