1
|
Yokota Y, Nakajima H, Wakayama Y, Muto A, Kawakami K, Fukuhara S, Mochizuki N. Endothelial Ca 2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. eLife 2015; 4. [PMID: 26588168 PMCID: PMC4720519 DOI: 10.7554/elife.08817] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022] Open
Abstract
Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon VEGF receptor-2 (Vegfr2) and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs. DOI:http://dx.doi.org/10.7554/eLife.08817.001 Throughout life, new blood vessels grow out like branches from existing vessels in a process called “sprouting angiogenesis”. This involves some of the endothelial cells that line the inner surface of the blood vessel migrating outwards, creating a vessel sprout made up of tip cells and stalk cells. Sprouting is controlled by two opposing signaling systems. One pathway is triggered by a molecule called vascular endothelial growth factor (VEGF). This molecule binds to receptor proteins to activate a range of signaling processes that stimulate endothelial cells to become tip cells, and so encourage the formation of new sprouts. However, it was not known exactly when or how the endothelial cells respond to these signals. By contrast, the Notch signaling pathway inhibits sprouting angiogenesis. The two signaling pathways interact with each other: VEGF signaling in tip cells activates Notch signaling in neighboring cells, which then prevents VEGF signaling in these cells. This feedback mechanism helps a new sprout to form by suppressing tip-like activity in the cells surrounding a new tip cell, forcing these cells to become stalk cells. Activating VEGF receptors also causes brief increases, or oscillations, in the level of calcium ions inside the endothelial cells. Now, Yokota, Nakajima et al. have investigated VEGF activity by genetically engineering zebrafish embryos so that fluorescent proteins inside their endothelial cells emit more light when calcium ion levels inside the cell increase. As zebrafish embryos are transparent, this change in fluorescence can be seen in the living animal. Imaging the embryos revealed that calcium ion oscillations occur in both tip and stalk cells in response to VEGF signaling as they bud from vessels. Notch signaling can also regulate the calcium ion oscillations; this controls whether an individual cell becomes a tip or a stalk cell, and restricts the number of stalk cells in the sprout. The flow of blood through the vessels is also thought to influence calcium ion oscillations in endothelial cells. Future studies could therefore use the imaging technique developed by Yokota, Nakajima et al. to investigate how blood flow influences the development of new blood vessels. DOI:http://dx.doi.org/10.7554/eLife.08817.002
Collapse
Affiliation(s)
- Yasuhiro Yokota
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), National Institute of Genetics, Mishima, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), National Institute of Genetics, Mishima, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Suita, Japan
| |
Collapse
|
2
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
3
|
De Bock M, Wang N, Bol M, Decrock E, Ponsaerts R, Bultynck G, Dupont G, Leybaert L. Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+ entry pathway. J Biol Chem 2012; 287:12250-66. [PMID: 22351781 PMCID: PMC3320976 DOI: 10.1074/jbc.m111.299610] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/16/2012] [Indexed: 11/06/2022] Open
Abstract
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.
Collapse
Affiliation(s)
- Marijke De Bock
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Nan Wang
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Melissa Bol
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Elke Decrock
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| | - Raf Ponsaerts
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KULeuven, 3000 Leuven, Belgium, and
| | - Geert Bultynck
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KULeuven, 3000 Leuven, Belgium, and
| | - Geneviève Dupont
- Theoretical Chronobiology Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Luc Leybaert
- From the Department of Basic Medical Sciences, Physiology Group, Ghent University 9000 Ghent, Belgium
| |
Collapse
|
4
|
De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De Ley G, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L. Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 2011; 31:1942-57. [PMID: 21654699 PMCID: PMC3185887 DOI: 10.1038/jcbfm.2011.86] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) is an important factor determining the functional state of blood-brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca(2+)](i) changes on BBB function. We applied different agonists that trigger [Ca(2+)](i) oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca(2+)](i) oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca(2+)](i) with BAPTA, indicating that [Ca(2+)](i) oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca(2+)](i) oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca(2+)](i) oscillations provoked by exposure to adenosine 5' triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
D'Andrea P, Romanello M, Bicego M, Steinberg TH, Tell G. H(2)O(2) modulates purinergic-dependent calcium signalling in osteoblast-like cells. Cell Calcium 2007; 43:457-68. [PMID: 17825906 DOI: 10.1016/j.ceca.2007.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/02/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS) have long been considered as toxic by-products of aerobic metabolism and appear involved in the pathogenesis of degenerative diseases. The physiological role of ROS as second messengers in cell signal transduction is, on the other hand, increasingly recognized. Here we investigated the effects of H(2)O(2) and extracellular nucleotides on calcium signalling in four osteoblastic cell lines. In the highly differentiated HOBIT cells, sensitive to nanomolar concentrations of ADP and UTP, millimolar H(2)O(2) induced oscillatory increases of the cytosolic calcium concentration followed by a steady and sustained calcium increase. Long lasting rhythmic calcium activity was induced by micromolar H(2)O(2) doses. The H(2)O(2)-induced calcium signals, due to both release from intracellular stores and influx from the extracellular milieu, were totally prevented by incubating the cells with the P2 receptor antagonist suramin or with the ATP/ADP hydrolyzing enzyme apyrase. In the osteosarcoma SaOS-2 cells micromolar H(2)O(2) failed to evoke calcium signals and millimolar H(2)O(2) induced a slowly developing calcium influx which was unaffected by suramin and apyrase. These cells responded to micromolar concentrations of ATP and ADP, but were largely insensitive to UTP. ROS 17/2.8 osteosarcoma cells were totally insensitive to ATP, ADP and UTP in keeping with the evidence that these cells lack functional purinergic receptors. In these cells, H(2)O(2) up to 1mM did not increase the cytosolic calcium concentration. In ROS/P2Y(2) cells, stably expressing the P2Y(2) receptor, spontaneous calcium oscillations were observed in 38% of the population and nanomolar concentration of extracellular ATP or UTP activated oscillations in quiescent cells. Spontaneous calcium signals were inhibited by suramin and apyrase. In these cells H(2)O(2) induced oscillatory calcium activity that was blocked by suramin and apyrase. The sensitivity of ROS/P2Y(2) cells to UTP decreased significantly in the presence of DTT, which was effective also in inhibiting spontaneous calcium oscillations. On the other hand, the membrane-impermeant thiol oxidant DTNB induced calcium oscillations that were inhibited by incubating the cells with suramin or apyrase. Since peroxide did not increase extracellular ATP in these cell lines, we propose that, in osteoblasts, mild oxidative conditions could activate purinergic signalling through the sensitization of P2Y(2) receptor.
Collapse
Affiliation(s)
- Paola D'Andrea
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università degli Studi di Trieste, Trieste, Italy.
| | | | | | | | | |
Collapse
|
6
|
Hu Q, Yu ZX, Ferrans VJ, Takeda K, Irani K, Ziegelstein RC. Critical role of NADPH oxidase-derived reactive oxygen species in generating Ca2+ oscillations in human aortic endothelial cells stimulated by histamine. J Biol Chem 2002; 277:32546-51. [PMID: 12093794 DOI: 10.1074/jbc.m201550200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).
Collapse
Affiliation(s)
- Qinghua Hu
- Department of Medicine, Division of Cardiology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
8
|
Sedova M, Blatter LA. Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem 2000; 275:35402-7. [PMID: 10958797 DOI: 10.1074/jbc.m006058200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the role of extramitochondrial Na(+) for the regulation of mitochondrial Ca(2+) concentration ([Ca(2+)](m)) in permeabilized single vascular endothelial cells. [Ca(2+)](m) was measured by loading the cells with the membrane-permeant Ca(2+) indicator fluo-3/AM and subsequent removal of cytoplasmic fluo-3 by surface membrane permeabilization with digitonin. An elevation of extramitochondrial Ca(2+) resulted in a dose-dependent increase in the rate of Ca(2+) accumulation into mitochondria (k(0.5) = 3 microm) via the mitochondrial Ca(2+) uniporter. In the presence of 10 mm extramitochondrial Na(+) ([Na(+)](em)), repetitive application of brief pulses of high Ca(2+) (2-10 microm) to simulate cytoplasmic [Ca(2+)] oscillations caused transient increases of [Ca(2+)](m) characterized by a fast rising phase that was followed by a slow decay. Removal of extramitochondrial Na(+) or inhibition of mitochondrial Na(+)/Ca(2+) exchange with clonazepam blocked mitochondrial Ca(2+) efflux and resulted in a net accumulation of Ca(2+) by the mitochondria. Half-maximal activation of mitochondrial Na(+)/Ca(2+) exchange occurred at [Na(+)](em) = 4.4 mm, which is well within the physiological range of cytoplasmic [Na(+)]. This study provides evidence that Ca(2+) efflux from the mitochondria in vascular endothelial cells occurs solely via Na(+)/Ca(2+) exchange and emphasizes the important role of intracellular Na(+) for mitochondrial Ca(2+) regulation.
Collapse
Affiliation(s)
- M Sedova
- Loyola University Chicago, Stritch School of Medicine, Department of Physiology, Maywood, Illinois 60153, USA
| | | |
Collapse
|
9
|
Hu Q, Zheng G, Zweier JL, Deshpande S, Irani K, Ziegelstein RC. NADPH oxidase activation increases the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J Biol Chem 2000; 275:15749-57. [PMID: 10747906 DOI: 10.1074/jbc.m000381200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many stimuli that activate the vascular NADPH oxidase generate reactive oxygen species and increase intracellular Ca(2+), but whether NADPH oxidase activation directly affects Ca(2+) signaling is unknown. NADPH stimulated the production of superoxide anion and H(2)O(2) in human aortic endothelial cells that was inhibited by the NADPH oxidase inhibitor diphenyleneiodonium and was significantly attenuated in cells transiently expressing a dominant negative allele of the small GTP-binding protein Rac1, which is required for oxidase activity. In permeabilized Mag-indo 1-loaded cells, NADPH and H(2)O(2) each decreased the threshold concentration of inositol 1,4,5-trisphosphate (InsP(3)) required to release intracellularly stored Ca(2+) and shifted the InsP(3)-Ca(2+) release dose-response curve to the left. Concentrations of H(2)O(2) as low as 3 microm increased the sensitivity of intracellular Ca(2+) stores to InsP(3) and decreased the InsP(3) EC(50) from 423.2 +/- 54.9 to 276.9 +/- 14. 4 nm. The effect of NADPH on InsP(3)-stimulated Ca(2+) release was blocked by catalase and by diphenyleneiodonium and was not observed in cells lacking functional Rac1 protein. Thus, NADPH oxidase-derived H(2)O(2) increases the sensitivity of intracellular Ca(2+) stores to InsP(3) in human endothelial cells. Since Ca(2+)-dependent signaling pathways are critical to normal endothelial function, this effect may be of great importance in endothelial signal transduction.
Collapse
Affiliation(s)
- Q Hu
- Department of Medicine, Division of Cardiology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
10
|
Paltauf-Doburzynska J, Frieden M, Spitaler M, Graier WF. Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol 2000; 524 Pt 3:701-13. [PMID: 10790152 PMCID: PMC2269898 DOI: 10.1111/j.1469-7793.2000.00701.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Using single cell microfluorometry to monitor changes in bulk Ca2+ concentration ([Ca2+]bulk) and the whole-cell configuration of the patch clamp technique to measure K+ currents (voltage clamp) and membrane potential (current clamp), the mechanisms of histamine-induced Ca2+ oscillations in the umbilical vein endothelial cell-derived cell line EA.hy926 were studied. In single cells, histamine (10 microM) evoked sinusoidal Ca2+ oscillations in low extracellular Ca2+ concentrations ([Ca2+]o = 10-30 microM). In contrast, histamine did not initiate Ca2+ oscillations either in the absence of extracellular Ca2+ (10 microM EGTA) or in the presence of 2.5 mM extracellular Ca2+. Ca2+ oscillations were accompanied by rhythmic activation of Ca2+-activated K+ (KCa) channels and membrane hyperpolarization of 18.1 +/- 3.9 mV. Hence, cell depolarization with 70 mM extracellular K+ or the inhibition of non-selective cation channels (NSCCs) and KCa channels by 10 microM Loe 908 and 10 mM tetrabutylammonium prevented histamine-evoked Ca2+ oscillations. Preventing Na+-Ca2+ exchange (NCX) by 10 microM 2', 4'-dichlorobenzamil, or removal of extracellular Na+, abolished histamine-induced Ca2+ oscillations. Lowering the extracellular Na+ concentration and thus promoting the reversed mode of NCX (3Na+ out and 1Ca2+ in) increased the amplitude and frequency of histamine-induced Ca2+ oscillations by 25 and 13 %, respectively. Hence, in the absence of extracellular Ca2+, 10 microM histamine induced an elevation of intracellular Na+ concentration in certain subplasmalemmal domains. The inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2,5-di-tert-butyl-1, 4-benzo-hydroquinone (15 microM) prevented histamine-induced Ca2+ oscillations. In addition, blockage of ryanodine-sensitive Ca2+ release (RsCR) by 25 microM ryanodine blunted Ca2+ oscillations. In endothelial cells that were treated for 16 h with 10 microM nocodazole to collapse the superficial endoplasmic reticulum (sER), no histamine-induced Ca2+ oscillations were found. We conclude that in low [Ca2+]o conditions histamine-induced Ca2+ oscillations depend on transmembrane Na+ loading through NSCCs that leads to Ca2+ entry via NCX. Cation influx is controlled by KCa channel activity that triggers membrane hyperpolarization and, thus, provides the driving force for cation influx. Hence, the Ca2+ entering needs to be sequestrated via SERCA into sER to become released by RsCR to evoke Ca2+ spiking. These data further support our previous work on localized Ca2+ signalling as a key phenomenon in endothelial Ca2+ homeostasis.
Collapse
Affiliation(s)
- J Paltauf-Doburzynska
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens University of Graz, Harrachgasse 21/III, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
11
|
Hu Q, Deshpande S, Irani K, Ziegelstein RC. [Ca(2+)](i) oscillation frequency regulates agonist-stimulated NF-kappaB transcriptional activity. J Biol Chem 1999; 274:33995-8. [PMID: 10567364 DOI: 10.1074/jbc.274.48.33995] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In nonexcitable cells, stimulation by high agonist concentrations typically produces a biphasic increase in cytosolic Ca(2+) ([Ca(2+)](i)). This response is characterized by a transient initial increase because of intracellular Ca(2+) release followed by a sustained elevation which varies in amplitude depending on the nature of the stimulus. In contrast, low-level stimulation often evokes oscillatory changes in [Ca(2+)](i). The specific information provided by repetitive [Ca(2+)](i) spikes appears to be encoded in the frequency rather than in the amplitude of [Ca(2+)](i) oscillations. The specific, membrane-permeable inositol 1,4, 5-trisphosphate (Ins-1,4,5-P(3)) receptor blocker Xestospongin C (XeC, 2-20 microM) was used to affect [Ca(2+)](i) signaling in human aortic endothelial cells (HAEC) during an established response to low-level (1 microM) histamine stimulation. XeC produced a dose-dependent decrease in the frequency of [Ca(2+)](i) oscillations during histamine stimulation without affecting oscillation amplitude. Histamine stimulated a 14-fold increase in NF-kappaB-chloramphenicol acetyltransferase reporter gene activity that was dose-dependently decreased by XeC. Thus, during low-level agonist stimulation, [Ca(2+)](i) oscillation frequency regulates nuclear transcription in HAEC.
Collapse
MESH Headings
- Aorta/cytology
- Calcium/metabolism
- Calcium Channels
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Chloramphenicol O-Acetyltransferase/drug effects
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Genes, Reporter/genetics
- Histamine/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Macrocyclic Compounds
- NF-kappa B/genetics
- Oxazoles/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Q Hu
- Department of Medicine, Division of Cardiology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
12
|
Carter TD, Zupancic G, Smith SM, Wheeler-Jones C, Ogden D. Membrane capacitance changes induced by thrombin and calcium in single endothelial cells cultured from human umbilical vein. J Physiol 1998; 513 ( Pt 3):845-55. [PMID: 9824722 PMCID: PMC2231308 DOI: 10.1111/j.1469-7793.1998.845ba.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 09/09/1998] [Indexed: 11/30/2022] Open
Abstract
1. Vesicular secretion from single human umbilical vein endothelial cells (HUVECs) was monitored by changes in membrane capacitance (Cm). Secretion was evoked by dialysis with strongly buffered intracellular free Ca2+ concentrations ([Ca2+]i), flash photolysis of Ca2+-loaded DM-nitrophen or caged InsP3, or by thrombin. [Ca2+]i was monitored spectrofluorimetrically with furaptra. The results show that a large, slowly rising component of vesicular secretion requires prolonged exposure to high [Ca2+]i. 2. Cm increased during intracellular perfusion with [Ca2+] buffered in the range 1.0-20 microM. Changes in Cm comprised an initial slowly rising small component of 0.1-0.5 pF followed by a faster rising larger component of up to approximately 7 pF, seen when [Ca2+]i > 2 microM and which was maximal at 10-20 microM Ca2+. 3. Thrombin evoked rapid initial elevations of [Ca2+]i to a peak of 7.1 +/- 1.5 microM (mean +/- s.e. m., n = 5) that declined within approximately 20-30 s with thrombin present either to resting levels or to a maintained elevated level of 2.0 +/- 0.7 microM (mean +/- s.e.m., range 1.0-3.6 microM, n = 3). Transient [Ca2+]i rises were associated with small, slowly rising increases in Cm of 0.1-0.2 pF, that recovered to pre-application levels over 2-3 min. Maintained elevations of [Ca2+]i caused larger, faster-rising sustained increases in Cm to 1.14 +/- 0.12 pF (mean +/- s.e.m., n = 3). Separate specific enzyme-linked immunosorbent assay (ELISA) showed that 1.0 U ml-1 thrombin produced secretion of von Willebrand factor in HUVEC cultures. 4. Short-lived [Ca2+]i elevations with a peak of 3-25 microM and a duration of approximately 20 s generated by flash photolysis of caged InsP3 or DM-nitrophen produced either no net change in Cm, or small slow increases of approximately 0.1-0.6 pF at up to 5 fF s-1 that recovered to pre-flash levels over 2-3 min. 5. Maintained elevations of [Ca2+]i in the range 1-28 microM produced by flash photolysis of DM-nitrophen caused large increases in Cm, up to approximately 4 pF, corresponding to approximately 25-30 % of the initial cell Cm. The maximum rate of change of Cm was up to 50 fF s-1 at steady [Ca2+] up to 20 microM; Cm recovered towards pre-flash levels only when [Ca2+] had declined.
Collapse
Affiliation(s)
- T D Carter
- National Institute for Medical Research, Mill Hill, London NW7 1AA,,
| | | | | | | | | |
Collapse
|
13
|
Hu Q, Corda S, Zweier JL, Capogrossi MC, Ziegelstein RC. Hydrogen peroxide induces intracellular calcium oscillations in human aortic endothelial cells. Circulation 1998; 97:268-75. [PMID: 9462529 DOI: 10.1161/01.cir.97.3.268] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because the vascular endothelium is exposed to oxidant stress resulting from ischemia/reperfusion and from the products of polymorphonuclear leukocytes or monocytes, studies were performed to examine the effect of hydrogen peroxide (1 micromol/L to 10 mmol/L) on endothelial Ca2+ signaling. METHODS AND RESULTS At low concentrations (1 to 10 micromol/L), hydrogen peroxide did not affect intracellular Ca2+ concentration in subconfluent, indo 1-loaded human aortic endothelial monolayers. At a concentration of 100 micromol/L hydrogen peroxide, intracellular free Ca2+ gradually increased from 125.3+/-6.8 to 286.3+/-19.9 nmol/L over 4.2+/-0.9 minutes before repetitive Ca2+ oscillations were observed, consisting of an initial large, transient spike of approximately 1 micromol/L followed by several spikes of decreasing amplitudes at a frequency of 0.7+/-0.1 min-1 over 12.0+/-1.1 minutes. After these oscillations, intracellular Ca2+ reached a plateau of 543.4+/-64.0 nmol/L, which was maintained above baseline levels for >5 minutes and then partially reversible on washout of hydrogen peroxide in most monolayers. Intracellular Ca2+ oscillations were typically observed when monolayers were exposed to 100 to 500 micromol/L hydrogen peroxide. Higher concentrations of hydrogen peroxide (1 and 10 mmol/L) increased intracellular Ca2+ but only rarely (2 of 6 monolayers at 1 mmol/L) or never (at 10 mmol/L) stimulated intracellular Ca2+ oscillations. Removal of Ca2+ from the buffer either before hydrogen peroxide stimulation or during an established response did not block intracellular Ca2+ oscillations in response to 100 micromol/L hydrogen peroxide, but prior depletion of an intracellular Ca2+ store with either caffeine, histamine, or thapsigargin abolished Ca2+ oscillations. CONCLUSIONS Hydrogen peroxide induces concentration-dependent intracellular Ca2+ oscillations in human endothelial cells, which results from release of an endoplasmic reticulum Ca2+ store. Because oxidant production appears to occur in the micromolar range in the postischemic/anoxic endothelium and is associated with impaired endothelium-dependent relaxation, the effects of micromolar concentrations of hydrogen peroxide on endothelial Ca2+ signaling described in the present study may be important in the pathogenesis of postischemic endothelial dysfunction.
Collapse
Affiliation(s)
- Q Hu
- Department of Medicine, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Md 21224-2780, USA
| | | | | | | | | |
Collapse
|
14
|
Carter TD, Ogden D. Kinetics of Ca2+ release by InsP3 in pig single aortic endothelial cells: evidence for an inhibitory role of cytosolic Ca2+ in regulating hormonally evoked Ca2+ spikes. J Physiol 1997; 504 ( Pt 1):17-33. [PMID: 9350614 PMCID: PMC1159932 DOI: 10.1111/j.1469-7793.1997.00017.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The role of the InsP3 receptor and its interaction with Ca2+ in shaping endothelial Ca2+ spikes was investigated by comparing InsP3-evoked intracellular Ca2+ release with hormonally evoked Ca2+ spikes in single endothelial cells. 2. InsP3 was generated by flash photolysis of intracellular caged InsP3. InsP3 at 0.2 microM or higher released Ca2+ from stores with a time course comprising a well-defined delay, a fast rise of free [Ca2+] to a peak where net flux into the cystosol is zero, and a slow decline to preflash levels. InsP3-evoked Ca2+ flux into unit cytosolic volume was measured as the rate of change of free [Ca2+]i during the fast rise, d[Ca2+]i/dt (mol s-1 l-1). 3. The mean delay decreased from 433 ms at 0.2 microM to 30 ms at 5 microM. At very high InsP3 concentrations, 78 microM, the delay was shorter, < 10 ms. At low InsP3 concentration the delay was reduced by approximately 30% by prior elevation of free [Ca2+]i, supporting a co-operative action of free [Ca2+] and InsP3 in activation. 4. Both Ca2+ flux and peak free [Ca2+]i increased with InsP3 concentration within each cell. Maximal activation was at > 5 microM, 50% maximum Ca2+ flux was at 1.6 microM InsP3 and the Hill coefficient was between 3.6 and 4.3. A large variation of Ca2+ flux and peak [Ca2+]i was found from cell to cell at the same InsP3 concentration. 5. Strong inhibition of InsP3-evoked flux was produced by an immediately preceding response, with complete inhibition at peak free [Ca2+]i due to the first pulse. InsP3 sensitivity returned over 1-2 min, with 50% recovery at approximately 25 s. The recovery of InsP3 sensitivity may determine the minimum interval between hormonally evoked spikes. 6. Ca2+ flux due to a pulse of InsP3 terminated rapidly, in the continued presence of InsP3, producing a well-defined peak [Ca2+]. A reciprocal relation was found between the duration and the rate of Ca2+ flux, such that high Ca2+ flux was of brief duration. The rate of termination of flux measured as the reciprocal of the 10-90% rise time of free [Ca2+]i showed a linear correlation with Ca2+ flux over a large range in all cells. A systematic deviation from linearity at low InsP3 concentration showed a greater rate of termination at low InsP3 concentration than at high for the same flux. 7. Elevating cytosolic free [Ca2+] by 0.1-2.5 microM strongly inhibited Ca2+ release by InsP3, and buffering free [Ca2+] to low levels greatly prolonged Ca2+ release. Both results support the idea that Ca2+ flux quickly produces locally high free [Ca2+] which inhibits the receptor and terminates Ca2+ release. 8. Hormonally evoked Ca2+ spikes showed a similar reciprocal relation between rise time and Ca2+ flux, seen in the initial Ca2+ spike evoked by extracellular ATP in porcine aortic endothelial cells and by acetylcholine in rat aortic endothelial cells in situ, supporting the idea that the same mechanism of cytosolic Ca2+ inhibition determines the duration of hormonally and InsP3-evoked Ca2+ spikes.
Collapse
Affiliation(s)
- T D Carter
- National Institute for Medical Research, London, UK.
| | | |
Collapse
|
15
|
Carter TD, Chen XY, Carlile G, Kalapothakis E, Ogden D, Evans WH. Porcine aortic endothelial gap junctions: identification and permeation by caged InsP3. J Cell Sci 1996; 109 ( Pt 7):1765-73. [PMID: 8832399 DOI: 10.1242/jcs.109.7.1765] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junction channels permit the direct intercellular transfer of ions and small molecules and allow electrotonic coupling within tissues. Porcine aortic endothelial cells were extensively coupled, as assessed by gap junctional transfer of Lucifer yellow and the fluorescent calcium indicators fluo-3 and furaptra, but were not permeable to rhodamine B isothiocyanate-dextran 10S. The subunit composition of gap junction channels of porcine aortic endothelial cells was characterised using both northern blot analysis and RT-PCR techniques. Messenger RNA encoding connexins 37 and 43, but not 26, 32 or 40, were found in freshly isolated and cultured porcine aortic endothelial cells. Western blots using antipeptide antibodies raised to unique sequences of connexins 37, 40 and 43 showed the presence of connexins 37 and 43, but no connexin 40 was detected. Immunostaining with anticonnexin 43 antibodies showed extensive punctate fluorescent decoration of contacting membranes, whilst antibodies to connexin 37 showed predominantly intracellular staining. Caged InsP3 was found to readily permeate endothelial gap junctions. These results show that primary cultures of porcine aortic endothelial cells express connexin 37 and 43, and provide strong evidence that the second messenger molecule InsP3 can permeate porcine endothelial gap junctions.
Collapse
Affiliation(s)
- T D Carter
- National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Bogle RG, Baydoun AR, Pearson JD, Mann GE. Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J Physiol 1996; 490 ( Pt 1):229-41. [PMID: 8745290 PMCID: PMC1158659 DOI: 10.1113/jphysiol.1996.sp021138] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. We have investigated whether changes in extracellular ion composition and substrate deprivation modulate basal and/or bradykinin-stimulated L-arginine transport and release of nitric oxide (NO) and prostacyclin (PGI2) in porcine aortic endothelial cells cultured and superfused on microcarriers. 2. Saturable L-arginine transport (Km = 0.14 +/- 0.03 mM; Vmax = 2.08 +/- 0.54 nmol min-1 (5 x 10(6) cells)-1) was pH insensitive and unaffected following removal of extracellular Na+ or Ca2+. 3. Cationic arginine analogues, including L-lysine and L-ornithine, inhibited L-arginine transport, whilst 2-methylaminoisobutyric acid, beta-2-amino-bicyclo[2,2.1]-heptane-2-carboxylic acid, L-phenylalanine, 6-diazo-5-oxo-norleucine, L-glutamine, L-cysteine and L-glutamate were poor inhibitors. 4. Deprivation of L-arginine (30 min to 24 h) reduced intracellular free L-arginine levels from 0.87 +/- 0.07 to 0.40 +/- 0.05 mM (P < 0.05) and resulted in a 40% stimulation of L-arginine, L-lysine and L-ornithine transport. 5. L-arginine and NG-monomethyl-L-arginine (L-NMMA), but not N omega-nitro-L-arginine methyl ester (L-NAME), trans-stimulated efflux of L-[3H]arginine. 6. Depolarization of endothelial cells with 70 mM K+ reduced L-arginine influx and prevented the stimulation of transport by 100 nM bradykinin, but agonist-induced release of NO and PGI2 was still detectable. 7. Basal rates of L-arginine transport and NO release were unaffected during superfusion of cells with a nominally Ca(2+)-free solution. Bradykinin-stimulated L-arginine transport was insensitive to removal of Ca2+, whereas agonist-induced NO release was abolished. 8. Although bradykinin-stimulated NO release does not appear to be coupled directly to the transient increase in L-arginine transport, elevated rates of L-arginine influx via system y+ in response to agonist-induced membrane hyperpolarization or substrate deprivation provide a mechanism for enhanced L-arginine supply to sustain NO generation.
Collapse
Affiliation(s)
- R G Bogle
- Vascular Biology Research Centre, King's College, London, UK
| | | | | | | |
Collapse
|
17
|
Carter TD, Ogden D. Acetylcholine-stimulated changes of membrane potential and intracellular Ca2+ concentration recorded in endothelial cells in situ in the isolated rat aorta. Pflugers Arch 1994; 428:476-84. [PMID: 7838669 DOI: 10.1007/bf00374568] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intracellular free Ca2+ concentration and membrane potential changes evoked by acetylcholine were recorded from whole-cell patch-clamped endothelial cells in situ in the isolated rat aorta. The endothelium had a resting membrane potential of -52 +/- 3 mV (SEM, range -35 mV to -76 mV n = 34) and a low input resistance (32 - 54 M omega). The membrane potential hyperpolarised by 3-30 mV on continuous application of acetylcholine at concentrations that produced endothelium-dependent relaxations in isolated rat aortic rings (range 1-500 nM). The response often comprised complex fluctuations of hyperpolarised membrane potential. Calcium concentration was measured with the fluorescent indicator furaptra, which has a wide range and minimises Ca2+ buffering. Acetylcholine evoked an initial rapid elevation of intracellular Ca2+ concentration, peaking in the range 6-35 microM, which declined with a half time of approximately 6 s, followed by repetitive [Ca2+] spikes of amplitude 2-18 microM in 23 of 34 cells. The initial [Ca2+] transient and hyperpolarisation were unaffected by removal of external Ca2+, whilst subsequent [Ca2+] spikes and maintained hyperpolarisations required the presence of external Ca2+. Both the hyperpolarisation and Ca2+ responses elicited by acetylcholine were abolished by atropine (1 microM). These results show that endothelial cells in situ exhibit large, fast repetitive [Ca2+] spikes in response to extracellular acetylcholine.
Collapse
Affiliation(s)
- T D Carter
- Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
18
|
Birch KA, Ewenstein BM, Golan DE, Pober JS. Prolonged peak elevations in cytoplasmic free calcium ions, derived from intracellular stores, correlate with the extent of thrombin-stimulated exocytosis in single human umbilical vein endothelial cells. J Cell Physiol 1994; 160:545-54. [PMID: 7521337 DOI: 10.1002/jcp.1041600318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have used indo-1-loaded human endothelial cells (EC) in monolayer culture and quantitative laser scanning fluorescence microscopy techniques to investigate the magnitude and duration of the change in cytoplasmic free calcium ([Ca2+]i) required for thrombin-stimulated von Willebrand factor (vWF) secretion in individual EC. Both alpha-thrombin and a 14 amino acid thrombin receptor activating peptide stimulate an increase in EC [Ca2+]i that is agonist dose dependent. Low-dose agonist treatment generates asynchronous oscillations (i.e., repetitive spikes < 80 sec duration) in [Ca2+]i. Stimulation with higher agonist concentrations generates a prolonged single peak elevation in [Ca2+]i. Both the number of cells displaying prolonged [Ca2+]i peaks and the mean amplitude of the peaks increase as a function of agonist concentration. Higher doses of agonist also cause sustained elevations in [Ca2+]i that depend upon extracellular Ca2+. Oscillations in [Ca2+]i are not sufficient to stimulate significant vWF secretion, and sustained elevations in [Ca2+]i are not required for maximal secretion. Both the number of cells displaying prolonged peaks and the mean peak amplitude correlate with increasing levels of vWF secretion from the culture. We have used the expression of P-selectin, a secretory granule membrane protein, as a marker for measuring thrombin-induced exocytosis in individual EC. Both the number of secreting cells and the amount of secretion per cell increase as a function of thrombin concentration. The graded responses in [Ca2+]i amplitudes and the graded exocytotic response may be causally related.
Collapse
Affiliation(s)
- K A Birch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
19
|
Ida R, Lee A, Huang J, Brandi ML, Yamaguchi DT. Prostaglandin-stimulated second messenger signaling in bone-derived endothelial cells is dependent on confluency in culture. J Cell Physiol 1994; 160:585-95. [PMID: 8077296 DOI: 10.1002/jcp.1041600322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
New bone formation is associated with an increase in blood flow by the invasion of capillaries. Endothelial cells that line the capillaries can produce paracrine factors that affect bone growth and development, and in turn, could be affected by products produced by bone cells, in particular the osteoblasts. Since osteoblasts produce prostaglandins E2 and F2 alpha (PGE2, PGF2 alpha), it was investigated if these PGs were agonists to bone-derived endothelial cells (BBE) by assessing changes in cAMP and free cytosolic calcium concentration ([Ca2+]i) second messenger generation. We found that confluent cultures of BBE cells, a clonal endothelial cell line derived from bovine sternal bone, responded to 1 microM PGE2 by an increase in cAMP. PGF2 alpha at the same concentration was less potent in stimulating an increase in cAMP production in confluent BBE cells. Subconfluent cells with a morphology similar to that of fibroblastic cells were not as sensitive to PGE2-stimulated cAMP generation. PGF2 alpha failed to elicit any cAMP production in subconfluent cultures. PGE2 and PGF2 alpha both stimulated an increase in [Ca2+]i concentration in a dose-dependent manner. The potency of PGE2 was similar to that of PGF2 alpha in stimulating an increase in [Ca2+]i. The Ca2+ response was mostly independent of extracellular Ca+, was unchanged even with prior indomethacin treatment, was unaffected by caffeine pretreatment, but was abolished subsequent to thapsigargin pretreatment. The PG-induced increase in [Ca2+]i was also dependent on the confluency of the cells. In a subconfluent state, the responses to PGE2, or PGF2 alpha were either negligible, or only small increases in [Ca2+]i were noted with high concentrations of these two PGs. Consistent, dose-dependent increases in [Ca2+]i were stimulated by these PGs only when the cells were confluent and had a cobblestoned appearance. Since it was previously demonstrated that BBE cells respond to parathyroid hormone (PTH) by the production of cAMP, we tested if bovine PTH(1-34) amide ]bPTH(1-34) also increased [Ca2+]i in these cells. No change in [Ca2+]i was found in response to bPTH (1-34), although bPTH (1-34) stimulated a nine to tenfold increase in cAMP. We conclude that BBE cells respond to PGE2 and PGF2 alpha but not to bPTH(1-34) by an increase in [Ca2+]i probably secondary to stimulation of phospholipase C and that the cAMP and [Ca2+]i second messenger responses in BBE cells are dependent on the state of confluency of the cells.
Collapse
Affiliation(s)
- R Ida
- Dental Service, VAMC, West Los Angeles, California 90073
| | | | | | | | | |
Collapse
|
20
|
Wyskovsky W. Caffeine-induced calcium oscillations in heavy-sarcoplasmic-reticulum vesicles from rabbit skeletal muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:317-25. [PMID: 7513282 DOI: 10.1111/j.1432-1033.1994.tb18743.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heavy-sarcoplasmic-reticulum vesicles from rabbit skeletal muscle show not only caffeine-induced calcium release in a medium allowing active calcium loading, but also oscillations in calcium concentration under appropriate conditions. The xanthine derivatives 7-isobutyl-1-methylxanthine and theophylline also induce oscillations under the same conditions. Calcium-releasing substances with other chemical structures such as adenosine nucleotides or calmodulin antagonists do not induce this effect. With the help of specific inhibitors such as ruthenium red, neomycin or magnesium it was demonstrated that the oscillation mechanism involves the ryanodine receptor/calcium channel. When ATP was substituted by GTP or ITP no oscillations occurred after caffeine application. The subsequent application of ATP, but not of adenosine 5'-[gamma-thio]triphosphate or adenosine 5'-[beta,gamma-methylene]triphosphate activated the oscillating mechanism, showing ATP to be an essential component of the oscillating system. We investigated the influence of the experimental conditions by altering the caffeine and ATP concentrations, calcium load, pH and ionic strength amongst other parameters. Potassium and anion channels are not involved in calcium oscillations of heavy sarcoplasmic reticulum, nor are the oscillations dependent on membrane potential.
Collapse
Affiliation(s)
- W Wyskovsky
- Pharmakologisches Institut, Universität Wien, Vienna, Austria
| |
Collapse
|
21
|
Tsunoda Y. Receptor-operated Ca2+ signaling and crosstalk in stimulus secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:105-56. [PMID: 8218335 DOI: 10.1016/0304-4157(93)90008-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the cells of higher eukaryotic organisms, there are several messenger pathways of intracellular signal transduction, such as the inositol 1,4,5-trisphosphate/Ca2+ signal, voltage-dependent and -independent Ca2+ channels, adenylate cyclase/cyclic adenosine 3',5'-monophosphate, guanylate cyclase/cyclic guanosine 3',5'-monophosphate, diacylglycerol/protein kinase C, and growth factors/tyrosine kinase/tyrosine phosphatase. These pathways are present in different cell types and impinge on each other for the modulation of the cell function. Ca2+ is one of the most ubiquitous intracellular messengers mediating transcellular communication in a wide variety of cell types. Over the last decades it has become clear that the activation of many types of cells is accompanied by an increase in cytosolic free Ca2+ concentration ([Ca2+]i) that is thought to play an important part in the sequence of events occurring during cell activation. The Ca2+ signal can be divided into two categories: receptor- and voltage-operated Ca2+ signal. This review describes and integrates some recent views of receptor-operated Ca2+ signaling and crosstalk in the context of stimulus-secretion coupling.
Collapse
Affiliation(s)
- Y Tsunoda
- Department of Faculty Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Carter TD, Ogden D. Kinetics of intracellular calcium release by inositol 1,4,5-trisphosphate and extracellular ATP in porcine cultured aortic endothelial cells. Proc Biol Sci 1993; 250:235-41. [PMID: 1362991 DOI: 10.1098/rspb.1992.0154] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative, time-resolved measurements have been made of intracellular Ca ion release by inositol 1,4,5-trisphosphate (InsP3) and extracellular ATP in porcine aortic endothelial cells in tissue culture. Intracellular free [Ca] was detected with the calcium dye fluo-3 and InsP3 released intracellularly by photolysis of 'caged' InsP3 in whole-cell voltage-clamped aortic endothelial cells. A rise of [Ca] was recorded at InsP3 concentrations greater than 0.2 microM. The timecourse at low InsP3 concentrations comprised a delay of mean 300 ms (range 266-330 ms), a peak in 2-3 s before declining with a half-time of 5-10 s. The delay and time-to-peak decreased with increasing concentrations of InsP3 over the range 0.2-5 microM. At very high concentrations of InsP3 (> 5 microM), the delay in the Ca response was short, always less than 20 ms. The results are consistent with a direct binding and gating action of InsP3 on the Ca channel of the cellular store. Following InsP3 action there is a refractoriness of the InsP3 Ca release process which recovers with a timecourse of half-time about 30 s. A comparison can be made between the timecourse of InsP3 and extracellular ATP actions. High concentrations of ATP (500 microM) acted with a delay of mean 1.8 s (range 1.2-2.5 s), whereas even moderate concentrations of InsP3 acted much more quickly, suggesting that there are slow coupling steps before or during the production of InsP3 in response to extracellular ATP. Both ATP and InsP3 evoked an increase in membrane conductance to K+, probably via Ca.
Collapse
Affiliation(s)
- T D Carter
- Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research, Mill Hill, London, U.K
| | | |
Collapse
|
23
|
Pirotton S, Motte S, Côte S, Boeynaems JM. Control of endothelial function by nucleotides: multiple receptors and transduction mechanisms. Cell Signal 1993; 5:1-8. [PMID: 8383991 DOI: 10.1016/0898-6568(93)90002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S Pirotton
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
24
|
Thuringer D, Sauvé R. A patch-clamp study of the Ca2+ mobilization from internal stores in bovine aortic endothelial cells. II. Effects of thapsigargin on the cellular Ca2+ homeostasis. J Membr Biol 1992; 130:139-48. [PMID: 1291682 DOI: 10.1007/bf00231892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence was provided, in the preceding paper (Thuringer & Sauvé, 1992), that the external Ca(2+)-dependent phase of the Ca2+ signals evoked by bradykinin (BK) or caffeine in bovine aortic endothelial cells (BAE), differ in their respective sensitivity to procaine. To examine whether the emptying of the InsP3-sensitive Ca2+ store is the signal for activating the agonist-evoked Ca2+ entry, we have investigated the effects of thapsigargin (TSG), a known inhibitor of the microsomal Ca(2+)-ATPase activity in a variety of cell types, via the activity of calcium-activated potassium channels [K(Ca2+) channels]. In cell-attached experiments, the external application of TSG caused a sustained or oscillatory activation of K(Ca2+) channels depending on both the cells and doses tested. The TSG-evoked channel activity could be reversibly blocked by removing extracellular Ca2+, and strongly decreased by adding 10 mM procaine to the bath medium. In Ca(2+)-free external conditions, TSG did not promote an apparent Ca2+ discharge from internal stores but prevented in a dose- and time-dependent manner the subsequent agonist-evoked channel activity related to the release of internally sequestered Ca2+. These results confirm that TSG and BK release Ca2+ from the same internal stores but with different kinetics. Because the channel response to caffeine was found to be poorly sensitive to procaine, in contrast to that evoked by BK and TSG, it may be concluded that both BK and TSG activate the same Ca2+ entry pathway. Therefore, the emptying of the InsP3-sensitive Ca2+ store is likely to be the main signal for activating the agonist-evoked Ca2+ entry in BAE cells.
Collapse
Affiliation(s)
- D Thuringer
- Département de Physiologie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
25
|
Weintraub WH, Negulescu PA, Machen TE. Calcium signaling in endothelia: cellular heterogeneity and receptor internalization. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C1029-39. [PMID: 1332490 DOI: 10.1152/ajpcell.1992.263.5.c1029] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vasoactive factors thrombin, bradykinin (BK), and ATP are released in response to tissue damage and inflammation and act on endothelium to modulate vascular perfusion. We have investigated the second messenger response of endothelium activated by these agonists and, in particular, the mechanism of desensitization to BK. Fura-2 fluorescence ratio imaging of calf pulmonary artery endothelial cells (CPAE) revealed 5- to 10-fold increases on intracellular Ca (Cai) in response to these agents. Maximal doses caused Cai to increase from 52 to 248 nM (thrombin), 556 nM (BK), and 643 nM (ATP). Agonists elicited a rapid (within 30 s) increase of Cai due to release of Ca from intracellular stores followed by a secondary elevation of Cai dependent on entry of external Ca. The temporal characteristics of the Cai responses to all agonists were heterogeneous from cell to cell, and, interestingly, repeated stimulation gave identical signature responses from individual cells, although the amplitude of the Cai response decreased to thrombin and especially bradykinin but not for ATP. This decrease was agonist specific because ATP elicited large increases of Cai after thrombin or BK desensitization. Maximal desensitization was obtained with BK applied for 5-10 min followed by a rest of < 10 min before restimulation. Although desensitization primarily reduced the elevation of Cai due to the release of the internal store, entry of extracellular Ca was also reduced. Cells responded heterogeneously to desensitization in that those with prominent extracellular Ca entry responded most strongly upon a second stimulation with BK. Because desensitized cells still responded to ATP with an increase of Cai, the desensitization was controlled at a step prior to the activation of phospholipase C. Desensitization occurred by a reduction of BK receptor number; a 10-min BK pretreatment reduced [3H]BK binding to receptors by 70% (from 14,600 receptors/cell, Km = 5 nM, to 5,300). As surface receptor numbers decreased, internalized receptors increased as assayed by an acetic acid wash. The time course of the receptor internalization was similar to the decrease in Cai response to BK. We conclude that the vasoactive agonists thrombin, BK, and ATP increase the second messenger Cai in endothelial cells and that a desensitized Cai response occurs with BK, but not with ATP, due to downregulation and endocytosis of the BK receptor.
Collapse
Affiliation(s)
- W H Weintraub
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
26
|
Higashida H, Hoshi N, Noda M, Shahidullah M, Hashii M, Nozawa Y. Ba2+ current oscillations modulated by cyclic AMP and phorbol esters in ras-transformed fibroblasts. Biochem Biophys Res Commun 1992; 182:1240-5. [PMID: 1311569 DOI: 10.1016/0006-291x(92)91864-m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An oscillatory influx of divalent cations was measured as Ba2+ inward currents (Ba2+ current oscillations) by voltage-clamp recording in v-Ki-ras-transformed NIH/3T3 (DT) fibroblasts after activation with bradykinin or serum. Application of forskolin or dibutyryl cyclic AMP onto DT cells initiated Ba2+ current oscillations. Increasing intracellular cyclic AMP reduced the amplitude but increased the frequency of the Ba2+ current oscillations. Activation of protein kinase C by phorbol esters terminated Ba2+ current oscillations. No inhibition of Ba2+ current oscillations by phorbol esters was observed in down-regulated cells that had been pretreated with phorbol esters for 24 hrs. The results suggest that Ba2+ current oscillations are regulated by intracellular second messengers.
Collapse
Affiliation(s)
- H Higashida
- Department of Biophysics, Kanazawa University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|