1
|
Kontoghiorghes GJ. The Puzzle of Aspirin and Iron Deficiency: The Vital Missing Link of the Iron-Chelating Metabolites. Int J Mol Sci 2024; 25:5150. [PMID: 38791185 PMCID: PMC11121054 DOI: 10.3390/ijms25105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylsalicylic acid or aspirin is the most commonly used drug in the world and is taken daily by millions of people. There is increasing evidence that chronic administration of low-dose aspirin of about 75-100 mg/day can cause iron deficiency anaemia (IDA) in the absence of major gastric bleeding; this is found in a large number of about 20% otherwise healthy elderly (>65 years) individuals. The mechanisms of the cause of IDA in this category of individuals are still largely unknown. Evidence is presented suggesting that a likely cause of IDA in this category of aspirin users is the chelation activity and increased excretion of iron caused by aspirin chelating metabolites (ACMs). It is estimated that 90% of oral aspirin is metabolized into about 70% of the ACMs salicyluric acid, salicylic acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. All ACMs have a high affinity for binding iron and ability to mobilize iron from different iron pools, causing an overall net increase in iron excretion and altering iron balance. Interestingly, 2,3-dihydroxybenzoic acid has been previously tested in iron-loaded thalassaemia patients, leading to substantial increases in iron excretion. The daily administration of low-dose aspirin for long-term periods is likely to enhance the overall iron excretion in small increments each time due to the combined iron mobilization effect of the ACM. In particular, IDA is likely to occur mainly in populations such as elderly vegetarian adults with meals low in iron content. Furthermore, IDA may be exacerbated by the combinations of ACM with other dietary components, which can prevent iron absorption and enhance iron excretion. Overall, aspirin is acting as a chelating pro-drug similar to dexrazoxane, and the ACM as combination chelation therapy. Iron balance, pharmacological, and other studies on the interaction of iron and aspirin, as well as ACM, are likely to shed more light on the mechanism of IDA. Similar mechanisms of iron chelation through ACM may also be implicated in patient improvements observed in cancer, neurodegenerative, and other disease categories when treated long-term with daily aspirin. In particular, the role of aspirin and ACM in iron metabolism and free radical pathology includes ferroptosis, and may identify other missing links in the therapeutic effects of aspirin in many more diseases. It is suggested that aspirin is the first non-chelating drug described to cause IDA through its ACM metabolites. The therapeutic, pharmacological, toxicological and other implications of aspirin are incomplete without taking into consideration the iron binding and other effects of the ACM.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
2
|
Mao L, Quan Z, Liu ZS, Huang CH, Wang ZH, Tang TS, Li PL, Shao J, Liu YJ, Zhu BZ. Molecular mechanism of the metal-independent production of hydroxyl radicals by thiourea dioxide and H 2O 2. Proc Natl Acad Sci U S A 2024; 121:e2302967120. [PMID: 38547063 PMCID: PMC10998598 DOI: 10.1073/pnas.2302967120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 04/08/2024] Open
Abstract
It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.
Collapse
Affiliation(s)
- Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Zhuo Quan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
- Center for Advanced Materials Research, College of Chemistry, Beijing Normal University, Zhuhai519087, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Chemical Resource Engineering, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
3
|
Schöneich C. Primary Processes of Free Radical Formation in Pharmaceutical Formulations of Therapeutic Proteins. Biomolecules 2023; 13:1142. [PMID: 37509177 PMCID: PMC10376966 DOI: 10.3390/biom13071142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidation represents a major pathway for the chemical degradation of pharmaceutical formulations. Few specific details are available on the mechanisms that trigger oxidation reactions in these formulations, specifically with respect to the formation of free radicals. Hence, these mechanisms must be formulated based on information on impurities and stress factors resulting from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation, metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
4
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
5
|
Kulikova OI, Fedorova TN, Shabalina AA, Berezhnoy DS, Stvolinsky SL, Lopachev AV, Muzychuk OA, Tanashyan MM. Anti-Aggregation and Antioxidant Properties of a New Derivative of Acetylsalicylic Acid and Carnosine. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Halliwell B. Reflections of an Aging Free Radical Part 2: Meeting Inspirational People. Antioxid Redox Signal 2022; 38:792-802. [PMID: 35651275 DOI: 10.1089/ars.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: During my long career in the field of redox biology, I met many inspiring people, especially Lester Packer. Recent Advances: This special issue of Antioxidants & Redox Signaling is dedicated to Lester Packer. Critical Issues: In this short review, I explore how Lester and other pioneers helped to develop the redox biology field and how I interacted with them. Future Directions: In our research to advance the field of redox biology, we stand on the shoulders of giants, including Lester Packer.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
8
|
Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev 2021; 50:8355-8360. [PMID: 34128512 PMCID: PMC8328964 DOI: 10.1039/d1cs00044f] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent publications have suggested that oxidative DNA damage mediated by hydroxyl radical (˙OH) is unimportant in vivo, and that carbonate anion radical (CO3˙-) plays the key role. We examine these claims and summarize the evidence that ˙OH does play a key role as an important member of the reactive oxygen species (ROS) in vivo.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | | | | | | |
Collapse
|
9
|
|
10
|
Sankaranarayanan R, Kumar DR, Altinoz MA, Bhat GJ. Mechanisms of Colorectal Cancer Prevention by Aspirin-A Literature Review and Perspective on the Role of COX-Dependent and -Independent Pathways. Int J Mol Sci 2020; 21:ijms21239018. [PMID: 33260951 PMCID: PMC7729916 DOI: 10.3390/ijms21239018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aspirin, synthesized and marketed in 1897 by Bayer, is one of the most widely used drugs in the world. It has a well-recognized role in decreasing inflammation, pain and fever, and in the prevention of thrombotic cardiovascular diseases. Its anti-inflammatory and cardio-protective actions have been well studied and occur through inhibition of cyclooxygenases (COX). Interestingly, a vast amount of epidemiological, preclinical and clinical studies have revealed aspirin as a promising chemopreventive agent, particularly against colorectal cancers (CRC); however, the primary mechanism by which it decreases the occurrences of CRC has still not been established. Numerous mechanisms have been proposed for aspirin’s chemopreventive properties among which the inhibition of COX enzymes has been widely discussed. Despite the wide attention COX-inhibition has received as the most probable mechanism of cancer prevention by aspirin, it is clear that aspirin targets many other proteins and pathways, suggesting that these extra-COX targets may also be equally important in preventing CRC. In this review, we discuss the COX-dependent and -independent pathways described in literature for aspirin’s anti-cancer effects and highlight the strengths and limitations of the proposed mechanisms. Additionally, we emphasize the potential role of the metabolites of aspirin and salicylic acid (generated in the gut through microbial biotransformation) in contributing to aspirin’s chemopreventive actions. We suggest that the preferential chemopreventive effect of aspirin against CRC may be related to direct exposure of aspirin/salicylic acid or its metabolites to the colorectal tissues. Future investigations should shed light on the role of aspirin, its metabolites and the role of the gut microbiota in cancer prevention against CRC.
Collapse
Affiliation(s)
- Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| | - D. Ramesh Kumar
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA;
| | - Meric A. Altinoz
- Department of Biochemistry, Acibadem M.A.A. University, Istanbul, Turkey;
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
- Correspondence: ; Tel.: +1-605-688-6894
| |
Collapse
|
11
|
Ibrahim N‘I, Fairus S, Naina Mohamed I. The Effects and Potential Mechanism of Oil Palm Phenolics in Cardiovascular Health: A Review on Current Evidence. Nutrients 2020; 12:nu12072055. [PMID: 32664390 PMCID: PMC7400923 DOI: 10.3390/nu12072055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is globally known as the number one cause of death with hyperlipidemia as a strong risk factor for CVD. The initiation of drug treatment will be recommended if lifestyle modification fails. However, medicines currently used for improving cholesterol and low-density lipoprotein cholesterols (LDL-C) levels have been associated with various side effects. Thus, alternative treatment with fewer or no side effects needs to be explored. A potential agent, oil palm phenolics (OPP) recovered from the aqueous waste of oil palm milling process contains numerous water-soluble phenolic compounds. It has been postulated that OPP has shown cardioprotective effects via several mechanisms such as cholesterol biosynthesis pathway, antioxidant and anti-inflammatory properties. This review aims to summarize the current evidence explicating the actions of OPP in cardiovascular health and the mechanisms that maybe involved for the cardioprotective effects.
Collapse
Affiliation(s)
- Nurul ‘Izzah Ibrahim
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Syed Fairus
- Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang Selangor 43000, Malaysia;
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-3-9145-9545
| |
Collapse
|
12
|
He J, Miller CJ, Collins R, Wang D, Waite TD. Production of a Surface-Localized Oxidant during Oxygenation of Mackinawite (FeS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1167-1176. [PMID: 31858783 DOI: 10.1021/acs.est.9b03975] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The oxygenation of mackinawite (FeS) frequently occurs at anoxic-oxic interfaces in both natural and engineered systems such as intertidal sediment, in activated sludge in water treatment processes, and during sulfidized zero-valent iron particle corrosion. During reoxygenation events, FeS may drive a Fenton-like process leading to the production of strong oxidants though the details of this process are poorly understood. In this study, benzoic acid (BA) has been used to probe both the magnitude and identity of these strong oxidants under circumneutral pH conditions. The major product of BA oxidation during FeS oxygenation was found to be 2,5-dihydroxybenzoic acid (2,5-DHBA) rather than monohydroxybenzoic acids identified to be the major products in a range of hydroxyl radical (HO·)-dominated systems. Based upon relative reactivity with other competitive probes and nature of the hydroxybenzoate product distribution, it is hypothesized that the strong oxidant must be a surface-localized entity such as high-valent iron or surface-associated hydroxyl or sulfur-based radicals with reactivity differing from those formed in free solution. The importance of both the reactivity of the oxidant and adsorption of the substrate to the surface is demonstrated.
Collapse
Affiliation(s)
- Jie He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- UNSW Water Research Centre School of Civil and Environmental Engineering , UNSW , Sydney , NSW 2052 , Australia
| | - Christopher J Miller
- UNSW Water Research Centre School of Civil and Environmental Engineering , UNSW , Sydney , NSW 2052 , Australia
| | - Richard Collins
- UNSW Water Research Centre School of Civil and Environmental Engineering , UNSW , Sydney , NSW 2052 , Australia
| | - Dongsheng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - T David Waite
- UNSW Water Research Centre School of Civil and Environmental Engineering , UNSW , Sydney , NSW 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| |
Collapse
|
13
|
Acetylsalicylic acid and its metabolite gentisic acid may act as adjunctive agents in the treatment of psychiatric disorders. Behav Pharmacol 2019; 30:627-641. [DOI: 10.1097/fbp.0000000000000517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Bai X, Ng KKH, Hu JJ, Ye S, Yang D. Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annu Rev Biochem 2019; 88:605-633. [DOI: 10.1146/annurev-biochem-013118-111754] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.
Collapse
Affiliation(s)
| | | | - Jun Jacob Hu
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Sen Ye
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| |
Collapse
|
15
|
Georgiou CD, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit lateral-type sclerotial differentiation and growth in phytopathogenic fungi. Mycologia 2019. [DOI: 10.1080/00275514.2000.12061226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Christos D. Georgiou
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patra, 26100 Patra, Greece
| | - Nikos Tairis
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patra, 26100 Patra, Greece
| | - Anna Sotiropoulou
- Section of Genetics, Cell Biology and Development, Department of Biology, University of Patra, 26100 Patra, Greece
| |
Collapse
|
16
|
Kozinska A, Zadlo A, Labuz P, Broniec A, Pabisz P, Sarna T. The Ability of Functionalized Fullerenes and Surface-Modified TiO 2 Nanoparticles to Photosensitize Peroxidation of Lipids in Selected Model Systems. Photochem Photobiol 2018; 95:227-236. [PMID: 30466182 DOI: 10.1111/php.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
Photochemical properties of a new class of inorganic nanoparticles, namely a cationic C60 fullerene substituted with three quaternary pyrrolidinium groups (BB6) and a surface-modified nanocrystalline TiO2 with bromopyrogallol red (Brp@TiO2 ) were examined for their effectiveness in photogenerating singlet oxygen and free radicals. In particular, their ability to photosensitize peroxidation of unsaturated lipids was analyzed in POPC:cholesterol liposomes and B16 mouse melanoma cells employing a range of spectroscopic and analytical methods. Because melanoma cells typically are pigmented, we examined the effect of melanin on the photosensitized peroxidation of lipids in liposomes and B16 melanoma cells, mediated by BB6 and Brp@TiO2 nanoparticles. The obtained results suggest that peroxidation of unsaturated lipids, photosensitized by BB6 occurs mainly, although not exclusively, via Type II mechanism involving singlet oxygen. On the other hand, if surface-modified TiO2 is used as a photosensitizer, Type I mechanism of lipid peroxidation dominates, as indicated by the predominant formation of the free radical-dependent cholesterol oxidation products. The protective effect of melanin was particularly evident when BB6 was used as a photosensitizer, suggesting that melanin could efficiently interfere with Type II processes.
Collapse
Affiliation(s)
- Anna Kozinska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Zadlo
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Agnieszka Broniec
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Pawel Pabisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
17
|
Rashid GMM, Zhang X, Wilkinson RC, Fülöp V, Cottyn B, Baumberger S, Bugg TDH. Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical. ACS Chem Biol 2018; 13:2920-2929. [PMID: 30247873 DOI: 10.1021/acschembio.8b00557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl-Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20-40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.
Collapse
Affiliation(s)
| | | | | | | | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS,
Université Paris-Saclay, 78000 Versailles, France
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS,
Université Paris-Saclay, 78000 Versailles, France
| | | |
Collapse
|
18
|
Nyúl E, Kuzma M, Mayer M, Lakatos S, Almási A, Perjési P. HPLC study on Fenton-reaction initiated oxidation of salicylic acid. Biological relevance of the reaction in intestinal biotransformation of salicylic acid. Free Radic Res 2018; 52:1040-1051. [PMID: 30173586 DOI: 10.1080/10715762.2018.1517260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fenton-reaction initiated in vitro oxidation and in vivo oxidative biotransformation of salicylic acid was investigated by HPLC-UV-Vis method. By means of the developed high performance liquid chromatography (HPLC) method salicylic acid, catechol, and all the possible monohydroxylated derivatives of salicylic acid can be separated. Fenton oxidations were performed in acidic medium (pH 3.0) with two reagent molar ratios: (1) salicylic acid: iron: hydrogen peroxide 1:3:1 and (2) 1:0.3:1. The incubation samples were analysed at different time points of the reactions. The biological effect of elevated reactive oxygen species concentration on the intestinal metabolism of salicylic acid was investigated by an experimental diabetic rat model. HPLC-MS analysis of the in vitro samples revealed presence of 2,3- and 2,5-dihydroxybenzoic acids. The results give evidence for nonenzyme catalysed intestinal hydroxylation of xenobiotics.
Collapse
Affiliation(s)
- Eszter Nyúl
- a Institute of Pharmaceutical Chemistry , University of Pécs , Pécs , Hungary
| | - Mónika Kuzma
- a Institute of Pharmaceutical Chemistry , University of Pécs , Pécs , Hungary
| | - Mátyás Mayer
- b Department of Forensic Medicine , University of Pécs , Pécs , Hungary
| | - Sándor Lakatos
- a Institute of Pharmaceutical Chemistry , University of Pécs , Pécs , Hungary
| | - Attila Almási
- a Institute of Pharmaceutical Chemistry , University of Pécs , Pécs , Hungary
| | - Pál Perjési
- a Institute of Pharmaceutical Chemistry , University of Pécs , Pécs , Hungary
| |
Collapse
|
19
|
From epidemiology to treatment: Aspirin's prevention of brain and breast-cancer and cardioprotection may associate with its metabolite gentisic acid. Chem Biol Interact 2018; 291:29-39. [DOI: 10.1016/j.cbi.2018.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/21/2022]
|
20
|
Kuzma M, Kovács N, Sziva L, Maász G, Avar P, Perjési P. Oxidation of Hydroxy- and Dihydroxybenzoic Acids Under the Udenfriend's Conditions. An HPLC Study. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2018; 12:13-22. [PMID: 29492167 PMCID: PMC5815051 DOI: 10.2174/1874104501812010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 11/22/2022]
Abstract
Background: Non-enzymatic hydroxylation of aromatic compounds to the respective phenolic derivatives is a possible metabolic pathway of xenobiotics. The formed metabolites can undergo consecutive oxidative reactions with free radicals to form potential toxic molecules. Objective: Development of HPLC methods to separate, identify and quantitate the main products formed from salicylic acid, 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid under in vitro hydroxylation conditions (Udenfriend's system). Method: An RP-HPLC-UV-Vis method was developed to separate salicylic acid and isomeric dihydroxybenzoic acids formed in the Udenfriend's system. Confirmation of structures of the oxidized products of salicylic acid, 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid was performed by HPLC-ESI-MS/MS method. Results: The HPLC-UV-Vis method was evaluated for a number of validation characteristics (selectivity, repeatability and intermediate precision, LOD, LOQ and calibration range). It was found that oxidation of salicylic acid resulted in the formation of 2,3- and 2,5-dihydroxybenzoic acids. Furthermore, the hydroxylated metabolites can be further metabolized under the Udenfriend’s conditions. Conclusion: The results give evidence for possible involvement of the oxidized metabolites of salicylic acid in the development of biological action of salicylates at the site of inflammation, where high hydroxyl radical level can be detected.
Collapse
Affiliation(s)
- Mónika Kuzma
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Rókus str. 2, Hungary
| | - Nikoletta Kovács
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Rókus str. 2, Hungary
| | - Lilla Sziva
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Rókus str. 2, Hungary
| | - Gábor Maász
- Department of Biochemistry and Medical Chemistry, University of Pécs, H-7624 Pécs, Szigeti str. 12, Hungary
| | - Péter Avar
- Department of Biochemistry and Medical Chemistry, University of Pécs, H-7624 Pécs, Szigeti str. 12, Hungary
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Rókus str. 2, Hungary
| |
Collapse
|
21
|
Jiao H, Zhou K, Zhao J, Wang X, Lin H. A high-caloric diet rich in soy oil alleviates oxidative damage of skeletal muscles induced by dexamethasone in chickens. Redox Rep 2017; 23:68-82. [PMID: 29157186 PMCID: PMC6748688 DOI: 10.1080/13510002.2017.1405494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Glucocorticoids (GCs) can induce oxidative damage in
skeletal muscles. The purpose of this study was to demonstrate a high caloric
(HC) diet rich in soy oil would change the oxidative stress induced by a GC. Methods: The effect of dexamethasone (DEX) and HC diet on oxidative
stress in plasma, skeletal muscles (M. pectoralis major,
PM; M. biceps femoris, BF), and mitochondria were
determined. The biomarkers of oxidative damage and antioxidative enzyme activity
were determined. The fatty acid profile of muscles and the activities of complex
I and II in mitochondria were measured. Results: The results showed that DEX increased the concentrations of
oxidative damage markers in plasma, muscles, and mitochondria. The activity of
complex I was significantly suppressed by DEX. DEX-chickens had higher
proportions of polyunsaturated fatty acids and lower proportions of
monounsaturated fatty acids in the PM. A HC diet decreased the levels of
oxidative damage biomarkers in plasma, muscles, and mitochondria. The
interaction between DEX and diet suppressed the activities of complex I and II
in HC-chickens. Discussion: Oxidative damage in skeletal muscles and mitochondria
was the result of GC-induced suppression of the activity of mitochondrial
complex I. A HC diet improved the antioxidative capacity and reduced the
oxidative damage induced by the GC.
Collapse
Affiliation(s)
- Hongchao Jiao
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Kaifeng Zhou
- b Shandong Extension Station of Animal Husbandry , Jinan , Shandong , People's Republic of China
| | - Jingpeng Zhao
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Xiaojuan Wang
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Hai Lin
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| |
Collapse
|
22
|
Bai X, Huang Y, Lu M, Yang D. HKOH-1: A Highly Sensitive and Selective Fluorescent Probe for Detecting Endogenous Hydroxyl Radicals in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyu Bai
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Yueyang Huang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Mingyang Lu
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
23
|
Bai X, Huang Y, Lu M, Yang D. HKOH-1: A Highly Sensitive and Selective Fluorescent Probe for Detecting Endogenous Hydroxyl Radicals in Living Cells. Angew Chem Int Ed Engl 2017; 56:12873-12877. [DOI: 10.1002/anie.201705873] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoyu Bai
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Yueyang Huang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Mingyang Lu
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
24
|
Iyengar J, George A, Russell JC, Das DK. Generation of Free Radicals During Cold Injury and Rewarming. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153857449002400703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cold injury is often associated with irreversible cell damage. At present, however, the pathophysiology of cold injury is not known. This study examines the mechanism of such injury. New Zealand white rabbits were anesthetized and their femoral artery and vein were exposed. After baseline measurements one hind limb was cooled with a freezing mixture to 0°C, followed by rewarming. The other hind limb served as control. During the experiment blood samples were withdrawn from the femoral artery and vein for the subsequent analysis of creatine kinase (CK), lactate dehydrogenase (LDH), and malonaldehyde (MDA). At the end salicylate was injected through the femoral vein to trap any hydroxyl radical (OH°) formed. Rabbits were immediately sacrificed, and biop sies were withdrawn and frozen at liquid nitrogen temperature for analysis of OH° and high-energy phosphate compounds. The results indicate that local blood flow in the cold-exposed hind limb was reduced significantly, suggesting that cold injury was associated with ischemic insult. CK and LDH increased after cold exposure and increased further during rewarming. MDA formation followed a similar pattern. OH° generated after cooling increased significantly upon rewarming. These results indicate that re warming is associated with an episode of ischemia/reperfusion with simultane ous generation of free radicals, which, at least in part, may be responsible for cellular injury associated with rewarming.
Collapse
Affiliation(s)
- Jaisimha Iyengar
- Department of Surgery, Surgical Research Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Anna George
- Department of Surgery, Surgical Research Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - John C. Russell
- Department of Surgery, Surgical Research Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Dipak K. Das
- Department of Surgery, Surgical Research Center, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
25
|
Hydroxyl Radical Production in the Cortex and Striatum in a Rat Model of Focal Cerebral Ischemia. Can J Neurol Sci 2016. [DOI: 10.1017/s0317167100052276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ABSTRACT:Background:Increases in hydroxyl radical production have been used as evidence of oxidative stress in cerebral ischemia/ reperfusion. Ischemia can also induce increased dopamine release from the striatum that may contribute to hydroxyl radical formation. We have compared hydroxyl radical production in the cortex and striatum as an index of oxidative stress in a rat model of focal cerebral ischemia with cortical infarction.Methods:Using a three vessel occlusion model of focal cerebral ischemia combined with bilateral microdialysis, hydroxylation of 4-hydroxybenzoate (4HB) was continuously monitored in both hemispheres in either the lateral striatum or frontoparietal cortex. The ischemia protocol consisted of one hour equilibration, 30 min of three vessel occlusion, then release of the contralateral common carotid artery (CCA) for 2.5 h.Results:Induction of ischemia resulted in a 30-fold increase in dopamine release in the lateral striatum. Compared to the nonischemic striatum, the ratio of the hydroxylation product 3,4-dihydroxybenzoate (34DHB) to 4HB (trapping agent) in the ipsilateral striatum increased significantly 30 min after ischemia induction. In contrast, during the 30 min of three vessel occlusion there was no increase in the ratio in the cortex. Following the release of the contralateral CCA, the ratio from the ischemic cortex increased significantly compared to sham-operated animals. However, under all circumstances, the 34DHB/4HB ratio was greater in the striatum than in the cortex.Conclusion:The increase in the 34DHB/4HB ratio in the lateral striatum coincides with the increased dopamine release suggesting a role for dopamine oxidation in the increased production of hydroxyl radicals. The significant increase in the ratio from the ischemic cortex compared to that from the sham-operated animals is consistent with increased oxidative stress induced by ischemia. However, the lower 34DHB/4HB ratio in the cortex whichdoes not receive dopaminergic innervation compared to the striatum suggests a different mechanism for hydroxyl radical production. Such an alternate mechanism may represent a more toxic oxidative insult that contributes to infarction.
Collapse
|
26
|
Capelle S, Cotelle N, Cotelle P, Bernier JL, Catteau JP. Antioxidant activities of dihydroxylated salicylic acid derivatives. Redox Rep 2016; 1:131-7. [DOI: 10.1080/13510002.1995.11746971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Bailey SM, Fauconnet AL, Reinke LA. Comparison of salicylate and D-phenylalanine for detection of hydroxyl radicals in chemical and biological reactions. Redox Rep 2016; 3:17-22. [DOI: 10.1080/13510002.1997.11747086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Kettle AJ, Winterbourn CC. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep 2016; 3:3-15. [PMID: 27414766 DOI: 10.1080/13510002.1997.11747085] [Citation(s) in RCA: 476] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Hu R, Zhang L, Hu J. Study on the kinetics and transformation products of salicylic acid in water via ozonation. CHEMOSPHERE 2016; 153:394-404. [PMID: 27031802 DOI: 10.1016/j.chemosphere.2016.03.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of salicylic acid in water, in terms of transformation products, kinetic, mechanism, as well as degradation pathways.
Collapse
Affiliation(s)
- Ruikang Hu
- Department of Civil & Environmental Engineering, The National University of Singapore, Block E1A, #07-03, No.1 Engineering Drive 2, Singapore 117576, Republic of Singapore; PUB Water Quality Laboratory, Water Quality Office, PUB, 82 Toh Guan Road East, #04-03, Singapore 608576, Republic of Singapore
| | - Lifeng Zhang
- PUB Water Quality Laboratory, Water Quality Office, PUB, 82 Toh Guan Road East, #04-03, Singapore 608576, Republic of Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, The National University of Singapore, Block E1A, #07-03, No.1 Engineering Drive 2, Singapore 117576, Republic of Singapore.
| |
Collapse
|
30
|
Wang M, Wang J, Sun H, Han S, Feng S, Shi L, Meng P, Li J, Huang P, Sun Z. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. Int J Nanomedicine 2016; 11:2319-28. [PMID: 27307732 PMCID: PMC4887118 DOI: 10.2147/ijn.s103489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Jilong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Hubo Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Sihai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Shuai Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Lu Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Peijun Meng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Jiayi Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Peili Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
31
|
Ipson BR, Fisher AL. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress. Ageing Res Rev 2016; 27:93-107. [PMID: 27039887 DOI: 10.1016/j.arr.2016.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
Abstract
The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress.
Collapse
Affiliation(s)
- Brett R Ipson
- MD/PhD Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Cell and Structural Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alfred L Fisher
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Medicine, Division of Geriatrics, Gerontology, and Palliative Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; GRECC, South Texas VA Health Care System, San Antonio, TX, United States.
| |
Collapse
|
32
|
Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1046-1070. [PMID: 26689748 DOI: 10.1021/acs.jafc.5b04744] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Mustafa Özyürek
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Kubilay Güçlü
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
33
|
Huang C, Jiao H, Song Z, Zhao J, Wang X, Lin H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J Anim Sci 2016; 93:2144-53. [PMID: 26020310 DOI: 10.2527/jas.2014-8739] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to explore the linkage of oxidative stress occurring in mitochondria, skeletal muscles, and plasma in heat stress-challenged broilers. At d 35, 24 broilers were randomly assigned to 2 treatments: rearing at high temperature (32 ± 1°C; heat stress group) or normal temperature (21 ± 1.2°C; control) for 7 d. The oxidative damage of lipid, DNA, and protein and the activities of antioxidative enzymes were measured, respectively, in plasma, skeletal muscles (breast and thigh muscles), and skeletal muscle mitochondria. The result showed that heat exposure increased (P < 0.01) plasma concentrations of thiobarbituric acid reacting substances (TBARS) and 8-hydroxydeoxyguanosine (8-OHdG) whereas it deceased total antioxidant capacity (P < 0.05) and ability to inhibit hydroxyl radicals (AIHR; P< 0.001). Protein carbonyl and TBARS levels were increased (P < 0.001) by heat stress in breast and thigh muscles. In skeletal muscle mitochondria, heat stress increased (P < 0.05) 8-OHdG and suppressed AIHR. Plasma activity of superoxide dismutase (SOD) was increased (P< 0.001) whereas glutathione peroxidase (GSH-Px) was suppressed by heat stress (P < 0.001). Heat exposure increased SOD and catalase activities in breast muscle (P < 0.01) but the reverse was true in thigh muscle (P < 0.05). Glutathione peroxidase was increased in thigh muscle (P < 0.001) but was not changed in breast muscle (P > 0.05). Heat stress increased SOD (P < 0.05) and decreased GSH-Px activities (P < 0.05) of mitochondria regardless of muscle types. Plasma allantoin level increased (P < 0.01) correspondingly with urate (P < 0.001) in heat-stressed broilers, indicating that urate could serve as an antioxidant to enhance the antioxidative capacity during stress in a concentration-dependent manner. The activities of respiratory chain complexes I and III were estimated in skeletal muscle mitochondria. Mitochondrial complex I activity was suppressed (P < 0.01) by heat exposure in breast and thigh muscles but complex III activity was elevated only in breast muscle (P < 0.01) of heat-stressed broiler. The fatty acid composition in skeletal muscle was not influenced by heat stress. In conclusion, suppressed mitochondrial complex I activity is associated with oxidative stress induced by heat exposure, which, in turn, is linked with the oxidative damages in muscle tissues and plasma.
Collapse
|
34
|
Ninomiya K, Yamashita T, Tanabe Y, Imai M, Takahashi K, Shimizu N. Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic capabilities. ULTRASONICS SONOCHEMISTRY 2016; 28:54-61. [PMID: 26384883 DOI: 10.1016/j.ultsonch.2015.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30s, 1.2 W/cm(2), duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takahiro Yamashita
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yamato Tanabe
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Imai
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Nobuaki Shimizu
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
35
|
Borges RS, Castle SL. The antioxidant properties of salicylate derivatives: A possible new mechanism of anti-inflammatory activity. Bioorg Med Chem Lett 2015; 25:4808-4811. [DOI: 10.1016/j.bmcl.2015.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023]
|
36
|
Bojić M, Sedgeman CA, Nagy LD, Guengerich FP. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450. Eur J Pharm Sci 2015; 73:49-56. [PMID: 25840124 DOI: 10.1016/j.ejps.2015.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids-salicyluric acid and gentisuric acid-and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1.
Collapse
Affiliation(s)
- Mirza Bojić
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - Carl A Sedgeman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - Leslie D Nagy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
37
|
Mathew S, Abraham TE, Zakaria ZA. Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology 2015; 52:5790-8. [PMID: 26344993 DOI: 10.1007/s13197-014-1704-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2014] [Accepted: 12/26/2014] [Indexed: 02/06/2023]
Abstract
The free radical scavenging activity and reducing power of 16 phenolic compounds including four hydroxycinnamic acid derivatives namely ferulic acid, caffeic acid, sinapic acid and p-coumaric acid, benzoic acid and its derivatives namely protocatechuic acid, gallic acid and vanillic acid, benzene derivatives namely vanillin, vanillyl alcohol, veratryl alcohol, veratraldehyde, pyrogallol, guaiacol and two synthetic antioxidants, butylated hydroxy anisole (BHA) and propyl gallate were evaluated using 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH(•)), 2,2'-Azinobis-3- ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), Hydroxyl radical ((•)OH) and Superoxide radical (O2 (•-)) scavenging assays and reduction potential assay. By virtue of their hydrogen donating ability, phenolic compounds with multiple hydroxyl groups such as protocatechuic acid, pyrogallol, caffeic acid, gallic acid and propyl gallate exhibited higher free radical scavenging activity especially against DPPH(•) and O2 (•-). The hydroxylated cinnamates such as ferulic acid and caffeic acid were in general better scavengers than their benzoic acid counter parts such as vanillic acid and protocatechuic acid. All the phenolic compounds tested exhibited more than 85 % scavenging due to the high reactivity of the hydroxyl radical. Phenolic compounds with multiple hydroxyl groups also exhibited high redox potential. Exploring the radical scavenging and reducing properties of antioxidants especially those which are found naturally in plant sources are of great interest due to their protective roles in biological systems.
Collapse
Affiliation(s)
- Sindhu Mathew
- Chemical Science and Technology Division, National Institute of Interdisciplinary Science and Technology (NIIST, CSIR), Trivandrum, 695019 Kerala India ; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| | - T Emilia Abraham
- Chemical Science and Technology Division, National Institute of Interdisciplinary Science and Technology (NIIST, CSIR), Trivandrum, 695019 Kerala India
| | - Zainul Akmar Zakaria
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
38
|
Kamble P, Litvinov D, Aluganti Narasimhulu C, Jiang X, Parthasarathy S. Aspirin may influence cellular energy status. Eur J Pharmacol 2014; 749:12-9. [PMID: 25557764 DOI: 10.1016/j.ejphar.2014.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022]
Abstract
In our previous findings, we have demonstrated that aspirin/acetyl salicylic acid (ASA) might induce sirtuins via aryl hydrocarbon receptor (Ah receptor). Induction effects included an increase in cellular paraoxonase 1 (PON1) activity and apolipoprotein A1 (ApoA1) gene expression. As predicted, ASA and salicylic acid (SA) treatment resulted in generation of H2O2, which is known to be an inducer of mitochondrial gene Sirt4 and other downstream target genes of Sirt1. Our current mass spectroscopic studies further confirm the metabolism of the drugs ASA and SA. Our studies show that HepG2 cells readily converted ASA to SA, which was then metabolized to 2,3-DHBA. HepG2 cells transfected with aryl hydrocarbon receptor siRNA upon treatment with SA showed the absence of a DHBA peak as measured by LC-MS/MS. MS studies for Sirt1 action also showed a peak at 180.9 m/z for the deacetylated and chlorinated product formed from N-acetyl lε-lysine. Thus an increase in Sirt4, Nrf2, Tfam, UCP1, eNOS, HO1 and STAT3 genes could profoundly affect mitochondrial function, cholesterol homeostasis, and fatty acid oxidation, suggesting that ASA could be beneficial beyond simply its ability to inhibit cyclooxygenase.
Collapse
Affiliation(s)
- Pratibha Kamble
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Dmitry Litvinov
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | | | - Xueting Jiang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA.
| |
Collapse
|
39
|
Tatsumi H, Tsuchiya Y, Sakamoto K. Sensitive electrochemical measurement of hydroxyl radical generation induced by the xanthine-xanthine oxidase system. Anal Biochem 2014; 467:22-7. [PMID: 25180984 DOI: 10.1016/j.ab.2014.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 11/25/2022]
Abstract
A sensitive electrochemical measurement system for hydroxyl radical (OH) was developed using enzyme-catalyzed signal amplification. In the presence of 2,6-xylenol as a trapping agent, glucose as a substrate, and pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) as a catalyst, the amperometric signal of the trapping adduct 2,6-dimethylhydroquinone (DMHQ) produced by the hydroxylation of 2,6-xylenol was able to be amplified and detected sensitively. The limit of detection (signal/noise [S/N]=3) for DMHQ was 1 nM. There was no significant interference from urate and other oxidizable compounds in the reaction mixture at the applied potential of 0V versus Ag/AgCl. This method was employed to observe the OH generation induced by the xanthine-xanthine oxidase (XO) system. The reaction rates of the DMHQ production induced from the xanthine-XO system in the presence and absence of various Fe(III) complexes and proteins were compared. Those with a free coordination site on the Fe atom effectively enhanced the OH generation.
Collapse
Affiliation(s)
- Hirosuke Tatsumi
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan.
| | - Yui Tsuchiya
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Koichi Sakamoto
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
40
|
Platkov M, Tirosh R, Kaufman M, Zurgil N, Deutsch M. Photobleaching of fluorescein as a probe for oxidative stress in single cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:306-14. [PMID: 25218588 DOI: 10.1016/j.jphotobiol.2014.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND ROS are involved in the regulation of many physiological and pathological processes. Apoptosis and necrosis are processes that are induced by changes in concentrations of Reactive Oxygen Species (ROS). This study aims to detect and quantify the cellular response to changing ROS concentrations in the scope of apoptosis and necrosis. METHODS Photobleaching of the fluorescent substrate fluorescein is used as a probe to detect the response of individual Jurkat-T-lymphocytes and Prostate-Cancer-3(PC-3) cells to oxidative stress, induced by hydrogen peroxide (H₂O₂). A kinetic model is proposed to describe changes in intracellular dye quantities due to photobleaching, dye hydrolysis, influx and leakage, yielding a single time-dependent decaying exponent+constant. RESULTS Fluorescein photobleaching is controlled and used to detect intracellular ROS. An increase in the decay time of fluorescence of intracellular fluorescein (slow photobleaching) was measured from cells incubated with H₂O₂ at 50 μM. At higher H₂O₂ concentrations a decrease in the decay time was measured (fast photobleaching), in contrast to in vitro results with fluorescein and H₂O₂ in phosphate buffer saline (PBS), where the addition of H₂O₂ decreases the decay time, regardless of the irradiation dose used. CONCLUSIONS The anomalous, ROS-concentration dependent reduction of the photobleaching rate in cells, as opposed to solutions, might indicate on the regulation of the activity of intracellular oxidative-stress protective mechanisms, as seen earlier with other methods. SIGNIFICANCE Assessing photobleaching via the time decay of the fluorescence intensity of an ROS-sensitive fluorophore may be adapted to monitor oxidative stress or ROS-related processes in cells.
Collapse
Affiliation(s)
- Max Platkov
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | - Reuven Tirosh
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Menahem Kaufman
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Naomi Zurgil
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mordechai Deutsch
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
41
|
Szabó L, Tóth T, Homlok R, Rácz G, Takács E, Wojnárovits L. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Tan W, Verma V, Jeong K, Kim SY, Jung CH, Lee SE, Rhee JH. Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore. Front Microbiol 2014; 5:1. [PMID: 24478763 PMCID: PMC3900857 DOI: 10.3389/fmicb.2014.00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/03/2014] [Indexed: 01/04/2023] Open
Abstract
Vibrio vulnificus is a halophilic estuarine bacterium that causes fatal septicemia and necrotizing wound infections in humans. Virulent V. vulnificus isolates produce a catechol siderophore called vulnibactin, made up of one residue of 2, 3-dihydroxybenzoic acid (2, 3-DHBA) and two residues of salicylic acid (SA). Vulnibactin biosynthetic genes (VV2_0828 to VV2_0844) are clustered at one locus of chromosome 2, expression of which is significantly up-regulated in vivo. In the present study, we decipher the biosynthetic network of vulnibactin, focusing specifically on genes around SA and 2, 3-DHBA biosynthetic steps. Deletion mutant of isochorismate pyruvate lyase (VV2_0839) or 2, 3-dihydroxybenzoate-2, 3-dehydrogenase (VV2_0834) showed retarded growth under iron-limited conditions though the latter showed more significant growth defect than the former, suggesting a dominant role of 2, 3-DHBA in the vulnibactin biosynthesis. A double deletion mutant of VV2_0839 and VV2_0834 manifested additional growth defect under iron limitation. Though the growth defect of respective single deletion mutants could be restored by exogenous SA or 2, 3-DHBA, only 2, 3-DHBA could rescue the double mutant when supplied alone. However, double mutant could be rescued with SA only when hydrogen peroxide was supplied exogenously, suggesting a chemical conversion of SA to 2, 3-DHBA. Assembly of two SA and one 2, 3-DHBA into vulnibactin was mediated by two AMP ligase genes (VV2_0836 and VV2_0840). VV2_0836 deletion mutant showed more significant growth defect under iron limitation, suggesting its dominant function. In conclusion, using molecular genetic analytical tools, we confirm that vulnibactin is assembled of both 2, 3-DHBA and SA. However, conversion of SA to 2, 3-DHBA in presence of hydrogen peroxide and growth profile of AMP ligase mutants suggest a plausible existence of yet unidentified alternative siderophore that may be composed solely of 2, 3-DHBA.
Collapse
Affiliation(s)
- Wenzhi Tan
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School Gwangju, South Korea
| | - Vivek Verma
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School Gwangju, South Korea
| | - Kwangjoon Jeong
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School Gwangju, South Korea
| | - Soo Young Kim
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School Gwangju, South Korea
| | - Che-Hun Jung
- Department of Chemistry, Chonnam National University College of Natural Science Gwangju, South Korea
| | - Shee Eun Lee
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School Gwangju, South Korea ; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University Gwangju, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School Gwangju, South Korea
| |
Collapse
|
43
|
Baltazar MT, Dinis-Oliveira RJ, Bastos MDL, Duarte JA, Carvalho F. Lysine acetylsalicylate improves the safety of paraquat formulation in rats by increasing its elimination and preventing lung and kidney injury. Toxicol Res (Camb) 2014; 3:266. [DOI: 10.1039/c3tx50102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
44
|
Lipinski B, Pretorius E. The role of iron-induced fibrin in the pathogenesis of Alzheimer's disease and the protective role of magnesium. Front Hum Neurosci 2013; 7:735. [PMID: 24194714 PMCID: PMC3810650 DOI: 10.3389/fnhum.2013.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022] Open
Abstract
Amyloid hypothesis of Alzheimer's disease (AD) has recently been challenged by the increasing evidence for the role of vascular and hemostatic components that impair oxygen delivery to the brain. One such component is fibrin clots, which, when they become resistant to thrombolysis, can cause chronic inflammation. It is not known, however, why some cerebral thrombi are resistant to the fibrinolytic degradation, whereas fibrin clots formed at the site of vessel wall injuries are completely, although gradually, removed to ensure proper wound healing. This phenomenon can now be explained in terms of the iron-induced free radicals that generate fibrin-like polymers remarkably resistant to the proteolytic degradation. It should be noted that similar insoluble deposits are present in AD brains in the form of aggregates with Abeta peptides that are resistant to fibrinolytic degradation. In addition, iron-induced fibrin fibers can irreversibly trap red blood cells (RBCs) and in this way obstruct oxygen delivery to the brain and induce chronic hypoxia that may contribute to AD. The RBC-fibrin aggregates can be disaggregated by magnesium ions and can also be prevented by certain polyphenols that are known to have beneficial effects in AD. In conclusion, we argue that AD can be prevented by: (1) limiting the dietary supply of trivalent iron contained in red and processed meat; (2) increasing the intake of chlorophyll-derived magnesium; and (3) consumption of foods rich in polyphenolic substances and certain aliphatic and aromatic unsaturated compounds. These dietary components are present in the Mediterranean diet known to be associated with the lower incidence of AD and other degenerative diseases.
Collapse
|
45
|
Ahmadi R, Pishghadam S, Mollaamine F, Zand Monfared MR. Comparing the effects of ginger and glibenclamide on dihydroxybenzoic metabolites produced in stz-induced diabetic rats. Int J Endocrinol Metab 2013; 11:e10266. [PMID: 24719624 PMCID: PMC3968999 DOI: 10.5812/ijem.10266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/30/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate the effect of ginger and glibenclamide on oxidative stress markers. Oxidative stress is caused by an unbalance between a relative overload of oxidants and depletion of antioxidants, as implicated in the pathogenesis of several chronic diseases, including atherosclerosis and diabetes mellitus. Regarding the role of oxidative stress in the pathogenesis of diabetes mellitus, we investigated the effect of ginger and glibenclamide in diabetic rats induced bystreptozocin (STZ). OBJECTIVES This study assessed the effects of ginger and glibenclamide on dihydroxybenzoic acid metabolites in diabetic rats. MATERIALS AND METHODS In this study 30 Wistar strain male rats were divided into five groups: Group 1: Normal control receiving normal saline (0.9 0/0), Group 2: control DMSO (Dimethyl sulfoxide) (as solvent of glibenclamide), Group 3: Diabetic control receiving Streptozocin (STZ ) (50 mg/kg) ,Group 4: diabetic+ Ginger Extract: this group received ginger ethanolic extract (200 mg/kg) via IP (Intraperitoneally) injection for 30 days, and Group 5 diabetic rats received glibenclamide (0.5 m/kg). Production of hydroxyl radicals was examined in the diabetic rats induced by streptozocin. Hydroxyl radicals were generated in plasma of the hyperglycemic rats, and were quantitatively assayed by trapping hydroxyl radicals with salicylic acid so as to produce 2,3-and 2,5-dihydroxybenzoic acid. RESULTS Production of hydroxyl radicals increased; therefore, by using salicylic acid, hydroxyl radicals were trapped and 2,3dihydroxybenzoic acid and 2,5dihydroxybenzoic acid metabolites were formed then measured by HPLC and spectrophotometer. Rats receiving ginger extract and glibenclamide showed decreased level of metabolites compared to the diabetic controls (P <0/001). This means that antioxidants act as scavenger of free radicals. CONCLUSIONS Comparative effect of ginger and glibenclamide also showed that glibenclamide has antioxidant effect as a scavenger of free radical, but ginger is more capable of eliminating them.
Collapse
Affiliation(s)
- Ramesh Ahmadi
- Department of Physiology, Islamic Azad University, Qom, IR Iran
- Corresponding author: Ramesh Ahmadi, Islamic Azad university of Qom, 15 Khordad St, Qom, IR Iran. Tel:+98-2537780001, Fax:+98-2137770001, E-mail:
| | | | | | | |
Collapse
|
46
|
Chen T, Hu Y, Cen Y, Chu X, Lu Y. A Dual-Emission Fluorescent Nanocomplex of Gold-Cluster-Decorated Silica Particles for Live Cell Imaging of Highly Reactive Oxygen Species. J Am Chem Soc 2013; 135:11595-602. [DOI: 10.1021/ja4035939] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tingting Chen
- State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Hunan University, Changsha,
410082, PR China
| | - Yihui Hu
- State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Hunan University, Changsha,
410082, PR China
| | - Yao Cen
- State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Hunan University, Changsha,
410082, PR China
| | - Xia Chu
- State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Hunan University, Changsha,
410082, PR China
| | - Yi Lu
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Sasaki T, Mogi SI, Kaneko T, Kojima H, Katoh S, Sano A, Kojima S. Relationship between tissue hydroxyl radical and oxidatively modified macromolecule levels. Geriatr Gerontol Int 2013; 14:498-507. [DOI: 10.1111/ggi.12107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Toru Sasaki
- Research Team for Mechanism of Aging, Redox Research; Tokyo Metropolitan Institute of Gerontology; Itabashi Tokyo Japan
| | - Sho-Ichi Mogi
- Research Team for Mechanism of Aging, Redox Research; Tokyo Metropolitan Institute of Gerontology; Itabashi Tokyo Japan
- Department of Radiation Biosciences; Faculty of Pharmaceutical Sciences, Tokyo University of Science; Noda Chiba Japan
| | - Takao Kaneko
- Research Team for Mechanism of Aging, Redox Research; Tokyo Metropolitan Institute of Gerontology; Itabashi Tokyo Japan
| | - Haruka Kojima
- Research Team for Mechanism of Aging, Redox Research; Tokyo Metropolitan Institute of Gerontology; Itabashi Tokyo Japan
- Department of Analytical Chemistry; Faculty of Pharmaceutical Sciences, Tokyo University of Science; Noda Chiba Japan
| | - Shinsuke Katoh
- Department of Radiological Sciences; Yokohama College of Pharmacy; Yokohama city Kanagawa Japan
| | - Akira Sano
- Department of Analytical Chemistry; Faculty of Pharmaceutical Sciences, Tokyo University of Science; Noda Chiba Japan
| | - Shuji Kojima
- Department of Radiation Biosciences; Faculty of Pharmaceutical Sciences, Tokyo University of Science; Noda Chiba Japan
| |
Collapse
|
48
|
Ninomiya K, Takamatsu H, Onishi A, Takahashi K, Shimizu N. Sonocatalytic-Fenton reaction for enhanced OH radical generation and its application to lignin degradation. ULTRASONICS SONOCHEMISTRY 2013; 20:1092-7. [PMID: 23414832 DOI: 10.1016/j.ultsonch.2013.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 05/20/2023]
Abstract
The present study demonstrated that the combined use of the sonocatalytic reaction (using ultrasound and titanium dioxide) and the Fenton reaction exhibited synergistically enhanced hydroxyl (OH) radical generation. Dihydroxybenzoic acid (DHBA) concentration as index of OH radical generation was 13 and 115 μM at 10 min in the sonocatalytic reaction and Fenton reaction, respectively. On the other hand, the DHBA concentration was 378 μM at 10 min in the sonocatalytic-Fenton reaction. The sonocatalytic-Fenton reaction was used for degradation of lignin. The lignin degradation ratio was 1.8%, 49.9%, and 60.0% at 180 min in the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Moreover, the sonocatalytic-Fenton reaction was applied to pretreatment of lignocellulosic biomass to enhance subsequent enzymatic saccharification. The cellulose saccharification ratio was 11%, 14%, 16% and 25% at 360 min of pretreatment by control reaction, the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
49
|
Madathil SK, Karuppagounder SS, Mohanakumar KP. Sodium salicylate protects against rotenone-induced Parkinsonism in rats. Synapse 2013; 67:502-14. [DOI: 10.1002/syn.21658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sindhu K. Madathil
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Saravanan S. Karuppagounder
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| |
Collapse
|
50
|
Pochettino AA, Bongiovanni B, Duffard RO, Evangelista de Duffard AM. Oxidative stress in ventral prostate, ovary, and breast by 2,4-dichlorophenoxyacetic acid in pre- and postnatal exposed rats. ENVIRONMENTAL TOXICOLOGY 2013; 28:1-10. [PMID: 21374790 DOI: 10.1002/tox.20690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used in agriculture and forestry since the 1940s. 2,4-D has been shown to produce a wide range of adverse effects-from embryotoxicity and teratogenicity to neurotoxicity-on animal and human health. The purpose of this study was to determine the possible effects of pre- and postnatal exposure to 2,4-D on oxidative stress in ventral prostate, ovary and breast. Pregnant rats were daily exposed to oral doses of 70 mg/kg/day of 2,4-D from 16 days of gestation up to 23 days after delivery. Then, the pups were sacrificed by decapitation at postnatal day (PND) 45, 60, or 90. Antioxidant enzyme activities and some parameters of the oxidative stress were assessed in ventral prostate, breast, and ovary. Results show that 2,4-D produced three different effects. First, it increased the concentration of some radical oxygen species and the rates of lipid peroxidation and protein oxidation in ventral prostate, thereby causing oxidative stress at all ages studied. Although an increase in the activity of some antioxidant enzymes was detected, this seemed to have been not enough to counteract the oxidative stress. Second, 2,4-D promoted the oxidative stress in the breasts, mainly during puberty and adulthood, probably because the developing gland is more sensitive to xenobiotics than the adult organ. Third, 2,4-D altered the activity of some antioxidant enzymes and increased lipid peroxide concentration in the ovary. This effect could reflect the variety of ovarian cell types and their different responses to endocrine changes during development.
Collapse
Affiliation(s)
- Aristides A Pochettino
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, Department of Food Science and Environment, National University of Rosario, Rosario, Argentina.
| | | | | | | |
Collapse
|