1
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2024:10.1038/s41581-024-00885-3. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
4
|
Xie S, Li Y, Suo Y, Wang Z, Zhang B, Li J, Huang J, Wang Y, Ma C, Lin D, Ma T, Shao Y. Effect of Organic, Nano, and Inorganic Zinc Sources on Growth Performance, Antioxidant Function, and Intestinal Health of Young Broilers. Biol Trace Elem Res 2024:10.1007/s12011-024-04341-y. [PMID: 39122963 DOI: 10.1007/s12011-024-04341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The study aimed to determine the effects of different zinc sources on growth performance, antioxidant function, and intestinal health of broilers. In total, 240 Ross 308 male broilers with similar weight were randomly assigned to 4 treatments, including zinc sulfate, methionine zinc (Zn-Met), glycine zinc (Zn-Gly), and nano-zinc oxide (ZnO-NPs), with 80 mg zinc/kg diet supplementation. The experiment lasted for 21 days. Results showed dietary supplemental Zn-Gly and Zn-Met increased average daily gain during 1-14 days (P = 0.011), and Zn-Gly, Zn-Met, and ZnO-NP supplementation decreased the ratio of feed to gain during 1-21 days (P = 0.003) compared to zinc sulfate. ZnO-NPs supplementation tended to increase total SOD activity (P = 0.068) and had higher serum IgA content and lower MDA level than the other three groups (P < 0.05). Compared with zinc sulfate, Zn-Met and ZnO-NP supplementation decreased TNF-α mRNA expression (P = 0.048). However, serum biochemical indices, intestinal morphology, and mRNA expressions of tight junction proteins were not affected by different zinc sources (P > 0.05). A differential trend was observed in the beta diversity of bacterial communities among four groups (P = 0.082). The LEfSe analysis showed that bacterial genera Blautia, Ruminococcaceae, Clostridia, Anaerostipes, Eubacterium_ventriosum, Merdibacter, and Oscillospira were enriched in the ZnSO4 group, and the genera Eubacterium_hallii and Anaerotruncus were enriched in the Zn-Gly group. The genera UCG-009 and UCG010 were enriched in ZnO-NPs and Zn-Met groups, respectively. It should be stated dietary supplemental Zn-Met improved growth performance, ZnO-NPs promoted IgA production and reduced occurrences of oxidative stress and inflammation, and different zinc sources enriched different jejunal bacteria genera.
Collapse
Affiliation(s)
- Shuxian Xie
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100090, China
| | - Yipu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Yanrui Suo
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bo Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianguo Huang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yalei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunjian Ma
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongmei Lin
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Tenghe Ma
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
5
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Withanage T, Lal M, Wachtel E, Patchornik G. Conjugated Nonionic Detergent Micelles: An Efficient Purification Platform for Dimeric Human Immunoglobulin A. ACS Med Chem Lett 2024; 15:979-986. [PMID: 38894919 PMCID: PMC11181477 DOI: 10.1021/acsmedchemlett.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
The SARS-COV-2 virus is a deadly agent of inflammatory respiratory disease. Since 2020, studies have focused on developing new therapies based on galactose-rich IgA antibodies. Clinical surveys have also revealed that galactose-deficient IgA1 polymerizes in serum, producing IgA nephropathy, which is a common cause of kidney failure in young adults. Here we show that IgA1-IgA2 dimers are efficiently and economically purified in solution via conjugated nonionic surfactant micellar aggregates. Quantitative capture at pH 7 and extraction at pH 6.5 can avoid antibody exposure to acidic, potentially denaturing conditions. Brij-O20 aggregates lead to the highest process yields (88-91%) and purity (94%). Recovered IgA dimers preserve their native secondary structure and do not self-associate. Increasing the reaction volume has little impact on yield or purity. By introducing an efficient, inexpensive IgA purification protocol, we assist pharmaceutical firms and research laboratories in developing new IgA-based therapies as well as in increasing our understanding of IgA1 polymerization.
Collapse
Affiliation(s)
| | - Mitra Lal
- Department
of Chemical Sciences, Ariel University, 70400 Ariel, Israel
| | - Ellen Wachtel
- Faculty
of Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Guy Patchornik
- Department
of Chemical Sciences, Ariel University, 70400 Ariel, Israel
| |
Collapse
|
7
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Nemčić M, Shkunnikova S, Kifer D, Plavša B, Vučić Lovrenčić M, Morahan G, Duvnjak L, Pociot F, Gornik O. N-glycosylation of immunoglobulin A in children and adults with type 1 diabetes mellitus. Heliyon 2024; 10:e30529. [PMID: 38765169 PMCID: PMC11098780 DOI: 10.1016/j.heliyon.2024.e30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Aims To identify N-glycan structures on immunoglobulin A related to type 1 diabetes mellitus among children at the disease onset and adults with type 1 diabetes mellitus. Methods Human polyclonal IgA N-glycans were profiled using hydrophilic interaction ultra performance liquid chromatography in two cohorts. The first cohort consisted of 62 children at the onset of type 1 diabetes mellitus and 86 of their healthy siblings. The second cohort contained 84 adults with the disease and 84 controls. Associations between N-glycans and type 1 diabetes mellitus were tested using linear mixed model for the paediatric cohort, or general linear model for the adult cohort. False discovery rate was controlled by Benjamini-Hochberg method modified by Li and Ji. Results In children, an increase in a single oligomannose N-glycan was associated with type 1 diabetes mellitus (B = 0.529, p = 0.0067). N-glycome of the adults displayed increased branching (B = 0.466, p = 0.0052), trigalactosylation (B = 0.466, p = 0.0052), trisialylation (B = 0.629, p < 0.001), and mannosylation (B = 0.604, p < 0.001). The strongest association with the disease was a decrease in immunoglobulin A core fucosylation (B = -0.900, p < 0.001). Conclusions Changes in immunoglobulin N-glycosylation patterns in type 1 diabetes point to disruptions in immunoglobulin A catabolism and dysregulated inflammatory capabilities of the antibody, potentially impacting immune responses and inflammation.
Collapse
Affiliation(s)
- Matej Nemčić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | - Sofia Shkunnikova
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | - Domagoj Kifer
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | - Branimir Plavša
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| | | | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, 6 Verdun St, Nedlands, WA, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Parkville, Victoria, 3010, VIC, Australia
| | - Lea Duvnjak
- Department of Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4A, Zagreb, Croatia
| | - Flemming Pociot
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, Zagreb, Croatia
| |
Collapse
|
10
|
Chiang S, Grogan T, Kamounah S, Wei F, Tayob N, Kim JY, Kyun Park J, Akin D, Elashoff DA, Pedersen AML, Song YW, Wong DTW, Chia D. Distinctive profile of monomeric and polymeric anti-SSA/Ro52 immunoglobulin A1 isoforms in saliva of patients with primary Sjögren's syndrome and Sicca. RMD Open 2024; 10:e003666. [PMID: 38599651 PMCID: PMC11015269 DOI: 10.1136/rmdopen-2023-003666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE Primary Sjögren's syndrome (pSS) is the second most common chronic autoimmune connective tissue disease. Autoantibodies, immunoglobulin (IgG) anti-SSA/Ro, in serum is a key diagnostic feature of pSS. Since pSS is a disease of the salivary gland, we investigated anti-SSA/Ro52 in saliva. METHODS Using a novel electrochemical detection platform, Electric Field-Induced Release and Measurement, we measured IgG/M/A, IgG, IgA, IgA isotypes (IgA1 and IgA2) and IgA1 subclasses (polymeric and monomeric IgA1) to anti-SSA/Ro52 in saliva supernatant of 34 pSS, 35 dry eyes and dry mouth (patients with Sicca) and 41 health controls. RESULTS Saliva IgG/M/A, IgG, IgA, IgA isotypes and IgA1 subclasses to anti-SSA/Ro52 differed significantly between pSS, non-pSS Sicca and healthy subjects. Elevated monomeric IgA1 was observed in patients with non-pSS Sicca while elevated polymeric IgA1 (pIgA1) was observed in patients with pSS. Salivary polymeric but not monomeric IgA1 (mIgA1) isoform correlated with focus score (r2=0.467, p=0.001) CONCLUSIONS: Salivary anti-Ro52 polymeric IgA1 isoform is associated with glandular inflammation in pSS, while salivary monomeric IgA1 is associated with Sicca. Whether IgA1 isotope switching plays a role in the progression of the Sicca to pSS warrants further investigation.
Collapse
Affiliation(s)
| | - Tristan Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California, USA
| | - Sarah Kamounah
- Oral Biology and Immunopathology/Oral Medicine & Pathology, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen N, Denmark
| | - Fang Wei
- UCLA School of Dentistry, Los Angeles, California, USA
| | - Nabihah Tayob
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ju Yeon Kim
- Rheumatology, Seoul National University Hospital, Seoul, Korea
| | - Jin Kyun Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - David Akin
- UCLA School of Dentistry, Los Angeles, California, USA
| | - David A Elashoff
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California, USA
| | - Anne Marie Lynge Pedersen
- Section for Oral Biolology and Immunopathology, Oral Medicine and Pathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yeong Wook Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | - David Chia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Mandal G, Pradhan S. B cell responses and antibody-based therapeutic perspectives in human cancers. Cancer Rep (Hoboken) 2024; 7:e2056. [PMID: 38522010 PMCID: PMC10961090 DOI: 10.1002/cnr2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immuno-oncology has been focused on T cell-centric approaches until the field recently started appreciating the importance of tumor-reactive antibody production by tumor-infiltrating plasma B cells, and the necessity of developing novel therapeutic antibodies for the treatment of different cancers. RECENT FINDINGS B lymphocytes often infiltrate solid tumors and the extent of B cell infiltration normally correlates with stronger T cell responses while generating humoral responses against malignant progression by producing tumor antigens-reactive antibodies that bind and coat the tumor cells and promote cytotoxic effector mechanisms, reiterating the fact that the adaptive immune system works by coordinated humoral and cellular immune responses. Isotypes, magnitude, and the effector functions of antibodies produced by the B cells within the tumor environment differ among cancer types. Interestingly, apart from binding with specific tumor antigens, antibodies produced by tumor-infiltrating B cells could bind to some non-specific receptors, peculiarly expressed by cancer cells. Antibody-based immunotherapies have revolutionized the modalities of cancer treatment across the world but are still limited against hematological malignancies and a few types of solid tumor cancers with a restricted number of targets, which necessitates the expansion of the field to have newer effective targeted antibody therapeutics. CONCLUSION Here, we discuss about recent understanding of the protective spontaneous antitumor humoral responses in human cancers, with an emphasis on the advancement and future perspectives of antibody-based immunotherapies in cancer.
Collapse
Affiliation(s)
- Gunjan Mandal
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| | - Suchismita Pradhan
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
12
|
Vaz de Castro PAS, Amaral AA, Almeida MG, Selvaskandan H, Barratt J, Simões E Silva AC. Examining the association between serum galactose-deficient IgA1 and primary IgA nephropathy: a systematic review and meta-analysis. J Nephrol 2024:10.1007/s40620-023-01874-8. [PMID: 38427309 DOI: 10.1007/s40620-023-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND IgA nephropathy (IgAN) is a common primary glomerular disease. The O-glycosylation status of IgA1 plays a crucial role in disease pathophysiology. The level of poorly-O-galactosylated IgA1, or galactose-deficient IgA1 (Gd-IgA1), has also been identified as a potential biomarker in IgAN. We sought to examine the value of serum Gd-IgA1 as a biomarker in IgAN, by investigating its association with clinical, laboratory, and histopathological features of IgAN. METHODS The review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations and was registered in PROSPERO (CRD42021287423). The literature search was conducted in PubMed, Web of Science, Cochrane, and Scopus, and the selected articles were evaluated for eligibility based on predefined criteria. The methodological quality of the studies was assessed using the Newcastle-Ottawa Scale. Statistical analysis was performed to calculate effect sizes and assess heterogeneity among the studies. RESULTS This review analyzed 29 out of 1,986 studies, conducted between 2005 and 2022, with participants from multiple countries. Gd-IgA1 levels were not associated with age and gender, while associations with hypertension, hematuria, and proteinuria were inconsistent. In the meta-analyses, a correlation between serum Gd-IgA1 and estimated glomerular filtration rate was identified, however, the relationships between Gd-IgA1 levels and chronic kidney disease (CKD) stage and progression to kidney failure were inconsistent. CONCLUSIONS Serum Gd-IgA1 levels were not associated with validated prognostic risk factors, but were negatively correlated with kidney function. Further research in larger studies using standardized assays are needed to establish the value of Gd-IgA1 as a prognostic risk factor in IgAN.
Collapse
Affiliation(s)
- Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Arthur Aguiar Amaral
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana Godinho Almeida
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Haresh Selvaskandan
- The Mayer IgA Nephropathy Laboratories, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- The Mayer IgA Nephropathy Laboratories, University of Leicester, Leicester, UK.
- Department of Cardiovascular Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
13
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
14
|
Scheurer S, Junker AC, He C, Schülke S, Toda M. The Role of IgA in the Manifestation and Prevention of Allergic Immune Responses. Curr Allergy Asthma Rep 2023; 23:589-600. [PMID: 37610671 PMCID: PMC10506939 DOI: 10.1007/s11882-023-01105-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE OF REVIEW Immunoglobulin A (IgA) mediates immune exclusion of antigens in the gut. Notably, IgA plays also a role in the prevention of IgE-mediated allergies and induction of immune tolerance. The present review addresses the role of IgA in the manifestation of IgE-mediated allergies, including allergen-specific immunotherapy (AIT), the regulation of IgA production, and the mechanism of IgA in immune cell activation. RECENT FINDINGS The majority of studies report an association of IgA with the induction of immune tolerance in IgE-mediated allergies. However, reports on the involvement of humoral and mucosal IgA, IgA subtypes, monomeric and polymeric IgA, and the mechanism of IgA-mediated immune cell activation are confounding. Effects by IgA are likely mediated by alteration of microbiota, IgE-blocking capacity, or activation of inhibitory signaling pathways. However, the precise mechanism of IgA-regulation, the contribution of serum and/or mucosal IgA, and IgA1/2 subtypes, on the manifestation of IgE-mediated allergies, and the underlying immune modulatory mechanism are still elusive.
Collapse
Affiliation(s)
- Stephan Scheurer
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany.
| | - Ann-Christine Junker
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany
| | - Chaoqi He
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Stefan Schülke
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany
- Division of Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Gollamudi J, Dasgupta SK, Thiagarajan P. Erythrophagocytosis in autoimmune immunoglobulin A-mediated hemolysis. Transfusion 2023; 63:1978-1982. [PMID: 37668082 PMCID: PMC10655130 DOI: 10.1111/trf.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Warm antibody-mediated autoimmune hemolysis (WAIHA) is most often due to immunoglobulin G (IgG) antibodies and is detected by direct antiglobulin test (DAT). However, about 10% cases of hemolytic anemia are DAT negative. Herein, we describe a patient with DAT-negative hemolytic anemia due to an anti-IgA antibody. We investigate if isolated IgA can promote erythrophagocytosis. METHODS We isolated patient and control IgA on Jacalin agarose. Isolated IgA was used to sensitize healthy ABO/Rh-matched donor red blood cells (RBC). Antibody binding was examined by flowcytometry. The effect of IgA on erythrophagocytosis was evaluated using Macrophage colony stimulating factor 1 (M-CSF)-differentiated autologous macrophages by Giemsa staining and immunofluorescence microscopy. RESULTS We show that isolated IgA from the serum can bind to red cells. In addition, RBCs were phagocytosed efficiently by autologous macrophages in the presence of patient IgA. CONCLUSION Our results show that IgA antibodies are capable of inducing erythrophagocytosis like IgG antibodies in the absence of complement fixation.
Collapse
Affiliation(s)
- Jahnavi Gollamudi
- Department of Internal Medicine, Division of Hematology, University of Cincinnati, Cincinnati, OH, 45269
| | - Swapan Kumar Dasgupta
- Departments of Pathology, Medicine, Baylor College of Medicine, Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston. Texas 77030
| | - Perumal Thiagarajan
- Departments of Pathology, Medicine, Baylor College of Medicine, Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston. Texas 77030
| |
Collapse
|
16
|
Mes L, Steffen U, Chen HJ, Veth J, Hoepel W, Griffith GR, Schett G, den Dunnen J. IgA2 immune complexes selectively promote inflammation by human CD103+ dendritic cells. Front Immunol 2023; 14:1116435. [PMID: 37006318 PMCID: PMC10061090 DOI: 10.3389/fimmu.2023.1116435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
While immunoglobulin A (IgA) is well known for its neutralizing and anti-inflammatory function, it is becoming increasingly clear that IgA can also induce human inflammatory responses by various different immune cells. Yet, little is known about the relative role of induction of inflammation by the two IgA subclasses i.e. IgA1, most prominent subclass in circulation, and IgA2, most prominent subclass in the lower intestine. Here, we set out to study the inflammatory function of IgA subclasses on different human myeloid immune cell subsets, including monocytes, and in vitro differentiated macrophages and intestinal CD103+ dendritic cells (DCs). While individual stimulation with IgA immune complexes only induced limited inflammatory responses by human immune cells, both IgA subclasses strongly amplified pro-inflammatory cytokine production upon co-stimulation with Toll-like receptor (TLR) ligands such as Pam3CSK4, PGN, and LPS. Strikingly, while IgA1 induced slightly higher or similar levels of pro-inflammatory cytokines by monocytes and macrophages, respectively, IgA2 induced substantially more inflammation than IgA1 by CD103+ DCs. In addition to pro-inflammatory cytokine proteins, IgA2 also induced higher mRNA expression levels, indicating that amplification of pro-inflammatory cytokine production is at least partially regulated at the level of gene transcription. Interestingly, cytokine amplification by IgA1 was almost completely dependent on Fc alpha receptor I (FcαRI), whilst blocking this receptor only partially reduced cytokine induction by IgA2. In addition, IgA2-induced amplification of pro-inflammatory cytokines was less dependent on signaling through the kinases Syk, PI3K, and TBK1/IKKϵ. Combined, these findings indicate that IgA2 immune complexes, which are most abundantly expressed in the lower intestine, particularly promote inflammation by human CD103+ intestinal DCs. This may serve an important physiological function upon infection, by enabling inflammatory responses by this otherwise tolerogenic DC subset. Since various inflammatory disorders are characterized by disturbances in IgA subclass balance, this may also play a role in the induction or exacerbation of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Lynn Mes
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ulrike Steffen
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hung-Jen Chen
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers (UMC), Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands
| | - Guillermo Romeo Griffith
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- *Correspondence: Jeroen den Dunnen,
| |
Collapse
|
17
|
Sokolova MV, Hartmann F, Sieghart D, Bang H, Steiner G, Kleyer A, Schett G, Steffen U. Antibodies against citrullinated proteins of IgA isotype are associated with progression to rheumatoid arthritis in individuals at-risk. RMD Open 2023; 9:rmdopen-2022-002705. [PMID: 36717186 PMCID: PMC9887702 DOI: 10.1136/rmdopen-2022-002705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Events triggering disease outbreak in individuals at-risk for rheumatoid arthritis (RA at-risk) remain unclear, and the role of the various anticitrullinated protein antibody (ACPA) isotypes in this process is still to be established. We aimed to investigate the prevalence of IgA ACPA in RA at-risk individuals, their role in the transition from the RA at-risk status to RA and their dynamics during this transition. METHODS Cross-sectional measurement of serum IgA1 and IgA2 ACPA levels was conducted in healthy controls, RA at-risk individuals and patients with RA and compared with the frequency of RA development in at risk individuals during a follow-up of 14 months. In addition, longitudinal measurements of serum IgA1 and IgA2 ACPA levels prior to, at and after the onset of RA were performed. RESULTS Approximately two-thirds of RA at-risk individuals were positive for serum IgA1 and IgA2 ACPA in levels comparable to IgG ACPA positive patients with RA. IgA1, but not IgA2 ACPA positivity was associated with the transition from the RA at-risk state to RA within the following 14 months. Interestingly, during this transition process, IgA1 ACPA levels declined at RA onset and also thereafter during the early phase of RA. This decline was confirmed in a second, independent cohort. CONCLUSION Both IgA1 and IgA2 ACPA are present in RA at-risk individuals, but only IgA1 ACPA are associated with the progression to RA. The observed decline in serum IgA1 ACPA levels before the onset of RA might indicate starting barrier leakiness prior to disease outbreak.
Collapse
Affiliation(s)
- Maria V Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany,Medical Department I, Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Fabian Hartmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniela Sieghart
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | - Guenter Steiner
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Arnd Kleyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany .,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Dingess KA, Hoek M, van Rijswijk DMH, Tamara S, den Boer MA, Veth T, Damen MJA, Barendregt A, Romijn M, Juncker HG, van Keulen BJ, Vidarsson G, van Goudoever JB, Bondt A, Heck AJR. Identification of common and distinct origins of human serum and breastmilk IgA1 by mass spectrometry-based clonal profiling. Cell Mol Immunol 2023; 20:26-37. [PMID: 36447030 PMCID: PMC9707141 DOI: 10.1038/s41423-022-00954-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We assessed the structural diversity and clonal repertoire of IgA1-containing molecular assemblies longitudinally in human serum and milk from three donors using a mass spectrometry-based approach. IgA-containing molecules purified from serum or milk were assessed by the release and subsequent analysis of their Fab fragments. Our data revealed that serum IgA1 consists of two distinct structural populations, namely monomeric IgA1 (∼80%) and dimeric joining (J-) chain coupled IgA1 (∼20%). Also, we confirmed that IgA1 in milk is present solely as secretory (S)IgA, consisting of two (∼50%), three (∼33%) or four (∼17%) IgA1 molecules assembled with a J-chain and secretory component (SC). Interestingly, the serum and milk IgA1-Fab repertoires were distinct between monomeric, and J-chain coupled dimeric IgA1. The serum dimeric J-chain coupled IgA1 repertoire contained several abundant clones also observed in the milk IgA1 repertoire. The latter repertoire had little to no overlap with the serum monomeric IgA1 repertoire. This suggests that human IgA1s have (at least) two distinct origins; one of these produces dimeric J-chain coupled IgA1 molecules, shared in human serum and milk, and another produces monomeric IgA1 ending up exclusively in serum.
Collapse
Affiliation(s)
- Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Danique M H van Rijswijk
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Tim Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Michelle Romijn
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Hannah G Juncker
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Britt J van Keulen
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes B van Goudoever
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
19
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
20
|
Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, Carrillo-Vázquez DA, Meza-Sánchez DE, Núñez-Álvarez C, Torres-Ruiz J, Gómez-Martín D, Maravillas-Montero JL. Salivary IgA subtypes as novel disease biomarkers in systemic lupus erythematosus. Front Immunol 2023; 14:1080154. [PMID: 36911711 PMCID: PMC9992540 DOI: 10.3389/fimmu.2023.1080154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Immunoglobulin A (IgA) is the main antibody isotype in body fluids such as tears, intestinal mucous, colostrum, and saliva. There are two subtypes of IgA in humans: IgA1, mainly present in blood and mucosal sites, and IgA2, preferentially expressed in mucosal sites like the colon. In clinical practice, immunoglobulins are typically measured in venous or capillary blood; however, alternative samples, including saliva, are now being considered, given their non-invasive and easy collection nature. Several autoimmune diseases have been related to diverse abnormalities in oral mucosal immunity, such as rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus (SLE). Methods We decided to evaluate the levels of both IgA subtypes in the saliva of SLE patients. A light chain capture-based ELISA measured specific IgA1 and IgA2 levels in a cohort of SLE patients compared with age and gender-matched healthy volunteers. Results Surprisingly, our results indicated that in the saliva of SLE patients, total IgA and IgA1 subtype were significantly elevated; we also found that salivary IgA levels, particularly IgA2, positively correlate with anti-dsDNA IgG antibody titers. Strikingly, we also detected the presence of salivary anti-nucleosome IgA antibodies in SLE patients, a feature not previously reported elsewhere. Conclusions According to our results and upon necessary validation, IgA characterization in saliva could represent a potentially helpful tool in the clinical care of SLE patients with the advantage of being a more straightforward, faster, and safer method than manipulating blood samples.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel A Carrillo-Vázquez
- Departamento de Medicina Interna, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos Núñez-Álvarez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
21
|
Aydillo T, Gonzalez-Reiche AS, Stadlbauer D, Amper MA, Nair VD, Mariottini C, Sealfon SC, van Bakel H, Palese P, Krammer F, García-Sastre A. Transcriptome signatures preceding the induction of anti-stalk antibodies elicited after universal influenza vaccination. NPJ Vaccines 2022; 7:160. [PMID: 36496417 PMCID: PMC9741632 DOI: 10.1038/s41541-022-00583-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
A phase 1 clinical trial to test the immunogenicity of a chimeric group 1 HA (cHA) universal influenza virus vaccine targeting the conserved stalk domain of the hemagglutinin of influenza viruses was carried out. Vaccination with adjuvanted-inactivated vaccines induced high anti-stalk antibody titers. We sought to identify gene expression signatures that correlate with such induction. Messenger-RNA sequencing in whole blood was performed on the peripheral blood of 53 vaccinees. We generated longitudinal data on the peripheral blood of 53 volunteers, at early (days 3 and 7) and late (28 days) time points after priming and boosting with cHAs. Differentially expressed gene analysis showed no differences between placebo and live-attenuated vaccine groups. However, an upregulation of genes involved in innate immune responses and type I interferon signaling was found at day 3 after vaccination with inactivated adjuvanted formulations. Cell type deconvolution analysis revealed a significant enrichment for monocyte markers and different subsets of dendritic cells as mediators for optimal B cell responses and significant increase of anti-stalk antibodies in sera. A significant upregulation of immunoglobulin-related genes was only observed after administration of adjuvanted vaccines (either as primer or booster) with specific induction of anti-stalk IGVH1-69. This approach informed of specific immune signatures that correlate with robust anti-stalk antibody responses, while also helping to understand the regulation of gene expression induced by cHA proteins under different vaccine regimens.
Collapse
Affiliation(s)
- Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Moderna, Cambridge, MA, USA
| | - Mary Anne Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Mariottini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Selvaskandan H, Gonzalez-Martin G, Barratt J, Cheung CK. IgA nephropathy: an overview of drug treatments in clinical trials. Expert Opin Investig Drugs 2022; 31:1321-1338. [PMID: 36588457 DOI: 10.1080/13543784.2022.2160315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION IgA nephropathy (IgAN) is the commonest primary glomerulonephritis worldwide and may progress to end-stage kidney disease (ESKD) within a 10-20 year period. Its slowly progressive course has made clinical trials challenging to perform, however the acceptance of proteinuria reduction as a surrogate end point has significantly improved the feasibility of conducting clinical trials in IgAN, with several novel and repurposed therapies currently undergoing assessment. Already, interim results are demonstrating value to some of these, offering great hope to those with IgAN. AREAS COVERED This review explores the rationale, candidates, clinical precedents, and trial status of therapies that are currently or have recently been evaluated for efficacy in IgAN. All IgAN trials registered with the U.S. National Library of Medicine; ClinicalTrials.gov were reviewed. EXPERT OPINION For the first time, effective treatment options beyond supportive care are becoming available for those with IgAN. This is the culmination of commendable international efforts and signifies a new era for those with IgAN. As more therapies become available, future challenges will revolve around deciding which treatments are most appropriate for individual patients, which is likely to push IgAN into the realm of precision medicine.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chee Kay Cheung
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Luvizotto MJ, Menezes-Silva L, Woronik V, Monteiro RC, Câmara NOS. Gut-kidney axis in IgA nephropathy: Role on mesangial cell metabolism and inflammation. Front Cell Dev Biol 2022; 10:993716. [PMID: 36467425 PMCID: PMC9715425 DOI: 10.3389/fcell.2022.993716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2023] Open
Abstract
IgA Nephropathy (IgAN) is the commonest primary glomerular disease around the world and represents a significant cause of end-stage renal disease. IgAN is characterized by mesangial deposition of IgA-immune complexes and mesangial expansion. The pathophysiological process includes an abnormally glycosylated IgA1, which is an antigenic target. Autoantibodies specifically recognize galactose-deficient IgA1 forming immune complexes that are amplified in size by the soluble IgA Fc receptor CD89 leading to deposition in the mesangium through interaction with non-classical IgA receptors. The local production of cytokines promotes local inflammation and complement system activation, besides the stimulation of mesangial proliferation. The spectrum of clinical manifestations is quite variable from asymptomatic microscopic hematuria to rapidly progressive glomerulonephritis. Despite all the advances, the pathophysiology of the disease is still not fully elucidated. The mucosal immune system is quoted to be a factor in triggering IgAN and a "gut-kidney axis" is proposed in its development. Furthermore, many recent studies have demonstrated that food intake interferes directly with disease prognosis. In this review, we will discuss how mucosal immunity, microbiota, and nutritional status could be interfering directly with the activation of intrinsic pathways of the mesangial cells, directly resulting in changes in their function, inflammation and development of IgAN.
Collapse
Affiliation(s)
- Mateus Justi Luvizotto
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Luísa Menezes-Silva
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Viktoria Woronik
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Renato C. Monteiro
- Centre de Recherche sur l’Inflammation, INSERM and CNRS, Université Paris Cité, Paris, France
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Li S, Liu G, Xu Y, Liu J, Chen Z, Zheng A, Cai H, Chang W. Comparison of the effects of applying xylooligosaccharides alone or in combination with calcium acetate in broiler chickens. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
26
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
27
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|
28
|
IgA Serological Response for the Diagnosis of Mycobacterium abscessus Infections in Patients with Cystic Fibrosis. Microbiol Spectr 2022; 10:e0019222. [PMID: 35583329 PMCID: PMC9241595 DOI: 10.1128/spectrum.00192-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunoglobulin A (IgA) status of cystic fibrosis (CF) patients, presenting with or without a non-tuberculous mycobacterial (NTM) infection, has to date not been fully elucidated toward two antigenic preparations previously described. We have chosen to determine the clinical values of an IgA ELISA for the diagnosis of NTM and/or Mycobacterium abscessus infections in CF patients. One hundred and 73 sera from CF patients, comprising 33 patients with M. abscessus positive cultures, and 31 non-CF healthy controls were assessed. IgA levels were evaluated by indirect ELISAs using a surface antigenic extract named TLR2eF for TLR2 positive extract and a recombinant protein, the phospholipase C (rMAB_0555 or rPLC). These assays revealed a sensitivity of 52.6% (95% CI = 35.8% to 69%) and 42.1% (95% CI = 26.3% to 59.2%) using TLR2eF and rPLC, respectively, and respective specificities of 92.6% (95% CI = 87.5% to 96.1%) and 92% (95% CI = 86.7% to 95.7%) for samples culture positive for M. abscessus. Overall sensitivity and specificity of 66.7% and 85.4%, respectively, were calculated for IgA detection in M. abscessus-culture positive CF patients, when we combine the results of the two used antigens, thus demonstrating the efficiency in detection of positive cases for these two antigens with IgA isotype. CF patients with a positive culture for M. abscessus had the highest IgA titers against TLR2eF and rPLC. The diagnosis of NTM infections, including those due to M. abscessus, can be improved by the addition of an IgA serological assay, especially when cultures, for example, are negative. Based on these promising results, a serological follow-up of a larger number of patients should be performed to determine if the IgA response may be correlated with an active/acute infection state or a very recent infection. IMPORTANCE Mycobacterium abscessus is currently the most frequently isolated rapid growing mycobacterium in human pathology and the major one involved in lung infections. It has recently emerged as responsible for severe pulmonary infections in patients with cystic fibrosis (CF) or those who have undergone lung transplantation. In addition, it represents the most antibiotic resistant mycobacterial species. However, despite its increasing clinical importance, very little is known about the use of M. abscessus parietal compounds and the host response. This has led to the development of serological tests to measure the antibody response in infected patients, and potentially to link this to the culture of respiratory samples. Herein, we describe an important analysis of the serological IgA response from CF patients, and we demonstrate the full diagnostic usefulness of this assay in the diagnosis of NTM infections, and more particularly M. abscessus, in CF patients.
Collapse
|
29
|
Gostomska-Pampuch K, Gamian A, Rawicz-Pruszyński K, Gęca K, Tkaczuk-Włach J, Jonik I, Ożga K, Staniszewska M. Proteins in human body fluids contain in vivo antigen analog of the melibiose-derived glycation product: MAGE. Sci Rep 2022; 12:7520. [PMID: 35525899 PMCID: PMC9079080 DOI: 10.1038/s41598-022-11638-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/27/2022] [Indexed: 01/16/2023] Open
Abstract
Melibiose-derived AGE (MAGE) is an advanced glycation end-product formed in vitro in anhydrous conditions on proteins and protein-free amino acids during glycation with melibiose. Our previous studies revealed the presence of MAGE antigen in the human body and tissues of several other species, including muscles, fat, extracellular matrix, and blood. MAGE is also antigenic and induces generation of anti-MAGE antibody. The aim of this paper was to identify the proteins modified by MAGE present in human body fluids, such as serum, plasma, and peritoneal fluids. The protein-bound MAGE formed in vivo has been isolated from human blood using affinity chromatography on the resin with an immobilized anti-MAGE monoclonal antibody. Using mass spectrometry and immunochemistry it has been established that MAGE epitope is present on several human blood proteins including serum albumin, IgG, and IgA. In serum of diabetic patients, mainly the albumin and IgG were modified by MAGE, while in healthy subjects IgG and IgA carried this modification, suggesting the novel AGE can impact protein structure, contribute to auto-immunogenicity, and affect function of immunoglobulins. Some proteins in peritoneal fluid from cancer patients modified with MAGE were also observed and it indicates a potential role of MAGE in cancer.
Collapse
Affiliation(s)
- Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wrocław, Poland
- Laboratory of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Andrzej Gamian
- Laboratory of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Karol Rawicz-Pruszyński
- Department of Surgical Oncology, Medical University of Lublin, Radziwillowska 13, 20-080, Lublin, Poland
| | - Katarzyna Gęca
- Department of Surgical Oncology, Medical University of Lublin, Radziwillowska 13, 20-080, Lublin, Poland
| | - Joanna Tkaczuk-Włach
- Diagnostic Techniques Unit, Collegium Maximum, Medical University of Lublin, Staszica 4/6, 20-081, Lublin, Poland
| | - Ilona Jonik
- Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Kinga Ożga
- Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Magdalena Staniszewska
- Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.
| |
Collapse
|
30
|
Correlation of Anti-HLA IgA Alloantibodies and Fc Receptor Motives with Kidney Allograft Survival. IMMUNO 2022. [DOI: 10.3390/immuno2020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype in humans and anti-HLA IgA was found in sera of transplant recipients. Focusing on patients awaiting kidney re-transplantation, we tested the impact of anti-HLA-class I/II IgA antibodies on graft survival. We analyzed 276 patients with and 238 without allograft failure. Eight motives of the Fcα receptor (FCAR) and Fcγ receptor were analyzed in patients with allograft failure. The distribution of anti-HLA IgA1/A2 and IgG antibodies differed significantly (p < 0.0001) between both patient groups, and IgA1 plus IgA2 antibodies were more abundant in patients with allograft failure. Allograft survival was significantly impaired if anti-HLA-class I plus II IgA was present, in the first 105 months (9 years) of follow-up (median of 43 vs. >105 months, p = 0.007). Patients with anti-HLA IgA and IgG vs. anti-HLA IgG only had a significantly shorter allograft survival within that follow-up period (88 vs. >105 months, p = 0.008). Moreover, allograft survival was shorter (p = 0.02) in carriers of GG vs. AA + AG genotypes of FCAR rs16986050. Thus, the presence of anti-HLA IgA plus IgG vs. IgG only was associated with shorter kidney allograft survival and FCAR motives may impact on graft survival.
Collapse
|
31
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Gender dimorphism in IgA subclasses in T2-high asthma. Clin Exp Med 2022:10.1007/s10238-022-00828-x. [PMID: 35467314 DOI: 10.1007/s10238-022-00828-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Immunoglobulin A (Chan in J Allergy Clin Immunol 134:1394-14014e4, 2014), the second most abundant immunoglobulin in serum, plays an important role in mucosal homeostasis. In human serum, there are two subclasses of IgA, IgA1 (≅ 90%) and IgA2 (≅ 10%), transcribed from two distinct heavy chain constant regions. This study evaluated the serum concentrations of total IgA, IgA1, and IgA2, and total IgG, IgG1, IgG2, IgG3, and IgG4 in T2-high asthmatics compared to healthy controls and the presence of gender-related variations of immunoglobulins. Total IgA levels were increased in asthmatics compared to controls. Even more marked was the increase in total IgA in male asthmatics compared to healthy male donors. IgA1 were increased only in male, but not in female asthmatics, compared to controls. Concentrations of IgG2, but not IgG1, IgG3, and IgG4, were reduced in asthmatics compared to controls. IgG4 levels were reduced in female compared to male asthmatics. In female asthmatics, IgA and IgA1 levels were increased in postmenopause compared to premenopause. IgA concentrations were augmented in mild, but not severe asthmatics. A positive correlation was found between IgA levels and the age of patients and an inverse correlation between serum concentrations of IgA2 and IgE in asthmatics. A positive correlation between total IgA or IgA2 and IgG2 was found in asthmatics. These results highlight a gender dimorphism in IgA subclasses in male and female T2-high asthmatics. More adequate consideration of immunological gender disparity in asthma may open new opportunities in personalized medicine by optimizing diagnosis and targeted therapy.
Collapse
|
33
|
Ling WL, Su CTT, Lua WH, Yeo JY, Poh JJ, Ng YL, Wipat A, Gan SKE. Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L. Sci Rep 2022; 12:6510. [PMID: 35444201 PMCID: PMC9020155 DOI: 10.1038/s41598-022-10388-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Newcastle University Singapore, Singapore, Singapore
| | - Chinh Tran-To Su
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle University Singapore, Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,James Cook University, Singapore, Singapore. .,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China. .,Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
34
|
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z. Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 2022; 477:1849-1863. [PMID: 35332395 DOI: 10.1007/s11010-022-04409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The prognosis of rhegmatogenous retinal detachment (RRD) with choroidal detachment (RRDCD) is often poor and complicated. This study focused on the identification of the characteristic proteins and signal pathways associated with the etiology of RRDCD and to provide guidance for diagnosis and treatment of RRDCD. In this study, vitreous humor samples were obtained from 16 RRDCD patients, 14 with RRD, 12 with idiopathic epiretinal macular membrane (IEMM), and 5 healthy controls from donated corpse eyes. Data-independent acquisition mass spectrometry and bioinformatics analysis were employed to identify differentially expressed proteins (DEPs). In the vitreous humor, 14,842 peptides were identified. Patients with RRDCD had 249 DEPs (93 upregulated and 156 downregulated), with 89 in patients with RRD and 61 in patients with IEMM. Enrichment analysis of the GO and Kyoto Encyclopedia of Genes and Genomes DEP databases indicated functional clusters related to inflammation and immunity, protein degradation and absorption, cell adhesion molecules (CAMs), the hedgehog signaling pathway, and lipid metabolism. Weighted gene co-expression network analysis showed that DEPs with positive co-expression of RRDCD participated in immune-related pathways led by the complement and coagulation cascade, whereas DEPs with negative co-expression of RRDCD participated in protein degradation and absorption, CAMs, and the hedgehog signaling pathway. In summary, our study provides important clues and the theoretical basis for exploring the pathogenesis, progression, and prognosis of ocular fundus disease.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China. .,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
35
|
Is There a Role for Gut Microbiome Dysbiosis in IgA Nephropathy? Microorganisms 2022; 10:microorganisms10040683. [PMID: 35456735 PMCID: PMC9031807 DOI: 10.3390/microorganisms10040683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis and one of the leading causes of renal failure worldwide. The pathophysiology of IgAN involves nephrotoxic IgA1-immune complexes. These complexes are formed by galactose-deficient (Gd) IgA1 with autoantibodies against the hinge region of Gd-IgA1 as well as soluble CD89, an immune complex amplifier with an affinity for mesangial cells. These multiple molecular interactions result in the induction of the mesangial IgA receptor, CD71, injuring the kidney and causing disease. This review features recent immunological and microbiome studies that bring new microbiota-dependent mechanisms developing the disease based on data from IgAN patients and a humanized mouse model of IgAN. Dysbiosis of the microbiota in IgAN patients is also discussed in detail. Highlights of this review underscore that nephrotoxic IgA1 in the humanized mice originates from mucosal surfaces. Fecal microbiota transplantation (FMT) experiments in mice using stools from patients reveal a possible microbiota dysbiosis in IgAN with the capacity to induce progression of the disease whereas FMT from healthy hosts has beneficial effects in mice. The continual growth of knowledge in IgAN patients and models can lead to the development of new therapeutic strategies targeting the microbiota to treat this disease.
Collapse
|
36
|
Portilho AI, Gimenes Lima G, De Gaspari E. Enzyme-Linked Immunosorbent Assay: An Adaptable Methodology to Study SARS-CoV-2 Humoral and Cellular Immune Responses. J Clin Med 2022; 11:1503. [PMID: 35329828 PMCID: PMC8948777 DOI: 10.3390/jcm11061503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The Enzyme-Linked Immunosorbent Assay is a versatile technique, which can be used for several applications. It has enormously contributed to the study of infectious diseases. This review highlights how this methodology supported the science conducted in COVID-19 pandemics, allowing scientists to better understand the immune response against SARS-CoV-2. ELISA can be modified to assess the functionality of antibodies, as avidity and neutralization, respectively by the standardization of avidity-ELISA and surrogate-neutralization methods. Cellular immunity can also be studied using this assay. Products secreted by cells, like proteins and cytokines, can be studied by ELISA or its derivative Enzyme-linked immunospot (ELISpot) assay. ELISA and ELISA-based methods aided the area of immunology against infectious diseases and is still relevant, for example, as a promising approach to study the differences between natural and vaccine-induced immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, SP, Brazil; (A.I.P.); (G.G.L.)
- Graduate Program Interunits in Biotechnology, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Gabrielle Gimenes Lima
- Immunology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, SP, Brazil; (A.I.P.); (G.G.L.)
- Graduate Program Interunits in Biotechnology, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, SP, Brazil; (A.I.P.); (G.G.L.)
- Graduate Program Interunits in Biotechnology, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
37
|
Treger RS, Fink SL. Beyond Titer: Expanding the Scope of Clinical Autoantibody Testing. J Appl Lab Med 2022; 7:99-113. [DOI: 10.1093/jalm/jfab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Autoantibodies that bind self-antigens are a hallmark of autoimmune diseases, but can also be present in healthy individuals. Clinical assays that detect and titer antigen-specific autoantibodies are an important component of the diagnosis and monitoring of autoimmune diseases. Autoantibodies may contribute to disease pathogenesis via effector functions that are dictated by both the antigen-binding site and constant domain.
Content
In this review, we discuss features of antibodies, in addition to antigen-binding specificity, which determine effector function. These features include class, subclass, allotype, and glycosylation. We discuss emerging data indicating that analysis of these antibody features may be informative for diagnosis and monitoring of autoimmune diseases. We also consider methodologies to interrogate these features and consider how they could be implemented in the clinical laboratory.
Summary
Future autoantibody assays may incorporate assessment of additional antibody features that contribute to autoimmune disease pathogenesis and provide added clinical value.
Collapse
Affiliation(s)
- Rebecca S Treger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan L Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Selected Immunoendocrine Measures for Monitoring Responses to Training and Match Load in Professional Association Football: A Review of the Evidence. Int J Sports Physiol Perform 2022; 17:1654-1663. [DOI: 10.1123/ijspp.2022-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Biomarkers relating to player “stress balance,” immunological (ie, immunoglobulin-A), and hormonal (ie, testosterone and cortisol [T:C]) status are now commonly used in football. This article is our critical review of the scientific literature relating to the response of these measures to player load and their relationships with player health. The commonly reported relationship between immunoglobulin-A and training or match load highlights its sensitivity to changes in psychophysiological stress and the increased risk of compromised mucosal immunity. This is supported by its close relationship with symptoms of upper respiratory tract infection and its association with perceived fatigue in football players. Testosterone and cortisol concentrations and the testosterone–cortisol ratio are sensitive to changes in player load, but the direction of their response is often inconsistent and is likely influenced by player training status and non-sport-related stressors. Some evidence indicates that sustained periods of high training volume can increase resting testosterone and that sustained periods of low and high training intensity can increase resting cortisol, compromising the testosterone–cortisol ratio. These findings are noteworthy, as recent findings indicate interrelationships between testosterone, cortisol, and testosterone:cortisol and perceived measures of fatigue, sleep quality, and muscle soreness in football players. Variability in individual responses suggests the need for a multivariate and individualized approach to player monitoring. Overall, we consider that there is sufficient evidence to support the use of salivary immunoglobulin-A, testosterone, cortisol, and testosterone:cortisol measures as part of a multivariate, individualized player monitoring system in professional football.
Collapse
|
39
|
Wittner J, Schulz SR, Steinmetz TD, Berges J, Hauke M, Channell WM, Cunningham AF, Hauser AE, Hutloff A, Mielenz D, Jäck HM, Schuh W. Krüppel-like factor 2 controls IgA plasma cell compartmentalization and IgA responses. Mucosal Immunol 2022; 15:668-682. [PMID: 35347229 PMCID: PMC9259478 DOI: 10.1038/s41385-022-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
Krüppel-like factor 2 (KLF2) is a potent regulator of lymphocyte differentiation, activation and migration. However, its functional role in adaptive and humoral immunity remains elusive. Therefore, by using mice with a B cell-specific deletion of KLF2, we investigated plasma cell differentiation and antibody responses. We revealed that the deletion of KLF2 resulted in perturbed IgA plasma cell compartmentalization, characterized by the absence of IgA plasma cells in the bone marrow, their reductions in the spleen, the blood and the lamina propria of the colon and the small intestine, concomitant with their accumulation and retention in mesenteric lymph nodes and Peyer's patches. Most intriguingly, secretory IgA in the intestinal lumen was almost absent, dimeric serum IgA was drastically reduced and antigen-specific IgA responses to soluble Salmonella flagellin were blunted in KLF2-deficient mice. Perturbance of IgA plasma cell localization was caused by deregulation of CCR9, Integrin chains αM, α4, β7, and sphingosine-1-phosphate receptors. Hence, KLF2 not only orchestrates the localization of IgA plasma cells by fine-tuning chemokine receptors and adhesion molecules but also controls IgA responses to Salmonella flagellin.
Collapse
Affiliation(s)
- Jens Wittner
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R. Schulz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobit D. Steinmetz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - William M. Channell
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Adam F. Cunningham
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Anja E. Hauser
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.418217.90000 0000 9323 8675Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreas Hutloff
- grid.412468.d0000 0004 0646 2097Institute of Immunology and Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk Mielenz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Stolovich-Rain M, Kumari S, Friedman A, Kirillov S, Socol Y, Billan M, Pal RR, Das K, Golding P, Oiknine-Djian E, Sirhan S, Sagie MB, Cohen-Kfir E, Gold N, Fahoum J, Kumar M, Elgrably-Weiss M, Zhou B, Ravins M, Gatt YE, Bhattacharya S, Zelig O, Wiener R, Wolf DG, Elinav H, Strahilevitz J, Padawer D, Baraz L, Rouvinski A. Intramuscular mRNA BNT162b2 vaccine against SARS-CoV-2 induces neutralizing salivary IgA. Front Immunol 2022; 13:933347. [PMID: 36798518 PMCID: PMC9927016 DOI: 10.3389/fimmu.2022.933347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/21/2022] [Indexed: 02/03/2023] Open
Abstract
Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.
Collapse
Affiliation(s)
- Miri Stolovich-Rain
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sujata Kumari
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ahuva Friedman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saveliy Kirillov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,National Center for Biotechnology, Astana, Kazakhstan.,Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Yakov Socol
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Billan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ritesh Ranjan Pal
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathakali Das
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peretz Golding
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Salim Sirhan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Bejerano Sagie
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Gold
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manoj Kumar
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bing Zhou
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Zelig
- Blood Bank, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Lautenberg Centre for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Elinav
- Department of Clinical Microbiology and Infectious Diseases, Hadassah AIDS Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dan Padawer
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Pulmonary Medicine, Hadassah Medical Center, Affiliated to the Faculty of Medicine, Hebrew University Jerusalem, Jerusalem, Israel.,Department of Internal Medicine D, Hadassah Medical Center, affiliated to the Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Leah Baraz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Hadassah Academic College Jerusalem, Jerusalem, Israel
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
41
|
Selvaskandan H, Barratt J, Cheung CK. Immunological drivers of IgA nephropathy: Exploring the mucosa-kidney link. Int J Immunogenet 2021; 49:8-21. [PMID: 34821031 DOI: 10.1111/iji.12561] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is the most common pattern of primary glomerular disease reported worldwide. Up to 40% of those with IgAN progress to end-stage kidney disease within 20 years of diagnosis, with no currently available disease-specific treatment. This is likely to change rapidly, with evolving insights into the mechanisms driving this disease. IgAN is an immune-complex-mediated disease, and its pathophysiology has been framed by the 'four-hit hypothesis', which necessitates four events to occur for clinically significant disease to develop. However, this hypothesis does not explain the wide variability observed in its presentation or clinical progression. Recently, there has been great interest in exploring the role of the mucosal immune system in IgAN, especially given the well-established link between mucosal infections and disease flares. Knowledge of antigen-mucosal interactions is now being successfully leveraged for therapeutic purposes; the gut-directed drug Nefecon (targeted release formulation-budesonide) is on track to become the first medication to be approved specifically for the treatment of IgAN. In this review, we examine established immunological paradigms in IgAN, explore how antigen-mucosal immune responses drive disease, and discuss how this knowledge is being used to develop new treatments.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Abstract
Streptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surfaces of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes forms serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modeling of one of the M proteins, M28, revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by the binding of monomeric IgA and C4b-binding protein (C4BP). This indicates that an upsurge of C4BP in the local microenvironment due to damage to the mucosal membrane drives the binding of C4BP and monomeric IgA to M28. These results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat human immune surveillance during both mucosal and systemic infections. IMPORTANCEStreptococcus pyogenes (group A Streptococcus [GAS]), is a human-specific Gram-positive bacterium. Each year, the bacterium affects 700 million people globally, leading to 160,000 deaths. The clinical manifestations of S. pyogenes are diverse, ranging from mild and common infections like tonsillitis and impetigo to life-threatening systemic conditions such as sepsis and necrotizing fasciitis. S. pyogenes expresses multiple virulence factors on its surface to localize and initiate infections in humans. Among all these expressed virulence factors, the M protein is the most important antigen. In this study, we perform an in-depth characterization of the human protein interactions formed around one of the foremost human pathogens. This strategy allowed us to decipher the protein interaction networks around different S. pyogenes strains on a global scale and to compare and visualize how such interactions are mediated by M proteins.
Collapse
|
43
|
Paranhos RM, De Souza Figueiredo GA, De Abreu GR, Ferreira GC, Fonseca GG, Simões E Silva AC. Immunoglobulin A nephropathy in paediatrics: An up-to-date. Nephrology (Carlton) 2021; 27:307-317. [PMID: 34676611 DOI: 10.1111/nep.13987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Immunoglobulin A nephropathy is the main cause of glomerulonephritis globally and an important aetiology of end-stage renal disease in children. It has been considered an autoimmune disease that can lead to the production of autoantibodies against abnormal IgA1 and formation of immune complexes. These autoantibodies and immune complexes deposit in the glomeruli, resulting in renal injury. At the beginning of IgA nephropathy course, most patients are asymptomatic and the first clinical manifestations in children are macroscopic hematuria and proteinuria. The diagnosis is defined by the detection of IgA mesangial deposits in kidney biopsy using immunofluorescence techniques. The Oxford MEST-C score is the most used classification to associate histological findings and clinical outcomes, being validated for application in children. Recommended treatment options are antihypertensive and antiproteinuric therapy, corticosteroids, immunosuppressive agents, and other non-pharmacological approaches. There is no ideal prognosis indicator but new perspectives are in science's scope to find possible biomarkers of the disease through OMICS's research. This review aims to summarize and to up-to-date the scientific literature on paediatric IgA nephropathy, focusing on pathophysiology, clinical findings, histopathology, current treatment, prognosis, and future perspectives.
Collapse
Affiliation(s)
- Rafaela Moreira Paranhos
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Augusto De Souza Figueiredo
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Ramos De Abreu
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Guilherme Costa Ferreira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giulio Gori Fonseca
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
44
|
Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S, Maresso A. Phage Therapy Related Microbial Succession Associated with Successful Clinical Outcome for a Recurrent Urinary Tract Infection. Viruses 2021; 13:v13102049. [PMID: 34696479 PMCID: PMC8541385 DOI: 10.3390/v13102049] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
We rationally designed a bacteriophage cocktail to treat a 56-year-old male liver transplant patient with complex, recurrent prostate and urinary tract infections caused by an extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) (UCS1). We screened our library for phages that killed UCS1, with four promising candidates chosen for their virulence, mucolytic properties, and ability to reduce bacterial resistance. The patient received 2 weeks of intravenous phage cocktail with concomitant ertapenem for 6 weeks. Weekly serum and urine samples were collected to track the patient’s response. The patient tolerated the phage therapy without any adverse events with symptom resolution. The neutralization of the phage activity occurred with sera collected 1 to 4 weeks after the first phage treatment. This was consistent with immunoassays that detected the upregulation of immune stimulatory analytes. The patient developed asymptomatic recurrent bacteriuria 6 and 11 weeks following the end of phage therapy—a condition that did not require antibiotic treatment. The bacteriuria was caused by a sister strain of E. coli (UCS1.1) that remained susceptible to the original phage cocktail and possessed putative mutations in the proteins involved in adhesion and invasion compared to UCS1. This study highlights the utility of rationally designed phage cocktails with antibiotics at controlling E. coli infection and suggests that microbial succession, without complete eradication, may produce desirable clinical outcomes.
Collapse
Affiliation(s)
- Austen Terwilliger
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Justin Clark
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Maile Karris
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
| | - Haroldo Hernandez-Santos
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Sabrina Green
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| | - Anthony Maresso
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| |
Collapse
|
45
|
Dotz V, Visconti A, Lomax-Browne HJ, Clerc F, Hipgrave Ederveen AL, Medjeral-Thomas NR, Cook HT, Pickering MC, Wuhrer M, Falchi M. O- and N-Glycosylation of Serum Immunoglobulin A is Associated with IgA Nephropathy and Glomerular Function. J Am Soc Nephrol 2021; 32:2455-2465. [PMID: 34127537 PMCID: PMC8722783 DOI: 10.1681/asn.2020081208] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function.
Collapse
Affiliation(s)
- Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Hannah J. Lomax-Browne
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nicholas R. Medjeral-Thomas
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - H. Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
46
|
Baltierra-Uribe SL, Montañez-Barragán A, Romero-Ramírez H, Klimov-Kravtchenko K, Martínez-Pedro KI, Sánchez-Salguero E, Camorlinga-Ponce M, Torres J, Santos-Argumedo L. Colostrum IgA1 antibodies recognize antigens from Helicobacter pylori and prevent cytoskeletal changes in human epithelial cells. Eur J Immunol 2021; 51:2641-2650. [PMID: 34398472 DOI: 10.1002/eji.202049117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/06/2022]
Abstract
Helicobacter pylori is a gram-negative bacterium found on the luminal surface of the gastric mucosa in at least 50% of the world's human population. The protective effect of breastfeeding against H. pylori infection has been extensively reported; however, the mechanisms behind this protection remain poorly understood. Human IgA from colostrum has reactivity against H. pylori antigens. Despite that IgA1 and IgA2 display structural and functional differences, their reactivity against H. pylori had not been previously determined. We attested titers and reactivity of human colostrum-IgA subclasses by ELISA, immunoblot, and flow cytometry. Colostrum samples from healthy mothers had higher titers of IgA; and IgA1 mostly recognized H. pylori antigens. Moreover, we found a correlation between IgA1 reactivity and their neutralizing effect determined by inhibition of cytoskeletal changes in AGS cells infected with H. pylori. In conclusion, colostrum-IgA reduces H. pylori infection of epithelial gastric cells, suggesting an important role in preventing the bacteria establishment during the first months of life. As a whole, these results suggest that IgA1 from human colostrum provides protection that may help in the development of the mucosal immune system of newborn children. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shantal Lizbeth Baltierra-Uribe
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandra Montañez-Barragán
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Héctor Romero-Ramírez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Ksenia Klimov-Kravtchenko
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.,University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan, Jalisco, Mexico
| | - Karla Ivette Martínez-Pedro
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.,"La Cañada" University (UNCA), Oaxaca, Mexico
| | - Erick Sánchez-Salguero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Margarita Camorlinga-Ponce
- Infectious and Parasitic Disease Medical Research Unit (UIMEIP) at Pediatric Hospital in National Medical Center (CMN- SIGLO XXI) Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Javier Torres
- Infectious and Parasitic Disease Medical Research Unit (UIMEIP) at Pediatric Hospital in National Medical Center (CMN- SIGLO XXI) Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
47
|
Luca L, Beuvon C, Puyade M, Roblot P, Martin M. [Selective IgA deficiency]. Rev Med Interne 2021; 42:764-771. [PMID: 34364731 DOI: 10.1016/j.revmed.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Selective IgA deficiency (SIgAD) is defined by the European Society for Immunodeficiencies (ESID) as a serum IgA of less than 0.07g/L in patients greater than 4 years old with normal levels of IgG and IgM, normal vaccine responses, and with the exclusion of secondary causes of hypogammaglobulinemia. When serum IgA level is higher than 0.07g/L but two standard deviations below normal for age, the condition may be referred to as partial IgA deficiency, which is quite common. SIgAD is the most common primary immunodeficiency in Europe (1/600 in France) and most patients with SIgAD are asymptomatic (75-90%). The clinical complications associated with SIgAD include recurrent respiratory infections (in particular involving Haemophilus influenza and Streptococcus pneumoniae) and gastrointestinal (mainly due to Giardialamblia), autoimmune and allergic manifestations (anaphylaxis if blood products with IgA are administrated), inflammatory gastrointestinal disease. There is no specific treatment for SIgAD and each patient must be managed individually. While asymptomatic subjects do not need any treatment, it is still necessary for them to be up-to-date with vaccinations. If the patient experiences recurrent infections, prophylactic antibiotics may be beneficial. Immunoglobulin replacement therapy should be considered in patients with SIgAD and concomitant IgG subclass deficiency. Treatment for autoimmune and allergic manifestations is based on current standards of care for specific disease entities. To improve quality of life and reduce morbidity, an interdisciplinary team approach is essential.
Collapse
Affiliation(s)
- L Luca
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France.
| | - C Beuvon
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Université de Poitiers, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| | - M Puyade
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - P Roblot
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Université de Poitiers, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| | - M Martin
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Université de Poitiers, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| |
Collapse
|
48
|
Gong S, Lakhashe SK, Hariraju D, Scinto H, Lanzavecchia A, Cameroni E, Corti D, Ratcliffe SJ, Rogers KA, Xiao P, Fontenot J, Villinger F, Ruprecht RM. Cooperation Between Systemic IgG1 and Mucosal Dimeric IgA2 Monoclonal Anti-HIV Env Antibodies: Passive Immunization Protects Indian Rhesus Macaques Against Mucosal SHIV Challenges. Front Immunol 2021; 12:705592. [PMID: 34413855 PMCID: PMC8370093 DOI: 10.3389/fimmu.2021.705592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding the interplay between systemic and mucosal anti-HIV antibodies can provide important insights to develop new prevention strategies. We used passive immunization via systemic and/or mucosal routes to establish cause-and-effect between well-characterized monoclonal antibodies and protection against intrarectal (i.r.) SHIV challenge. In a pilot study, for which we re-used animals previously exposed to SHIV but completely protected from viremia by different classes of anti-HIV neutralizing monoclonal antibodies (mAbs), we made a surprise finding: low-dose intravenous (i.v.) HGN194-IgG1, a human neutralizing mAb against the conserved V3-loop crown, was ineffective when given alone but protected 100% of animals when combined with i.r. applied HGN194-dIgA2 that by itself had only protected 17% of the animals. Here we sought to confirm the unexpected synergy between systemically administered IgG1 and mucosally applied dIgA HGN194 forms using six groups of naïve macaques (n=6/group). Animals received i.v. HGN194-IgG1 alone or combined with i.r.-administered dIgA forms; controls remained untreated. HGN194-IgG1 i.v. doses were given 24 hours before - and all i.r. dIgA doses 30 min before - i.r. exposure to a single high-dose of SHIV-1157ipEL-p. All controls became viremic. Among passively immunized animals, the combination of IgG1+dIgA2 again protected 100% of the animals. In contrast, single-agent i.v. IgG1 protected only one of six animals (17%) - consistent with our pilot data. IgG1 combined with dIgA1 or dIgA1+dIgA2 protected 83% (5/6) of the animals. The dIgA1+dIgA2 combination without the systemically administered dose of IgG1 protected 67% (4/6) of the macaques. We conclude that combining suboptimal antibody defenses at systemic and mucosal levels can yield synergy and completely prevent virus acquisition.
Collapse
Affiliation(s)
- Siqi Gong
- Texas Biomedical Research Institute, San Antonio, TX, United States
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
| | | | - Dinesh Hariraju
- Texas Biomedical Research Institute, San Antonio, TX, United States
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Hanna Scinto
- Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Humabs BioMed, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Humabs BioMed, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Davide Corti
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Humabs BioMed, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - François Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Ruth M. Ruprecht
- Texas Biomedical Research Institute, San Antonio, TX, United States
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
49
|
Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Knopf J, Biermann MHC, Muñoz LE, Herrmann M. Antibody glycosylation as a potential biomarker for chronic inflammatory autoimmune diseases. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.4.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractGlycosylation of immunoglobulins (Ig) is known to influence their effector functions in physiological and pathological conditions. Changes in the glycosylation pattern of immunoglobulin G and autoantibodies in various inflammatory autoimmune diseases have been studied for many years. However, despite extensive research, many questions are still elusive regarding the formation of such differentially glycosylated antibodies and alterations of glycosylation patterns in other immunoglobulin classes for example. Nevertheless, knowledge has been deepened greatly, especially in the field of rheumatoid arthritis. Changes of Ig glycosylation patterns have been shown to appear before onset of the disease and moreover can subject to treatment. In this review, we discuss the potential of detecting Ig glycosylation changes as biomarkers for disease activity or monitoring of patients with chronic inflammatory autoimmune diseases such as antiphospholipid syndrome, rheumatoid arthritis, systemic lupus erythematosus, ANCA-associated vasculitis and Henoch-Schönlein purpura.
Collapse
Affiliation(s)
- Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Mona HC Biermann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Luis E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3–Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|