1
|
Li Y, Hou P, Li R, Li P, Ma Z, Wu H, Jiang Z. A functional study of the trehalase genes in Tribolium castaneum and their application in the construction of RNAi engineering bacteria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106315. [PMID: 40015907 DOI: 10.1016/j.pestbp.2025.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Tribolium castaneum, belonging to the order Coleoptera, family Tenebrionidae, is a global grain storage pest. The enzyme trehalase can catalyze trehalose decomposition and participate in chitin synthesis, which is of great significance in insect physiology and may be a key target for T. castaneum pest prevention and control. This study focused on T. castaneum and explored the function of its trehalase (TcTre) in test insects' growth and development process. We analyzed the roles of TcTre in different growth stages and tissues of T. castaneum by measuring its spatio and temporal expression patterns. The silencing of TcTre by RNAi technology reduced the transcription level of the target gene, affected the enzyme activity of trehalase, disturbed the sugar balance, blocked the pathway of chitin synthesis, and caused abnormal molting and wing development of the tested insects. Key genes about pest control such as TcTre1-1, TcTre1-3, and TcTre2 were screened, which caused the accumulated mortality of 53.33 %, 56.67 %, and 50.00 % respectively. Subsequently, an engineered bacterium, Tre-L4440-HT115 (DE3), was developed to efficiently express dsRNA and mediate insecticidal activity. The dsRNA produced by the bacterial solution, targeting TcTre1-1, TcTre1-3, and TcTre2 fragments for silencing, could cause the death of 44.44 %, 48.89 %, and 46.67 % of the test insects cumulatively. This advancement was aimed at reducing the production costs of dsRNA and laying a scientific foundation for the industrial development of nucleic acid pesticides for T. castaneum.
Collapse
Affiliation(s)
- Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Puxing Hou
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Ruyu Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Pei Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| | - Zhili Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
2
|
Wu Z, Gao J, Wang X, Wang C, Zhang C, Li X, Zhang J, Sun Y. Soluble trehalase responds to heavy metal stimulation by regulating apoptosis in Neocaridina denticulata sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117072. [PMID: 39303639 DOI: 10.1016/j.ecoenv.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Trehalase plays an important role in insect metabolism and development by hydrolyzing blood sugar trehalose, but it seems to perform primarily an immunomodulatory function in crustaceans whose blood sugar is glucose. Metal ions as pollutants seriously affecting crustacean health, but studies on trehalase in metal immunity are still limited. In this study, a soluble trehalase (NdTre1) that could bind to multiple metals was identified from Neocaridina denticulata sinensis for investigating metal resistance. Expression profiling revealed that NdTre1 was mainly expressed in the gill and was significantly decreased following stimulation with copper (Cu²⁺) and cadmium (Cd²⁺). Transcriptomic analysis of gills revealed an increase in ecdysone synthesis after interference with NdTre1. Increased ecdysone activated the endogenous mitochondrial pathway and the mitogen activated protein kinase (MAPK) pathway to further induced apoptosis. In vitro, Escherichia coli overexpressing recombinant NdTre1 had higher survival and faster growth rates to better adapted the metal-containing medium. Overall, NdTre1 exercises an important immune function in shrimp resistance to metal stimulation by regulating apoptosis and molting. Further investigation can further explore specific response mechanisms of NdTre1 to multiple metals.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiyin Gao
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Xiongfei Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Cong Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Chunyu Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Xiao Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Zheng X, Yuan J, Qian K, Tang Y, Wang J, Zhang Y, Feng J, Cao H, Xu B, Zhang Y, Liang P, Wu Q. Identification and RNAi-based function analysis of trehalase family genes in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2024; 80:2839-2850. [PMID: 38323792 DOI: 10.1002/ps.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Insects utilize trehalases (TREs) to regulate energy metabolism and chitin biosynthesis, which are essential for their growth, development, and reproduction. TREs can therefore be used as potential targets for future insecticide development. However, the roles of TREs in Frankliniella occidentalis (Pergande), a serious widespread agricultural pest, remain unclear. RESULTS Three TRE genes were identified in F. occidentalis and cloned, and their functions were then investigated via feeding RNA interference (RNAi) and virus-induced gene silencing (VIGS) assays. The results showed that silencing FoTRE1-1 or FoTRE1-2 significantly decreased expression levels of FoGFAT, FoPGM, FoUAP, and FoCHS, which are members of the chitin biosynthesis pathway. Silencing FoTRE1-1 or FoTRE2 significantly down-regulated FoPFK and FoPK, which are members of the energy metabolism pathway. These changes resulted in 2-fold decreases in glucose and glycogen content, 2-fold increases in trehalose content, and 1.5- to 2.0-fold decreases in chitinase activity. Furthermore, knocking down FoTRE1-1 or FoTRE1-2 resulted in deformed nymphs and pupae as a result of hindered molting. The VIGS assay for the three FoTREs revealed that FoTRE1-1 or FoTRE2 caused shortened ovarioles, and reduced egg-laying and hatching rates. CONCLUSION The results suggest that FoTRE1-1 and FoTRE1-2 play important roles in the growth and development of F. occidentalis, while FoTRE1-1 and FoTRE2 are essential for its reproduction. These three genes could be candidate targets for RNAi-based management and control of this destructive agricultural pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuming Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Tang B, Hu S, Luo Y, Shi D, Liu X, Zhong F, Jiang X, Hu G, Li C, Duan H, Wu Y. Impact of Three Thiazolidinone Compounds with Piperine Skeletons on Trehalase Activity and Development of Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8423-8433. [PMID: 38565327 DOI: 10.1021/acs.jafc.3c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| |
Collapse
|
5
|
Lin M, Qian Y, Chen E, Wang M, Ouyang G, Xu Y, Zhao G, Qian H. The Bmtret1 Gene Family and Its Potential Role in Response to BmNPV Stress in Bombyx mori. Int J Mol Sci 2023; 25:402. [PMID: 38203572 PMCID: PMC10779185 DOI: 10.3390/ijms25010402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Trehalose is a non-reducing disaccharide and participates in physiological activities such as organ formation, energy metabolism, and stress resistance in insects. The Bmtret1 gene family is mainly involved in in the sugar metabolism of silkworm. In the present study, phylogenetic analysis divided 21 Bmtret1 orthologs into three clades. These genes are equally distributed on the nine chromosomes. The cis-elements in the promoter regions of Bmtret1s indicated the possible function of Bmtret1s in response to hormones and environmental stimulus. The qPCR analysis showed the significantly different expression levels of Bmtret1s in different tissues and organs, indicating possible functional divergence. In addition, most Bmtret1s showed disturbed expression levels in response to silkworm nuclear polyhedrosis virus (BmNPV) stresses. Our results provide a clue for further functional dissection of the Tret1s in Bombyx mori and implicate them as potential regulators of antiviral responses.
Collapse
Affiliation(s)
- Mingjun Lin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Yixuan Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Enxi Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Mengjiao Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Gui Ouyang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
| | - Yao Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guodong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (M.L.); (Y.Q.); (E.C.); (M.W.); (Y.X.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
6
|
Wang Z, Long GY, Jin DC, Yang H, Zhou C, Yang XB. Knockdown of Two Trehalase Genes by RNA Interference Is Lethal to the White-Backed Planthopper Sogatella furcifera (Horváth) (Hemiptera:Delphacidae). Biomolecules 2022; 12:biom12111699. [PMID: 36421713 PMCID: PMC9687761 DOI: 10.3390/biom12111699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Trehalase (Tre) is a crucial enzyme involved in trehalose metabolism, and it plays pivotal roles in insect development and metamorphosis. However, the biological function of Tre genes in Sogatella furcifera remains unclear. In the present study, two Tre genes—SfTre1 and SfTre2—were cloned and identified based on the S. furcifera transcriptome data. Bioinformatic analysis revealed that the full-length complementary DNA of SfTre1 and SfTre2 genes were 3700 and 2757 bp long, with 1728- and 1902-bp open reading frame encoding 575 and 633 amino acid residues, respectively. Expression analysis indicated that SfTre1 and SfTre2 were expressed at all developmental stages, with the highest expression in day two adults. Furthermore, the highest expression levels of SfTre1 and SfTre2 were observed in the ovary; enriched expression was also noted in head tissues. The knockdown of SfTre1 and SfTre2 via injecting double-stranded RNAs decreased the transcription levels of the corresponding mRNAs and led to various malformed phenotypes and high lethality rates. The results of our present study indicate that SfTre1 and SfTre2 play crucial roles in S. furcifera growth and development, which can provide referable information for Tre genes as a potential target for planthopper control.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Zhou H, Lei G, Chen Y, You M, You S. PxTret1-like Affects the Temperature Adaptability of a Cosmopolitan Pest by Altering Trehalose Tissue Distribution. Int J Mol Sci 2022; 23:ijms23169019. [PMID: 36012281 PMCID: PMC9409412 DOI: 10.3390/ijms23169019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Global warming poses new challenges for insects to adapt to higher temperatures. Trehalose is the main blood sugar in insects and plays an important role in energy metabolism and stress resistance. The transmembrane transport of trehalose mainly depends on the trehalose transporter (TRET1). Plutella xylostella (L.) is a worldwide agricultural pest; however, the effects of the trehalose transport mechanism and trehalose distribution in tissues on the development, reproduction and temperature adaptation of P. xylostella have yet to be reported. In this study, PxTret1-like was cloned and analyzed regarding its expression pattern. It was found that the expression of PxTret1-like was affected by ambient temperature. The knockout mutation of PxTret1-like was generated using a CRISPR/Cas9 system by targeted knockout. The trehalose content and trehalase activity of mutant P. xylostella increased at different developmental stages. The trehalose content increased in the fat body of the fourth-instar P. xylostella, and decreased in the hemolymph, and there was no significant change in glucose in the fat body and hemolymph. Mutant strains of P. xylostella showed a significantly reduced survival rate, fecundity and ability to withstand extreme temperatures. The results showed that PxTret1-like could affect the development, reproduction and temperature adaptability of P. xylostella by regulating the trehalose content in the fat body and hemolymph.
Collapse
Affiliation(s)
- Huiling Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoke Lei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanting Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
- Correspondence:
| |
Collapse
|
8
|
Zhang B, Zhang Y, Guan R, Du M, Yin X, Zhao W, An S. Trehalase is required for sex pheromone biosynthesis in Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2022; 31:334-345. [PMID: 35084068 DOI: 10.1111/imb.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Trehalase (Treh) hydrolyzes trehalose to generate glucose and it plays important role in many physiological processes. Acetyl-CoA, the precursor of sex pheromone biosynthesis in the pheromone gland (PG) of Helicoverpa armigera, originates from glucose during glycolysis. However, the function of Treh in sex pheromone biosynthesis remains elusive. In the present study, H. armigera was used as a model to investigate the function of two Trehs (Treh1 and Treh2) in sex pheromone biosynthesis. Results demonstrated that knockdown of HaTreh1 or HaTreh2 in female PGs led to significant decreases in Z11-16:Ald production, female ability to attract males, and successful mating proportions. Pheromone biosynthesis activating neuropeptide (PBAN) treatment triggered HaTreh1 and HaTreh2 activities in the isolated PGs and Sf9 cells. However, the activities of HaTreh1 and HaTreh2 triggered by PBAN were offset by H-89, the specific inhibitor of protein kinase A (PKA). Furthermore, the H-89 treatment significantly decreased the phosphorylation level of Trhe2, which was induced by PBAN. In addition, sugar feeding (5% sugar) increased the enzyme activities of Treh1 and Treh2. In summary, our findings confirmed that PBAN activates Treh1/2 activities by recruiting cAMP/PKA signalling, promotes glycolysis to ensure the supply of acetyl-CoA, and ultimately facilitates sex pheromone biosynthesis and mating behaviour.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yunhui Zhang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
C/EBPα Regulates PxTreh1 and PxTreh2 Trehalase-Related Bt Resistance in Plutella xylostella (L.). INSECTS 2022; 13:insects13040340. [PMID: 35447782 PMCID: PMC9024946 DOI: 10.3390/insects13040340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The diamondback moth (Plutella xylostella) is a major agricultural pest of cruciferous vegetables and crops worldwide, causing economic losses of up to USD 5 billion annually. The long-term use of insecticides leads to the rapid evolution of resistance in insects, which greatly increases the difficulty of controlling pests. Trehalase regulates energy metabolism in insects by converting trehalose into two glucose molecules. The existence of trehalase is critical for insect flight and larval stress resistance. However, whether trehalase participates in the development of pesticide resistance remains unclear. In this study, we found that the activity of trehalase and the levels of gene expression in Bt-resistant and field populations of P. xylostella were significantly higher than they were in the susceptible strains. By analyzing the promoter sequences of PxTreh1 and PxTreh2, we confirmed the interaction between C/EBPα and the PxTreh2 promoter. The findings of this study suggest that C/EBPα mediates the adaptability of P. xylostella to adverse environmental stressors by regulating the expression of trehalase. Abstract Trehalase regulates energy metabolism in insects by converting trehalose into two glucose molecules. High amounts of trehalase are critical for insect flight and larval stress resistance. However, whether trehalase participates in the development of pesticide resistance remains unclear. In this study, we explored this phenomenon and the mechanism that underlies the regulation of Trehalase transcription. We found that overexpression of PxTreh1 and PxTreh2 induced Bacillus thuringiensis (Bt) resistance in Plutella xylostella. The promoter sequences of PxTreh1 and PxTreh2 were also cloned and identified. The dual-luciferase reporter system and RNA interference technology revealed that the expression of PxTreh1 and PxTreh2 genes is possibly regulated by the CCAAT enhancer-binding protein (C/EBPα). A yeast one-hybrid experiment confirmed the interaction between C/EBPα and the PxTreh2 promoter. The findings of this study suggest that C/EBPα mediates the adaptability of P. xylostella to adverse environmental stressors by regulating the expression of trehalase.
Collapse
|
10
|
Li D, He C, Wang M, Liu H, Liu R, Xu L. Toxicity of Ribavirin to Spodoptera litura by Inhibiting the Juvenile Hormone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3117-3126. [PMID: 35229607 DOI: 10.1021/acs.jafc.1c06172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ribavirin is an antiviral drug showing high and delayed toxicity to the destructive agricultural pest Spodoptera litura. Larvae fed with artificial diets containing ribavirin could not molt successfully and showed abnormal phenotypes, including cuticle melanization and heavy wrinkle of the newly formed procuticle. RNA-Seq analysis suggested that ribavirin has great negative influence on cuticle. Quantitative real-time-polymerase chain reaction results indicated that ribavirin treatment decreased the expression of key genes in juvenile hormone (JH) biosynthesis (CYP15C1 and JH acid methyltransferase) and most cuticle protein genes, whereas the genes in melanin biosynthesis and bursicon genes were upregulated by ribavirin treatment. These results coincided with the decreased titer of JH I, JH II, and JH III determined by enzyme-linked immunosorbent assay, the much thinner procuticle layer exhibited by histopathological examination, and the cuticle melanization after ribavirin treatment. These results provided a valuable theoretical basis for the creation of green insecticides targeting JH and the development of new insecticide derivatives from 1,2,4-triazole.
Collapse
Affiliation(s)
- Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Chengshuai He
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Meizi Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan Province, China
| | - Hongyu Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
11
|
Chang Y, Zhang B, Du M, Geng Z, Wei J, Guan R, An S, Zhao W. The vital hormone 20-hydroxyecdysone controls ATP production by upregulating binding of trehalase 1 with ATP synthase subunit α in Helicoverpa armigera. J Biol Chem 2022; 298:101565. [PMID: 34999119 PMCID: PMC8819028 DOI: 10.1016/j.jbc.2022.101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Trehalose is the major “blood sugar” of insects and it plays a crucial role in energy supply and as a stress protectant. The hydrolysis of trehalose occurs only under the enzymatic control of trehalase (Treh), which plays important roles in growth and development, energy supply, chitin biosynthesis, and abiotic stress responses. Previous reports have revealed that the vital hormone 20-hydroxyecdysone (20E) regulates Treh, but the detailed mechanism underlying 20E regulating Treh remains unclear. In this study, we investigated the function of HaTreh1 in Helicoverpa armigera larvae. The results showed that the transcript levels and enzymatic activity of HaTreh1 were elevated during molting and metamorphosis stages in the epidermis, midgut, and fat body, and that 20E upregulated the transcript levels of HaTreh1 through the classical nuclear receptor complex EcR-B1/USP1. HaTreh1 is a mitochondria protein. We also found that knockdown of HaTreh1 in the fifth- or sixth-instar larvae resulted in weight loss and increased mortality. Yeast two-hybrid, coimmunoprecipitation, and glutathione-S-transferase (GST) pull-down experiments demonstrated that HaTreh1 bound with ATP synthase subunit alpha (HaATPs-α) and that this binding increased under 20E treatment. In addition, 20E enhanced the transcript level of HaATPs-α and ATP content. Finally, the knockdown of HaTreh1 or HaATPs-α decreased the induction effect of 20E on ATP content. Altogether, these findings demonstrate that 20E controls ATP production by up-regulating the binding of HaTreh1 to HaATPs-α in H. armigera.
Collapse
Affiliation(s)
- Yanpeng Chang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bo Zhang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zichen Geng
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ruobing Guan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenli Zhao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
12
|
Yu HZ, Huang YL, Lu ZJ, Zhang Q, Su HN, Du YM, Yi L, Zhong BL, Chen CX. Inhibition of trehalase affects the trehalose and chitin metabolism pathways in Diaphorina citri (Hemiptera: Psyllidae). INSECT SCIENCE 2021; 28:718-734. [PMID: 32428381 DOI: 10.1111/1744-7917.12819] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 05/14/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri is the principal vector of huanglongbing, which transmits Candidatus Liberibacter asiaticus. Trehalase is a key enzyme involved in trehalose hydrolysis and plays an important role in insect growth and development. The specific functions of this enzyme in D. citri have not been determined. In this study, three trehalase genes (DcTre1-1, DcTre1-2, and DcTre2) were identified based on the D. citri genome database. Bioinformatic analysis showed that DcTre1-1 and DcTre1-2 are related to soluble trehalase, whereas DcTre2 is associated with membrane-bound trehalase. Spatiotemporal expression analysis indicated that DcTre1-1 and DcTre1-2 had the highest expression levels in the head and wing, respectively, and DcTre2 had high expression levels in the fat body. Furthermore, DcTre1-1 and DcTre1-2 expression levels were induced by 20-hydroxyecdysone and juvenile hormone Ⅲ, but DcTre2 was unaffected. The expression levels of DcTre1-1, DcTre1-2, and DcTre2 were significantly upregulated, which resulted in high mortality after treatment with validamycin. Trehalase activities and glucose contents were downregulated, but the trehalose content increased after treatment with validamycin. In addition, the expression levels of chitin metabolism-related genes significantly decreased at 24 and 48 h after treatment with validamycin. Furthermore, silencing of DcTre1-1, DcTre1-2, and DcTre2 reduced the expression levels of chitin metabolism-related genes and led to a malformed phenotype of D. citri. These results indicate that D. citri trehalase plays an essential role in regulating chitin metabolism and provides a new target for control of D. citri.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Yu-Ling Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
- China-USA Citrus Huanglongbing Joint Laboratory, A Joint Laboratory of The University of Florida and Gannan Normal University, Ganzhou, Jiangxi, China
| | - Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Hua-Nan Su
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Yi-Ming Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
- China-USA Citrus Huanglongbing Joint Laboratory, A Joint Laboratory of The University of Florida and Gannan Normal University, Ganzhou, Jiangxi, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Ba-Lian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | | |
Collapse
|
13
|
Li YN, Liu YB, Xie XQ, Zhang JN, Li WL. The Modulation of Trehalose Metabolism by 20-Hydroxyecdysone in Antheraea pernyi (Lepidoptera: Saturniidae) During its Diapause Termination and Post-Termination Period. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5924361. [PMID: 33057682 PMCID: PMC7583272 DOI: 10.1093/jisesa/ieaa108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 05/27/2023]
Abstract
Trehalose plays a crucial role in the diapause process of many insects, serving as an energy source and a stress protectant. Trehalose accumulation has been reported in diapause pupae of Antheraea pernyi; however, trehalose metabolic regulatory mechanisms associated with diapause termination remain unclear. Here, we showed that the enhanced trehalose catabolism was associated with an increase in endogenous 20-hydroxyecdysone (20E) in hemolymph of A. pernyi pupae during their diapause termination and posttermination period. Injection of 20E increased the mRNA level of trehalase 1A (ApTre-1A) and trehalase 2 (ApTre-2) of A. pernyi diapause pupae in a dose-dependent manner but did not affect the mRNA level of trehalase 1B (ApTre-1B). Meanwhile, exogenous 20E increased the enzyme activities of soluble and membrane-bound trehalase, leading to a decline in hemolymph trehalose. Conversely, the expression of ApTre-1A and ApTre-2 were down-regulated after the ecdysone receptor gene (ApEcRB1) was silenced by RNA interference or by injection of an ecdysone receptor antagonist cucurbitacin B (CucB), which inhibits the 20E pathway. Moreover, CucB treatment delayed adult emergence, which suggests that ApEcRB1 might be involved in regulating pupal-adult development of A. pernyi by mediating ApTre-1A and ApTre-2 expressions. This study provides an overview of the changes in the expression and activity of different trehalase enzymes in A. pernyi in response to 20E, confirming the important role of 20E in controlling trehalose catabolism during A. pernyi diapause termination and posttermination period.
Collapse
Affiliation(s)
- Ya-Na Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yu-Bo Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Xue-Qin Xie
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Jia-Ning Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Wen-Li Li
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| |
Collapse
|
14
|
Zeng B, Wang S, Li Y, Xiao Z, Zhou M, Wang S, Zhang D. Effect of long-term cold storage on trehalose metabolism of pre-wintering Harmonia axyridis adults and changes in morphological diversity before and after wintering. PLoS One 2020; 15:e0230435. [PMID: 32191747 PMCID: PMC7082016 DOI: 10.1371/journal.pone.0230435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/01/2020] [Indexed: 11/20/2022] Open
Abstract
Harmonia axyridis is a major bio-control agent of pests in agriculture and forest ecosystems. It is also a globally important invasive insect species. To test whether dark elytra colour is associated with greater cold hardiness, we compared the survival rate of prolonged cold exposure in both yellow and black colour morphs of female and male H. axyridis. We determined the trehalose and glycogen content, trehalase activity, and the dynamics of genes associated with the trehalose metabolic pathway. Yellow forms predominated before winter began, however black forms increased from 11.15 to 30.46% after overwintering. There was no significant difference in trehalose content between the females and males during overwintering. Glycogen content in over-wintering yellow females and black males increased significantly, while it decreased in black females. Soluble trehalase activity increased significantly in all the insects except black females. Membrane-bound trehalase activity increased in black males, and decreased in black females. Trehalose and glycogen content and trehalase activity were regulated by differential expression of TRE and TPS genes. Female beetles weighed more than males and survived in low temperatures for longer periods of time, regardless of elytra colour, suggesting that mass is a stronger predictor of overwintering survival rather than colour morph. Our results provide a guide for comparing cold resistance in insects and a theoretical basis for cold storage of H. axyridis for use as natural enemies of pests in biological control programs.
Collapse
Affiliation(s)
- Boping Zeng
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhongjiu Xiao
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Min Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| |
Collapse
|
15
|
Li Y, Chen X, Wang SS, Pan BY, Wang SG, Wang S, Tang B. Evaluation of the Expression and Function of the TRE2-like and TRE2 Genes in Ecdysis of Harmonia axyridis. Front Physiol 2019; 10:1371. [PMID: 31736789 PMCID: PMC6839538 DOI: 10.3389/fphys.2019.01371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Harmonia axyridis is an important predatory insect and widely used in biological control of agricultural and forestry pests. Trehalose is directly involved in the energy storage of the H. axyridis and in the oxidative function of various physiological activities thereby providing an energy source for its growth and development. The aim of this study was to explore the potential function of membrane-bound-like trehalase (TRE2-like) and membrane-bound trehalase (TRE2) genes in H. axyridis by RNAi. In addition, the activity of soluble and membrane-bound trehalase and the expression of genes related to trehalose and glycogen metabolism were determined in the larvae injected with dsTRE2-like or dsTRE2. The results showed that wing abnormality and mortality appeared in adults, as well as the activity of soluble trehalase and glycogen contents increased when interfering with TRE2-like gene. However, the activity of membrane-bound trehalase, trehalose and glucose contents in the larvae decreased. The expression of glycogen synthase (GS) and glycogen phosphorylase (GP) genes were decreased after RNAi in the ecdysis stage. The expression of chitin synthase gene A (CHSA), chitin synthase gene B (CHSB), and trehalose-6-phosphate synthase genes (TPS) were decreased significantly after RNAi, especially in the ecdysis stage. These results indicated that RNA interference is capable of knocking down gene expression of TRE2-like and TRE2, thereby disrupting trehalose metabolism which affects the chitin synthesis pathway in turn and also leads to developmental defects, such as wing deformities. This study could provide some theoretical guidance for the function of TRE2 gene in other insects.
Collapse
Affiliation(s)
- Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xu Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sha-Sha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
16
|
Three novel trehalase genes from Harmonia axyridis (Coleoptera: Coccinellidae): cloning and regulation in response to rapid cold and re-warming. 3 Biotech 2019; 9:321. [PMID: 31406643 PMCID: PMC6684730 DOI: 10.1007/s13205-019-1839-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Trehalose is the main blood sugar in insects. To study the function of trehalase during exposure to low temperatures, three other novel cDNAs of trehalase were cloned from Harmonia axyridis by transcriptome sequencing and rapid amplification of cDNA ends. One of the cloned cDNAs encoded a soluble trehalase, the second trehalase cDNA encoded a transmembrane-like domain, and the third cDNA encoded a membrane-bound protein. Therefore, these cDNAs were, respectively, named HaTreh1-5, HaTreh2-like, and HaTreh2. HaTreh1-5, HaTreh2-like, and HaTreh2 cDNAs encoded proteins containing 586, 553, and 633 amino acids with predicted masses of approximately 69.47, 63.46, and 73.66 kDa, and pIs of 9.20, 5.52, and 6.31, respectively. All three novel trehalases contained signal motifs "PGGINKESYYLDSY", "QWDYPNAWPP", and a highly conserved glycine-rich (GGGGEY) region. The expression levels of HaTreh1-5 and HaTreh2 mRNAs were high during adult stages, whereas HaTreh2-like was expressed in low amounts in the fourth larval stage. The results showed that the activity of membrane-bound trehalases decreased from 25 to 10 °C and from 5 to - 5 °C during cooling. The results also revealed a decreasing trend in expression of the three HaTreh mRNAs during the cooling treatment, and an initial decrease followed by an increase during the process of re-warming.
Collapse
|
17
|
Mobilization of fat body glycogen and haemolymph trehalose under nutritional stress in Bombyx mori larvae in relation to their physiological age and the duration of food deprivation. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00196-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Liu X, Zhang J, Zhu KY. Chitin in Arthropods: Biosynthesis, Modification, and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:169-207. [PMID: 31102247 DOI: 10.1007/978-981-13-7318-3_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
19
|
Ai D, Cheng S, Chang H, Yang T, Wang G, Yu C. Gene Cloning, Prokaryotic Expression, and Biochemical Characterization of a Soluble Trehalase in Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5037688. [PMID: 29912409 PMCID: PMC6007452 DOI: 10.1093/jisesa/iey056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Trehalase is an indispensable component of insect hemolymph that plays important role in energy metabolism and stress resistance. In this study, we cloned and expressed the gene encoding soluble trehalase (HaTreh-1) of Helicoverpa armigera (cotton bollworm) and characterized the enzyme. HaTreh-1 had a full-length open reading frame encoding a protein of 571 amino acids. Sequence comparison indicated that HaTreh-1 was similar to some known insect trehalases. Two essential active sites (D321 and E519) and three essential residues (R168, R221, and R286) were conserved in HaTreh-1. The recombinant trehalase was expressed in Escherichia coli and purified by nickel exchange chromatography. Molecular weight of the recombinant protein was about 71 kDa, and the optimum HaTreh-1 enzyme activity is at 55°C with pH 6.0. Enzymatic assays showed a Km value of 72.8 mmol/liter and a Vmax value of 0.608 mmol/(liter·min). Inhibition assays in vitro indicated that castanospermine, a polyhydroxylated alkaloid, was an effective competitive inhibitor of trehalase with a Ki value of 6.7 μmol/liter. The inhibitor action of castanospermine was linked to its modification effect on trehalase structure. The circular dichroism spectrum showed that the percentage of α-helix increased under the presence of castanospermine. Results of our study will aid in developing effective trehalase inhibitors for controlling H. armigera in the future.
Collapse
Affiliation(s)
- Dong Ai
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
| | - Shenhang Cheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
| | - Hetan Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
| |
Collapse
|
20
|
Tang B, Yang M, Shen Q, Xu Y, Wang H, Wang S. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:81-90. [PMID: 28364808 DOI: 10.1016/j.pestbp.2016.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 06/07/2023]
Abstract
Trehalase (TRE) is a key enzyme in trehalose degradation and has important functions in insect growth and chitin synthesis. Though validamycin has the potential for pest control by suppressing TRE activities, it is not known whether validamycin acts on both trehalose and chitin metabolism. TRE1 and TRE2 activities and glucose and glycogen contents decreased significantly after the injection of different doses of validamycin solution compared with the control group, while the trehalose content increased significantly. Overall, it showed that about 13 to 38% insects was appeared abnormal phenotypes, and 10 to 57% of insects died 48h after injection of solutions with different concentrations of validamycin; the chitin content also decreased significantly. Validamycin altered the relative expression levels of trehalose, glycogen and chitin metabolism-related genes by suppressing the activities of two TREs. We showed that the expression levels of three TRE and two trehalose-6-phosphate synthase (TPS) genes increased, while the expression levels of GP; CHS1 and its two transcripts, CHS1a, CHS1b; six chitinases, including Cht3, Cht4, Cht5, Cht6, Cht7, Cht9; and the HK, G6PI2, GFAT, GNPNA, PAGM1, UAP, VVL, CI and AP genes decreased significantly 48h after the injection of any validamycin concentration compared with the control group. These results demonstrate that by inhibiting the activities of two TREs, validamycin alters N. lugens chitin synthesis and degradation and affects trehalose and chitin metabolism-related gene expression. The development of TRE inhibitors may provide effective pest control in the future.
Collapse
Affiliation(s)
- Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang 310036, China
| | - Mengmeng Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang 310036, China
| | - Qida Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang 310036, China
| | - Yanxia Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang 310036, China
| | - Huijuan Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang 310036, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang 310036, China.
| |
Collapse
|
21
|
Shi JF, Xu QY, Sun QK, Meng QW, Mu LL, Guo WC, Li GQ. Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:52-68. [PMID: 27524277 DOI: 10.1016/j.ibmb.2016.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/31/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
Trehalose is proposed to serve multiple physiological roles in insects. However, its importance remains largely unconfirmed. In the present paper, we knocked down either a trehalose biosynthesis gene (trehalose-6-phosphate synthase, LdTPS) or each of three degradation genes (soluble trehalases LdTRE1a, LdTRE1b or membrane-bound LdTRE2) in Leptinotarsa decemlineata by RNA interference (RNAi). Knockdown of LdTPS decreased trehalose content and caused larval and pupal lethality. The LdTPS RNAi survivors consumed a greater amount of foliage, obtained a heavier body mass, accumulated more glycogen, lipid and proline, and had a smaller amount of chitin compared with the controls. Ingestion of trehalose but not glucose rescued the food consumption increase and larval mass rise, increased survivorship, and recovered glycogen, lipid and chitin to the normal levels. In contrast, silencing of LdTRE1a increased trehalose content and resulted in larval and pupal lethality. The surviving LdTRE1a RNAi hypomorphs fed a smaller quantity of food, had a lighter body weight, depleted lipid and several glucogenic amino acids, and contained a smaller amount of chitin. Neither trehalose nor glucose ingestion rescued these LdTRE1a RNAi defects. Silencing of LdTRE1b caused little effects. Knockdown of LdTRE2 caused larval death, increased trehalose contents in several tissues and diminished glycogen in the brain-corpora cardiaca-corpora allata complex (BCC). Feeding glucose but not trehalose partially rescued the high mortality rate and recovered glycogen content in the BCC. It seems that trehalose is involved in feeding regulation, sugar absorption, brain energy supply and chitin biosynthesis in L. decemlineata larvae.
Collapse
Affiliation(s)
- Ji-Feng Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiang-Kun Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Tang B, Wei P, Zhao L, Shi Z, Shen Q, Yang M, Xie G, Wang S. Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathway in Tribolium castaneum. BMC Biotechnol 2016; 16:67. [PMID: 27596613 PMCID: PMC5011928 DOI: 10.1186/s12896-016-0297-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 08/27/2016] [Indexed: 01/14/2023] Open
Abstract
Background RNA interference is a very effective approach for studies on gene function and may be an efficient method for controlling pests. Trehalase is a key gene in the chitin biosynthesis pathway in insects. Five trehalase genes have been cloned in Tribolium castaneum, though it is not known whether the detailed functions of these trehalases can be targeted for pest control. Results The functions of all five trehalase genes were studied using RNAi, and the most important results showed that the expression of all 12 genes decreased significantly from 12 to 72 h compared with the control groups, except GP1 at 72 h, when the expression of the TcTre2 gene was suppressed. The results also revealed different abnormal phenotypes, and the observed mortality rates ranged from 17 to 42 %. The qRT-PCR results showed that the expression of TPS, GS, two GP, CHS1a and CHS1b genes decreased significantly, while that of the CHS2 gene decreased or increased after RNAi after the five trehalases were silenced at 48 h. In addition, TPS gene expression decreased from 12 to 72 h after dsTcTre injection. Conclusions These results demonstrate that silencing of any individual trehalase gene, especially Tre1-4 and Tre2 gene can lead to moulting deformities and a high mortality rate through the regulation of gene expression in the chitin biosynthesis pathway and may be a potential approach for pest control in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ping Wei
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zuokun Shi
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qida Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengmeng Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoqiang Xie
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:10-8. [DOI: 10.1016/j.cbpb.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
|
24
|
Zhao L, Yang M, Shen Q, Liu X, Shi Z, Wang S, Tang B. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Sci Rep 2016; 6:27841. [PMID: 27328657 PMCID: PMC4916506 DOI: 10.1038/srep27841] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice.
Collapse
Affiliation(s)
- Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Mengmeng Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Qida Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xiaojun Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Zuokun Shi
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
25
|
Shukla E, Thorat LJ, Nath BB, Gaikwad SM. Insect trehalase: Physiological significance and potential applications. Glycobiology 2014; 25:357-67. [DOI: 10.1093/glycob/cwu125] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
26
|
Tan Y, Xiao L, Sun Y, Zhao J, Bai L, Xiao Y. Molecular characterization of soluble and membrane-bound trehalases in the cotton mirid bug, Apolygus lucorum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:107-121. [PMID: 24740925 DOI: 10.1002/arch.21166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Trehalose, a major hemolymph sugar in insects, is hydrolyzed by trehalase. We identified a soluble and a membrane-bound form of trehalase and isolated the corresponding mRNA, ALTre-1, and ALTre-2 in the cotton mirid bug, Apolygus lucorum. The deduced amino acid sequences of ALTre-1 and ALTre-2 revealed mature proteins with 643 and 617 amino acids, respectively. ALTre-1 and ALTre-2 contained trehalase signature motifs, and ALTre-2 contained a putative transmembrane domain near the C-terminus, suggesting that ALTre-1 and ALTre-2 encoded a soluble trehalase and a membrane-bound trehalase, respectively. Comparison of trehalase activity at different developmental stages and in six tissues indicated that soluble trehalase activity accounted for the majority of total trehalase activity in A. lucorum. ALTre-1 and ALTre-2 were expressed in all tissues and stages, with the highest expression of both in the second instar nymphs, ALTre-1 in the ovary and malpighian tubules, ALTre-2 in the flight muscles and fat body. Following the exposure of second instar nymph to 20-E, the soluble trehalase activity increased gradually while the membrane-bound trehalase activity remained at its initial level. Similarly, 20-E upregulated ALTre-1 expression but had no effect on ALTre-2 expression. These results suggest that an increase of this soluble trehalase activity was upregulated by ALTre-1 gene.
Collapse
Affiliation(s)
- Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | | | | | | | | | | |
Collapse
|
27
|
Wang J, He WB, Su YL, Bing XL, Liu SS. Molecular characterization of soluble and membrane-bound trehalases of the whitefly, Bemisia tabaci. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:216-33. [PMID: 24610752 DOI: 10.1002/arch.21155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Trehalases (Tres) have been demonstrated to be the key enzymes that are involved in various trehalose-associated physiological processes in insects. However, little attention has been devoted to the Tres in the whitefly, Bemisia tabaci. In this study, a soluble Tre (BtTre-1) and a membrane-bound Tre (BtTre-2) were cloned in the invasive cryptic species Middle East-Asia Minor 1 (MEAM1) of the whitefly B. tabaci complex. Alignment of deduced amino acids sequences of both BtTres revealed that they share common consensus regions and residues with Tres of other insect species. Levels of BtTres expression in various stages and tissues of the whitefly suggested that BtTre-2 may play a key role in trehalose catabolism during development of the whitefly, especially for oocyte development, while BtTre-1 may prevent trehalose in salivary gland from leaking and entering into plants along with saliva. Potential roles of trehalose catabolism in response to direct and/or plant-mediated indirect effects of Tomato Yellow Leaf Curl China Virus (TYLCCNV) were also detected. Whiteflies feeding on virus-infected tobacco plants showed higher BtTres expressions and accordingly higher BtTres activity but lower trehalose content than those feeding on uninfected plants. The enhanced trehalose catabolism may be beneficial to oocyte development in ovary and attenuate plant defensive responses induced by trehalose in saliva. Viruliferous and nonviruliferous whiteflies feeding on cotton, a nonhost plant for TYLCCNV, differed significantly only in trehalose content. The higher trehalose content in viruliferous whiteflies may be conducive to resisting the stress inflicted by TYLCCNV.
Collapse
Affiliation(s)
- Jia Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | |
Collapse
|
28
|
Gomez A, Cardoso C, Genta FA, Terra WR, Ferreira C. Active site characterization and molecular cloning of Tenebrio molitor midgut trehalase and comments on their insect homologs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:768-780. [PMID: 23770497 DOI: 10.1016/j.ibmb.2013.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
The soluble midgut trehalase from Tenebrio molitor (TmTre1) was purified after several chromatographic steps, resulting in an enzyme with 58 kDa and pH optimum 5.3 (ionizing active groups in the free enzyme: pK(e1) = 3.8 ± 0.2 pK(e2) = 7.4 ± 0.2). The purified enzyme corresponds to the deduced amino acid sequence of a cloned cDNA (TmTre1-cDNA), because a single cDNA coding a soluble trehalase was found in the T. molitor midgut transcriptome. Furthermore, the mass of the protein predicted to be coded by TmTre1-cDNA agrees with that of the purified enzyme. TmTre1 has the essential catalytic groups Asp 315 and Glu 513 and the essential Arg residues R164, R217, R282. Carbodiimide inactivation of the purified enzyme at different pH values reveals an essential carboxyl group with pKa = 3.5 ± 0.3. Phenylglyoxal modified a single Arg residue with pKa = 7.5 ± 0.2, as observed in the soluble trehalase from Spodoptera frugiperda (SfTre1). Diethylpyrocarbonate modified a His residue that resulted in a less active enzyme with pK(e1) changed to 4.8 ± 0.2. In TmTre1 the modified His residue (putatively His 336) is more exposed than the His modified in SfTre1 (putatively His 210) and that affects the ionization of an Arg residue. The architecture of the active site of TmTre1 and SfTre1 is different, as shown by multiple inhibition analysis, the meaning of which demands further research. Trehalase sequences obtained from midgut transcriptomes (pyrosequencing and Illumina data) from 8 insects pertaining to 5 different orders were used in a cladogram, together with other representative sequences. The data suggest that the trehalase gene went duplication and divergence prior to the separation of the paraneopteran and holometabolan orders and that the soluble trehalase derived from the membrane-bound one by losing the C-terminal transmembrane loop.
Collapse
Affiliation(s)
- Ana Gomez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
29
|
Zou Q, Wei P, Xu Q, Zheng HZ, Tang B, Wang SG. cDNA cloning and characterization of two trehalases from Spodoptera litura (Lepidoptera; Noctuidade). GENETICS AND MOLECULAR RESEARCH 2013; 12:901-15. [PMID: 23613237 DOI: 10.4238/2013.april.2.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The oriental leafworm moth, Spodoptera litura, is a major agricultural pest in southeast Asia and nearby Pacific regions. Two distinct trehalases have been identified in insects: soluble trehalase (Treh1) and membrane-bound trehalase (Treh2), although there is currently no information on these genes in S. litura. To characterize the distribution and function of treh, cDNAs of Treh proteins were cloned from S. litura. SpoliTreh1 cDNA has an open reading frame of 1758 nucleotides, which encodes a protein of 585 amino acids, with a predicted mass of approximately 67.07 kDa and an isoelectric point of 4.86. SpoliTreh2 cDNA has an open reading frame of 2325 nucleotides, encoding a protein of 645 amino acids, a mass of approximately 73.62 kDa, and an isoelectric point of 5.90. Northern blotting analysis revealed that SpoliTreh1 transcripts are in the midgut, fat body, tracheae, and epidermis, but not in the brain and Malpighian tubules of S. litura larvae, whereas SpoliTreh2 transcripts were found in all 6 tissues. SpoliTreh1 transcripts were highly expressed in the fat body of the pre-pupal stage, and SpoliTreh2 transcripts were highly expressed in the fat body of 3-day-old larvae of the 6th instar and during the 1st 6 days of the pupal stage, except the 2nd day. Both SpoliTreh1 and SpoliTreh2 were highly expressed in third-instar larvae.
Collapse
Affiliation(s)
- Q Zou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
30
|
Expression of active and inactive recombinant soluble trehalase using baculovirus–silkworm expression system and their glycan structures. J Biosci Bioeng 2011; 111:22-5. [DOI: 10.1016/j.jbiosc.2010.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 11/22/2022]
|
31
|
Chen J, Tang B, Chen H, Yao Q, Huang X, Chen J, Zhang D, Zhang W. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One 2010; 5:e10133. [PMID: 20405036 PMCID: PMC2853572 DOI: 10.1371/journal.pone.0010133] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 03/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1) and membrane-bound (Tre-2) trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. Principal Findings The membrane-bound trehalase of Spodoptera exigua (SeTre-2) was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1) and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi) of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA) and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB) expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. Conclusions SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2 has an important role in CHSB expression and chitin synthesis in the midgut.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongxin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Daowei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
32
|
Gu J, Shao Y, Zhang C, Liu Z, Zhang Y. Characterization of putative soluble and membrane-bound trehalases in a hemipteran insect, Nilaparvata lugens. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:997-1002. [PMID: 19615372 DOI: 10.1016/j.jinsphys.2009.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 05/14/2023]
Abstract
Trehalose is the main blood sugar of insects, and the enzyme trehalase is involved in energy metabolism and controlling trehalose levels in cells. Two forms (soluble and membrane-bound) of trehalase and the corresponding genes (NlTre-1 and NlTre-2) were identified from the brown planthopper, Nilaparvata lugens. Both NlTre-1 and NlTre-2 contain trehalase signature motifs, and NlTre-2 contains a putative transmembrane domain. Comparison of trehalase activity and gene mRNA level at different developmental stages, or following application of 20-hydroxyecdysone (20E), suggests that NlTre-1 and NlTre-2 encode a soluble trehalase and a membrane-bound trehalase respectively. Soluble trehalase activity accounted for the majority of total trehalase activity in N. lugens. Only soluble trehalase activity and NlTre-1 mRNA level could be induced by 20E. Additionally, only soluble trehalase activity was significantly higher in macropterous individuals than in brachypterous morphs. These results indicate that only soluble trehalase is differentially expressed between macropterous and brachypterous individuals and is more responsive to hormone stimulus.
Collapse
Affiliation(s)
- Jianhua Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
33
|
Mitsumasu K, Azuma M, Niimi T, Yamashita O, Yaginuma T. Changes in the expression of soluble and integral-membrane trehalases in the midgut during metamorphosis in Bombyx mori. Zoolog Sci 2008; 25:693-8. [PMID: 18828655 DOI: 10.2108/zsj.25.693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 04/06/2008] [Indexed: 11/17/2022]
Abstract
To elucidate the relationship between soluble trehalase (Treh1) and integral-membrane trehalase (Treh2) in the Bombyx mori midgut, expression profiles for both proteins and mRNAs were examined during metamorphosis by using Western-blotting and quantitative real-time PCR analyses. Two bands of Treh2 (about 74 kDa) were detected in the midgut of 0-day-old 5th (last) instar larvae. Levels of Treh2 decreased as the developing larvae approached spinning (8 days old). In contrast, towards the onset of the spinning stage, Treh1 (68 kDa) was clearly observed, and levels increased until the middle of the pupal stage. Treh2 mRNA expression relative to Bmrp49 mRNA expression was almost constant, although fluctuations were detected. Treh1 mRNA expression relative to Bmrp49 mRNA increased sharply just after spinning. To further examine the expression mechanism of the Treh1 gene in midgut, actively feeding larvae (4 days old) were starved or ligated between the 4th and 5th segments. Injection of a molting hormone into the larval-isolated abdomen led to activation of Treh1, demonstrating that molting hormone acts on the midgut and activates this gene.
Collapse
Affiliation(s)
- Kanako Mitsumasu
- Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | |
Collapse
|
34
|
Tatun N, Singtripop T, Tungjitwitayakul J, Sakurai S. Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:788-95. [PMID: 18625402 DOI: 10.1016/j.ibmb.2008.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/14/2008] [Accepted: 05/15/2008] [Indexed: 05/14/2023]
Abstract
Diapausing larvae of Omphisa fuscidentalis contain soluble and membrane-bound trehalase in the midgut. Soluble trehalase activity accounts for three-fourths of the total trehalase activity in midgut homogenates. The exposure of diapausing larvae to juvenile hormone analog (JHA) induced pupation, accompanied by an increase in soluble trehalase activity at the beginning of the prepupal period. Injection of 20-hydroxyecdysone (20E) increased the level of soluble trehalase activity 5 days postinjection in a dose-dependent manner. In contrast, no increase in membrane-bound trehalase activity was observed under the same conditions. We cloned the cDNAs that encode the soluble and membrane-bound forms of trehalase in O. fuscidentalis trehalase-1 (OfTreh-1) and trehalase-2 (OfTreh-2), respectively. Treh-1 encodes a 581-aa protein while Treh-2 encodes a 648-aa protein with one putative transmembrane domain near the C-terminus. The mRNA expression level of Treh-1 was 27-fold higher than that of Treh-2 in diapausing larval midgut. Following the exposure of diapausing larvae to JHA, Treh-1 mRNA expression increased gradually until the prepupal period whereupon it increased dramatically; in contrast, the mRNA expression of Treh-2 remained at its initial level. Similarly, 20E upregulated Treh-1 expression but had no effect on Treh-2 expression. Taken together, these results suggest that an increase in the soluble trehalase activity at pupation is caused by upregulation of Treh-1 gene. Moreover, membrane-bound trehalase does not appear to be involved in the dynamic changes in the hemolymph trehalose concentration that occur during the larval-pupal transformation.
Collapse
Affiliation(s)
- Nujira Tatun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
35
|
Tang B, Chen X, Liu Y, Tian H, Liu J, Hu J, Xu W, Zhang W. Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Mol Biol 2008; 9:51. [PMID: 18492231 PMCID: PMC2424068 DOI: 10.1186/1471-2199-9-51] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
Background The chitin biosynthesis pathway starts with trehalose in insects and the main functions of trehalases are hydrolysis of trehalose to glucose. Although insects possess two types, soluble trehalase (Tre-1) and membrane-bound trehalase (Tre-2), very little is known about Tre-2 and the difference in function between Tre-1 and Tre-2. Results To gain an insight into trehalase functions in insects, we investigated a putative membrane-bound trehalase from Spodoptera exigua (SeTre-2) cloned from the fat body. The deduced amino acid sequence of SeTre-2 contains 645 residues and has a predicted molecular weight of ~74 kDa and pI of 6.01. Alignment of SeTre-2 with other insect trehalases showed that it contains two trehalase signature motifs and a putative transmembrane domain, which is an important characteristic of Tre-2. Comparison of the genomic DNA and cDNA sequences demonstrated that SeTre-2 comprises 13 exons and 12 introns. Southern blot analysis revealed that S. exigua has two trehalase genes and that SeTre-2 is a single-copy gene. Northern blot analyses showed that the SeTre-2 transcript is expressed not only in the midgut, as previously reported for Bombyx mori, but also in the fat body and Malpighian tubules, although expression patterns differed between the midgut and fat body. SeTre-2 transcripts were detected in the midgut of feeding stage larvae, but not in pupae, whereas SeTre-2 mRNA was detected in the fat body of fifth instar larvae and pupae. Conclusion These findings provide new data on the tissue distribution, expression patterns and potential function of membrane-bound trehalase. The results suggest that the SeTre-2 gene may have different functions in the midgut and fat body.
Collapse
Affiliation(s)
- Bin Tang
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chan QWT, Howes CG, Foster LJ. Quantitative comparison of caste differences in honeybee hemolymph. Mol Cell Proteomics 2006; 5:2252-62. [PMID: 16920818 DOI: 10.1074/mcp.m600197-mcp200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The honeybee, Apis mellifera, is an invaluable partner in agriculture around the world both for its production of honey and, more importantly, for its role in pollination. Honeybees are largely unexplored at the molecular level despite a long and distinguished career as a model organism for understanding social behavior. Like other eusocial insects, honeybees can be divided into several castes: the queen (fertile female), workers (sterile females), and drones (males). Each caste has different energetic and metabolic requirements, and each differs in its susceptibility to pathogens, many of which have evolved to take advantage of the close social network inside a colony. Hemolymph, arthropods' equivalent to blood, distributes nutrients throughout the bee, and the immune components contained within it form one of the primary lines of defense against invading microorganisms. In this study we have applied qualitative and quantitative proteomics to gain a better understanding of honeybee hemolymph and how it varies among the castes and during development. We found large differences in hemolymph protein composition, especially between larval and adult stage bees and between male and female castes but even between adult workers and queens. We also provide experimental evidence for the expression of several unannotated honeybee genes and for the detection of biomarkers of a viral infection. Our data provide an initial molecular picture of honeybee hemolymph, to a greater depth than previous studies in other insects, and will pave the way for future biochemical studies of innate immunity in this animal.
Collapse
Affiliation(s)
- Queenie W T Chan
- UBC Centre for Proteomics, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
37
|
Sirot LK, Lapointe SL, Shatters R, Bausher M. Transfer and fate of seminal fluid molecules in the beetle, Diaprepes abbreviatus: implications for the reproductive biology of a pest species. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:300-8. [PMID: 16405989 DOI: 10.1016/j.jinsphys.2005.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 05/06/2023]
Abstract
Molecules transferred from males to females via seminal fluids are important to the study of insect reproduction because they affect female physiology, reproductive behavior, and longevity. These molecules (seminal fluid molecules or SFMs) interest applied entomologists because of their potential use in insect control. SFMs are also interesting because of their relatively rapid evolution and important role in post-mating sexual selection. We studied SFMs in Diaprepes abbreviatus, a major pest of numerous plant species of economic importance. Using radiolabeled-methionine (35S), we found that D. abbreviatus males synthesized proteins de novo in their reproductive tissues after mating. Males that were fed radiolabeled methionine transferred radioactivity to females beginning within the first 10 min of mating. Male-derived substances are absorbed from the female's reproductive tract into the hemolymph and circulated throughout the body, but are found primarily in the eggs and ovaries. As a result, SFMs may be a useful means of both horizontal (to mates) and vertical transfer (to offspring) of control agents between conspecifics.
Collapse
Affiliation(s)
- Laura K Sirot
- Department of Zoology, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
38
|
Mitsumasu K, Azuma M, Niimi T, Yamashita O, Yaginuma T. Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. INSECT MOLECULAR BIOLOGY 2005; 14:501-8. [PMID: 16164606 DOI: 10.1111/j.1365-2583.2005.00581.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The main blood sugar in insects, trehalose, differs from glucose in mammals. To incorporate trehalose into cells and utilize it, tissue cells possess the enzyme trehalase (EC3.2.1.28), which catalyses trehalose into glucose, in the organellar membrane or in the cytoplasm. Soluble and membrane-bound trehalase proteins have been isolated from insects. To date, however, only genes encoding the soluble trehalase have been reported in insects. Soluble trehalase is therefore believed to become localized on the cell surface via modification. In contrast, cDNAs encoding trehalase localized on the apical cell surface via the glycosylphosphatidylinositol-anchor have been isolated from mammalian small intestines. The amino acid sequence contains a specific hydrophobic region and an upstream omega site, which is cleaved for glycosylphosphatidylinositol-attachment, at the C-terminus. Here, we describe a cDNA from the silkworm Bombyx mori that encodes a novel trehalase (type-2) with one transmembrane domain and lacking the omega site. Immunoblotting and immunohistochemical analyses demonstrated that in the midgut tissue of Bombyx larvae, soluble trehalase-1 is present mainly in goblet cell cavities, but membrane-bound trehalase-2 is predominantly seen on the visceral muscle surrounding the midgut. To our knowledge, this is the first report of a cDNA encoding trehalase that penetrates the cell membrane in insects and its cellular localization.
Collapse
Affiliation(s)
- K Mitsumasu
- Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | |
Collapse
|
39
|
Pellerone FI, Archer SK, Behm CA, Grant WN, Lacey MJ, Somerville AC. Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. Int J Parasitol 2004; 33:1195-206. [PMID: 13678635 DOI: 10.1016/s0020-7519(03)00173-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes.
Collapse
Affiliation(s)
- F I Pellerone
- School of Biochemistry & Molecular Biology, Faculty of Science, Australian National University, ACT 0200, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Parkinson NM, Conyers CM, Keen JN, MacNicoll AD, Smith I, Weaver RJ. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:513-20. [PMID: 12727301 DOI: 10.1016/s1532-0456(03)00041-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Venom from the parasitoid wasp Pimpla hypochondriaca contains numerous proteins, has potent in vitro anti-haemocytic properties, and disrupts host encapsulation responses. By sequencing 500 cDNAs randomly isolated from a venom gland library, we have identified 60 clones that encode proteins containing potential secretory signal sequences. To identify cDNAs encoding particular venom proteins, N-terminal amino acid sequences were determined for large (>30 kDa) venom proteins that had been separated using a combination of gel filtration and SDS-PAGE. We describe five of these cDNAs, which encoded residues that matched with the N-terminal sequences of previously undescribed venom proteins. cDNAs vpr1 and vpr3 encoded related proteins of approximately 32 kDa that were found in widely different fractions of gel filtration-separated venom. Neither vpr1 nor vpr3 were closely related to any other protein in the GenBank database, suggesting that they are highly specialised venom components. vpr2 encoded a 57-kDa polypeptide that was similar to a Drosophila protein, of unknown function, which lacks a signal sequence. A fourth clone, tre1, encoded a 61-kDa protein with extensive sequence similarity to trehalases. The 76-kDa sequence encoded by lac1 contained three regions which were very similar to histidine-rich copper-binding motifs, and could be aligned with the laccase from the fungus Coprinus cinereus. This study represents a significant step towards a holistic view of the molecular composition of a parasitoid wasp venom.
Collapse
Affiliation(s)
- Neil M Parkinson
- Plant Health Group, Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Carver FJ, Gilman JL, Hurd H. Spermatophore production and spermatheca content in Tenebrio molitor infected with Hymenolepis diminuta. JOURNAL OF INSECT PHYSIOLOGY 1999; 45:565-569. [PMID: 12770341 DOI: 10.1016/s0022-1910(98)00165-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Male and female Tenebrio molitor act as intermediate hosts for metacestodes of the rat tapeworm, Hymenolepis diminuta. It is known that the bean-shaped accessory glands of infected males exhibit an extended growth period and are significantly larger than those from noninfected males by day 10 after emergence. We wished to determine whether more material is transferred from these glands into the spermatophores. Here we report that the protein content and trehalase activity of spermatophores produced by bean-shaped accessory glands from infected males is elevated. However, protein transferred to the female spermatheca during mating was not affected by the infection status of the male. No evidence of transfer of trehalase to the spermatheca was detected but spermatheca from virgin, infected females contained significantly greater trehalase activity than those from noninfected females.
Collapse
Affiliation(s)
- F J. Carver
- Centre for Applied Entomology, Department of Biological Sciences, Keele University, Keele, UK
| | | | | |
Collapse
|
42
|
Eck R, Bergmann C, Ziegelbauer K, Schönfeld W, Künkel W. A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 12):3747-3756. [PMID: 9421900 DOI: 10.1099/00221287-143-12-3747] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A neutral trehalase gene, NTC1, from the human pathogenic yeast Candida albicans was isolated and characterized. An ORF of 2724 bp was identified encoding a predicted protein of 907 amino acids and a molecular mass of 104 kDa. A single transcript of approximately 3.2 kb was detected by Northern blot analysis. Comparison of the deduced amino acid sequence of the C. albicans NTC1 gene product with that of the Saccharomyces cerevisiae NTH1 gene product revealed 57% identity. The NTC1 gene was localized on chromosome 1 or R. A null mutant (delta ntc1/delta ntc1) was constructed by sequential gene disruption. Extracts from mutants homozygous for neutral trehalase deletion had only marginal neutral trehalase activity. Extracts from heterozygous mutants showed intermediate activities between extracts from the wild-type strain and from the homozygous mutants. The null mutant showed no significant differences in pathogenicity as compared to the wild-type strain in a mouse model of systemic candidiasis. This result indicates that the neutral trehalase of C. albicans is not a potential target for antifungal drugs.
Collapse
Affiliation(s)
- Raimund Eck
- Hans-KnöUll-Institut für Naturstoff-Forschung e.V., Abteilung Mykologie,Beutenbergstraβe 11, D-07745 Jena,Germany
| | - Clemens Bergmann
- Hans-KnöUll-Institut für Naturstoff-Forschung e.V., Abteilung Mykologie,Beutenbergstraβe 11, D-07745 Jena,Germany
| | - Karl Ziegelbauer
- Bayer AG, PH-R Antiinfectiva Forschung I,D-42096 Wuppertal,Germany
| | | | - Waldemer Künkel
- Hans-KnöUll-Institut für Naturstoff-Forschung e.V., Abteilung Mykologie,Beutenbergstraβe 11, D-07745 Jena,Germany
| |
Collapse
|
43
|
Ishihara R, Taketani S, Sasai-Takedatsu M, Kino M, Tokunaga R, Kobayashi Y. Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene X 1997; 202:69-74. [PMID: 9427547 DOI: 10.1016/s0378-1119(97)00455-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A complete cDNA clone encoding human trehalase, a glycoprotein of brush-border membranes, has been isolated from a human kidney library. The cDNA encodes a protein of 583 amino acids with a calculated molecular weight of 66,595. Human enzyme contains a typical cleavable signal peptide at amino terminus, five potential glycosylation sites, and a hydrophobic region at carboxyl terminus where the protein is anchored to plasma membranes via glycosylphosphatidylinositol. The deduced amino acid sequence of the human enzyme showed similarity to sequences of the enzyme from rabbit, silk worm, Tenebrio molitor, Escherichia coli and yeast. Northern blots revealed that human trehalase mRNA of approx. 2.0 kb was found mainly in the kidney, liver and small intestine. Expression of the recombinant trehalase in E. coli provided a high level of the enzyme activity. The isolation and expression of cDNA for human trehalase should facilitate studies of the structure of the gene, as well as a basis for a better understanding of the catalytic mechanism.
Collapse
Affiliation(s)
- R Ishihara
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:197-237. [PMID: 9308367 DOI: 10.1016/s0079-6603(08)60037-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present state of knowledge of the role of trehalose and trehalose hydrolysis catalyzed by trehalase (EC 3.2.1.28) in the yeast Saccharomyces cerevisiae is reviewed. Trehalose is believed to function as a storage carbohydrate because its concentration is high during nutrient limitations and in resting cells. It is also believed to function as a stress metabolite because its concentration increases during certain adverse environmental conditions, such as heat and toxic chemicals. The exact way trehalose may perform the stress function is not understood, and conditions exist under which trehalose accumulation and tolerance to certain stress situations cannot be correlated. Three trehalases have been described in S. cerevisiae: 1) the cytosolic neutral trehalase encoded by the NTH1 gene, and regulated by cAMP-dependent phosphorylation process, nutrients, and temperature; 2) the vacuolar acid trehalase encoded by the ATH1 gene, and regulated by nutrients; and 3) a putative trehalase Nth1p encoded by the NTH2 gene (homolog of the NTH1 gene) and regulated by nutrients and temperature. The neutral trehalase is responsible for intracellular hydrolysis of trehalose, in contrast to the acid trehalase, which is responsible for utilization of extracellular trehalose. The role of the putative trehalase Nth2p in trehalose metabolism is not known. The NTH1 and NTH2 genes are required for recovery of cells after heat shock at 50 degrees C, consistent with their heat inducibility and sequence similarity. Other stressors, such as toxic chemicals, also induce the expression of these genes. We therefore propose that the NTH1 and NTH2 genes have stress-related function and the gene products may be called stress proteins. Whether the stress function of the trehalase genes is linked to trehalose is not clear, and possible mechanisms of stress protective function of the trehalases are discussed.
Collapse
Affiliation(s)
- S Nwaka
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany
| | | |
Collapse
|
45
|
Wang H, Tanihata T, Fukumoto S, Hirai K. Excretory/secretory products of plerocercoids of Spirometra erinaceieuropaei induce the expression of inducible nitric oxide synthase mRNA in murine hepatocytes. Int J Parasitol 1997; 27:367-75. [PMID: 9184928 DOI: 10.1016/s0020-7519(96)00197-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we observed the level of normal murine hepatocyte inducible NOS (iNOS) mRNA by semi-quantitative polymerase chain reaction (SQ-PCR) analysis after stimulation with ES products (ESP) and/or ESP fractions from the plerocercoids. We found that ESP are able to induce the expression of iNOS gene in a dose-dependent fashion. Treatment of ESP with polymyxin B did not affect their ability to induce the expression of iNOS gene, suggesting that bacterial lipopolysaccharide (LPS) is not involved. The iNOS-inducing factor (a) is soluble, and may be a component whose molecular mass exceeds 94 kDa as analyzed by a combination of SDS-PAGE and SQ-PCR. The peak of iNOS mRNA level was detected 3 h after stimulation with ESP; the mRNA level decreased sharply from 9 h. Dexamethasone inhibited the induction of mRNA for hepatocyte iNOS. In contrast, cycloheximide stimulated the induction; this suggests that de nova protein synthesis is important in the regulation of the ESP-induced expression of iNOS mRNA. Actinomycin D blocked the induction. In addition, the results of Northern blot analysis showed that ESP suppressed the LPS (10 micrograms/ml) and interferon-gamma (IFN-gamma, 100 U/ml)-induced hepatocyte iNOS mRNA expression in a dose-dependent fashion and the suppressing effect was more marked when hepatocytes were exposed to ESP 3 h prior to LPS and IFN-gamma. These results demonstrate that the soluble factor(s) of ESP is capable of inducing murine iNOS gene expression in hepatocytes in the absence of added cytokines.
Collapse
Affiliation(s)
- H Wang
- Department of Medical Zoology, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | |
Collapse
|
46
|
Yaginuma T, Mizuno T, Mizuno C, Ikeda M, Wada T, Hattori K, Yamashita O, Happ GM. Trehalase in the spermatophore from the bean-shaped accessory gland of the male mealworm beetle, Tenebrio molitor: purification, kinetic properties and localization of the enzyme. J Comp Physiol B 1996; 166:1-10. [PMID: 8621836 DOI: 10.1007/bf00264633] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trehalase from the bean-shaped accessory glands of the male mealworm beetle, Tenebrio molitor, was purified by acid treatment, with subsequent chromatography on columns of DEAE-cellulofine and Sephacryl S-300. The molecular masses of the native and the denatured forms were estimated to be 43 and 62 kDa by gel filtration and SDS-PAGE, respectively, an indication that the trehalase may be composed of a single polypeptide. The optimum pH of the reaction catalyzed by trehalase was 5.6-5.8. The Km for trehalose was 4.4 mmol.1(-1). Immunohistochemical experiments with trehalase-specific antiserum showed that the enzyme was localized in one specific type of secretory cell in the bean-shaped accessory gland epithelium and within the semisolid secretory mass that was a precursor to the wall of spermatophore. SDS-PAGE and immunoblotting analysis revealed the presence of a polypeptide of about 62 kDa in the spermatophore. Immunohistochemical observations showed that the trehalase was located at the outgrowth in the anterior portion of the spermatophore. When a fresh spermatophore was immersed in phosphate-buffered saline it discharged sperm in the same manner as in the bursa copulatrix of the female. Before the rupture of the expanded bulb of the spermatophore, almost all of the trehalase had dissolved in the phosphate-buffered saline. The addition of validoxylamine A to the saline, a specific inhibitor of trehalase, did not affect the expansion and evacuation of the spermatophore. These results demonstrate that trehalase, synthesized by a specific type of secretory cell in the bean-shaped accessory gland epithelium, is actively passed into the lumen of the bean-shaped accessory gland and then incorporated into the spermatophore. Trehalase appears to be one of the structural proteins of the spermatophore, although the possibility can not yet be completely ruled out that the trehalase-trehalose system functions for the nourishment and/or activation of the sperm in the bursa copulatrix of the female.
Collapse
Affiliation(s)
- T Yaginuma
- Laboratory of Sericulture and Entomoresources, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Destruelle M, Holzer H, Klionsky DJ. Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast 1995; 11:1015-25. [PMID: 7502577 DOI: 10.1002/yea.320111103] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have isolated a plasmid containing a gene, ATH1, that results in eight- to ten-fold higher acid trehalase activity in yeast cells when present in high copy. The screening procedure was based on overproduction-induced mislocalization of acid trehalase activity; overproduction of vacuolar enzymes that transit through the secretory pathway leads to secretion to the cell surface. A DNA fragment that confers cell surface expression of acid trehalase activity was cloned and sequenced. The deduced amino acid sequence displayed no homology to known proteins, indicating that we have identified a novel gene. A deletion in the genomic copy of the ATH1 gene eliminates vacuolar acid trehalase activity. These results suggest that ATH1 may be the structural gene encoding vacuolar acid trehalase or that the gene product may be essential regulatory component involved in control of trehalase activity.
Collapse
Affiliation(s)
- M Destruelle
- Biochemisches Institut, Universität Freiburg, Germany
| | | | | |
Collapse
|
48
|
Van Beers EH, Büller HA, Grand RJ, Einerhand AW, Dekker J. Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 1995; 30:197-262. [PMID: 7555019 DOI: 10.3109/10409239509085143] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hydrolytic enzymes of the intestinal brush border membrane are essential for the degradation of nutrients to absorbable units. Particularly, the brush border glycohydrolases are responsible for the degradation of di- and oligosaccharides into monosaccharides, and are thus crucial for the energy-intake of humans and other mammals. This review will critically discuss all that is known in the literature about intestinal brush border glycohydrolases. First, we will assess the importance of these enzymes in degradation of dietary carbohydrates. Then, we will closely examine the relevant features of the intestinal epithelium which harbors these glycohydrolases. Each of the glycohydrolytic brush border enzymes will be reviewed with respect to structure, biosynthesis, substrate specificity, hydrolytic mechanism, gene regulation and developmental expression. Finally, intestinal disorders will be discussed that affect the expression of the brush border glycohydrolases. The clinical consequences of these enzyme deficiency disorders will be discussed. Concomitantly, these disorders may provide us with important details regarding the functions and gene expression of these enzymes under specific (pathogenic) circumstances.
Collapse
|
49
|
Su ZH, Ikeda M, Sato Y, Saito H, Imai K, Isobe M, Yamashita O. Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:366-74. [PMID: 7519445 DOI: 10.1016/0167-4781(94)90190-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated a cDNA encoding ovary trehalase of the silkworm, Bombyx mori. Sequence analyses revealed that the isolated cDNA contains 3143 nucleotides and comprises 579 amino acids, including a cleavable signal sequence and five potential N-glycosylation sites. Northern blot analysis showed a 3.0 kb transcript in developing ovaries carrying membrane-bound trehalase. A single copy of trehalase gene was present in the haploid genome of the silkworm. The effect of diapause hormone on the accumulation of trehalase mRNA was examined on developing ovaries in in vivo and in vitro conditions. The synthetic diapause hormone brought about a 6-fold increase in trehalase mRNA content in ovaries 4 h after injection. The similar increase was found in ovaries which were incubated in vitro with diapause hormone. Coincubation of ovaries with diapause hormone and actinomycin D could not increase the mRNA level in ovaries, and maintained a basal level which was found in ovaries incubated without diapause hormone. These results indicate that diapause hormone stimulates transcription of the trehalase gene in developing ovaries of the silkworm.
Collapse
Affiliation(s)
- Z H Su
- Laboratory of Sericultural Science and Entomoresources, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Su ZH, Sato Y, Yamashita O. Purification, cDNA cloning and northern blot analysis of trehalase of pupal midgut of the silkworm, Bombyx mori. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:217-24. [PMID: 7916633 DOI: 10.1016/0167-4781(93)90184-f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Trehalase (alpha-glucoside-1-glucohydrolase, EC 3.2.1.28) was purified from silkworm pupal midgut to homogeneity by DEAE-Sepharose CL-6B and hydroxyapatite chromatography, and native gel electrophoresis. The enzyme had a molecular mass of 70 kDa. The N-terminal amino-acid sequence of the intact trehalase and its three fragments by V8 proteinase digestion was determined. Based on the amino-acid sequence, degenerate oligonucleotides were synthesized and used as primers in a polymerase chain reaction (PCR). Using a 0.8 kb PCR product as a hybridization probe, trehalase clones were isolated from the pupal midgut cDNA library. Sequence analysis revealed that the isolated trehalase cDNA contains 3103 nucleotides and comprises 579 amino acids, including a cleavable signal sequence and five potential N-glycosylation sites. Northern blot analysis clearly showed a 3.0 kb transcript in midgut, and Malpighian tubule, but not in fat body, silk gland, ovary, trachea, brain and suboesophageal ganglion.
Collapse
Affiliation(s)
- Z H Su
- Laboratory of Sericultural Science, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|