1
|
Li J, Xu Y, Wang X, Liu C, Li Z, Xiu M, Chen H. Cognitive improvements linked to lysophosphatidylethanolamine after olanzapine treatment in drug-naïve first-episode schizophrenia. Metabolomics 2024; 20:108. [PMID: 39354275 DOI: 10.1007/s11306-024-02171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Cognitive impairments are a hallmark symptom of schizophrenia (SCZ). Phosphatidylethanolamine (PE) is the second most abundant phospholipid in mammalian cells, yet its role in cognitive deficits remains unexplored. The aim of this study was to investigate the association between plasma LysoPE and cognitive improvements following olanzapine monotherapy in drug-naïve first-episode (DNFE) SCZ patients. METHODS Twenty-five female DNFE SCZ patients were treated with olanzapine for four weeks, and cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and after the 4-week follow-up. Utilizing an untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabolomics approach, we measured LysoPE concentrations. RESULTS Significant improvements in immediate and delayed memory domains were observed post-treatment. We identified nine differential LysoPE species after olanzapine monotherapy, with increased concentrations for all LysoPE except LysoPE (22:6). Elevated LysoPE (22:1) concentration positively correlated with cognitive improvement in patients. Baseline LysoPE (16:1) emerged as a predictive factor for cognitive improvement following olanzapine monotherapy. CONCLUSIONS This study offers preliminary evidence for the involvement of LysoPE in cognitive improvements observed in drug-naïve first-episode SCZ patients after olanzapine treatment.
Collapse
Affiliation(s)
- Juanhua Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | | | - Xin Wang
- Qingdao Mental Health Center, Qingdao, China
| | - Caixing Liu
- Qingdao Mental Health Center, Qingdao, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, China.
| | - Hongying Chen
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Changning District, Shanghai, China.
| |
Collapse
|
2
|
Cioffi MD, Sharma T, Motsa BB, Bhattarai N, Gerstman BS, Stahelin RV, Chapagain PP. Ebola Virus Matrix Protein VP40 Single Mutations G198R and G201R Significantly Enhance Plasma Membrane Localization. J Phys Chem B 2024. [PMID: 39326870 DOI: 10.1021/acs.jpcb.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Viral proteins frequently undergo single or multiple amino acid mutations during replication, which can significantly alter their functionality. The Ebola virus matrix protein VP40 is multifunctional but primarily responsible for creating the viral envelope by binding to the inner leaflet of the host cell plasma membrane (PM). Changes to the VP40 surface cationic charge via mutations can influence PM interactions, resulting in altered viral assembly and budding. A recent mutagenesis study evaluated the effects of several mutations and found that mutations G198R and G201R enhanced VP40 assembly at the PM and virus-like particle budding. These two mutations lie in the loop region of the C-terminal domain (CTD), which directly interacts with the PM. To understand the role of these mutations in PM localization at the molecular level, we performed both all-atom and coarse-grained molecular dynamics simulations using a dimer-dimer configuration of VP40, which contains the CTD-CTD interface. Our studies indicate that the location of mutations on the outer surface of the CTD regions can lead to changes in membrane binding orientation and degree of membrane penetration. Direct PI(4,5)P2 interactions with the mutated residues seem to further stabilize and pull VP40 into the PM, thereby enhancing interactions with numerous amino acids that were otherwise infrequently or completely inaccessible. These multiscale computational studies provide new insights at the atomic and molecular level as to how VP40-PM interactions are altered through single amino acid mutations. Given the high case fatality rates associated with Ebola virus disease in humans, it is essential to explore the mechanisms of viral assembly in the presence of mutations to mitigate the severity of the disease and understand the potential of future outbreaks.
Collapse
Affiliation(s)
- Michael D Cioffi
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Balindile B Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nisha Bhattarai
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
3
|
Muranaka Y, Shigetomi R, Iwasaki Y, Hamamoto A, Nakayama K, Takatsu H, Shin HW. Novel phosphatidylinositol flippases contribute to phosphoinositide homeostasis in the plasma membrane. Biochem J 2024; 481:1187-1202. [PMID: 39258799 DOI: 10.1042/bcj20240223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Phosphatidylinositol is a precursor of various phosphoinositides, which play crucial roles in intracellular signaling and membrane dynamics and have impact on diverse aspects of cell physiology. Phosphoinositide synthesis and turnover occur in the cytoplasmic leaflet of the organellar and plasma membranes. P4-ATPases (lipid flippases) are responsible for translocating membrane lipids from the exoplasmic (luminal) to the cytoplasmic leaflet, thereby regulating membrane asymmetry. However, the mechanism underlying phosphatidylinositol translocation across cellular membranes remains elusive. Here, we discovered that the phosphatidylcholine flippases ATP8B1, ATP8B2, and ATP10A can also translocate phosphatidylinositol at the plasma membrane. To explore the function of these phosphatidylinositol flippases, we used cells depleted of CDC50A, a protein necessary for P4-ATPase function and ATP8B1 and ATP8B2, which express in HeLa cells. Upon activation of the Gq-coupled receptor, depletion of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was accelerated in CDC50A knockout (KO) and ATP8B1/8B2 double KO cells compared with control cells, suggesting a decrease in PtdIns(4,5)P2 levels within the plasma membrane of the KO cells upon stimulation. These findings highlight the important role of P4-ATPases in maintaining phosphoinositide homeostasis and suggest a mechanism for asymmetry of phosphatidylinositol in the cytoplasmic leaflet of the plasma membrane.
Collapse
Affiliation(s)
- Yumeka Muranaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Shigetomi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Asuka Hamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Bannon MS, Ellena JF, Gourishankar AS, Marsh SR, Trevisan-Silva D, Sherman NE, Jourdan LJ, Gourdie RG, Letteri RA. Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024:d4me00072b. [PMID: 39281343 PMCID: PMC11395315 DOI: 10.1039/d4me00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Peptides are naturally potent and selective therapeutics with massive potential; however, low cell membrane permeability limits their clinical implementation, particularly for hydrophilic, anionic peptides with intracellular targets. To overcome this limitation, esterification of anionic carboxylic acids on therapeutic peptides can simultaneously increase hydrophobicity and net charge to facilitate cell internalization, whereafter installed esters can be cleaved hydrolytically to restore activity. To date, however, most esterified therapeutics contain either a single esterification site or multiple esters randomly incorporated on multiple sites. This investigation provides molecular engineering insight into how the number and position of esters installed onto the therapeutic peptide α carboxyl terminus 11 (αCT11, RPRPDDLEI) with 4 esterification sites affect hydrophobicity and the hydrolysis process that reverts the peptide to its original form. After installing methyl esters onto αCT11 using Fischer esterification, we isolated 5 distinct products and used 2D nuclear magnetic resonance spectroscopy, reverse-phase high performance liquid chromatography, and mass spectrometry to determine which residues were esterified in each and the resulting increase in hydrophobicity. We found esterifying the C-terminal isoleucine to impart the largest increase in hydrophobicity. Monitoring ester hydrolysis showed the C-terminal isoleucine ester to be the most hydrolytically stable, followed by the glutamic acid, whereas esters on aspartic acids hydrolyze rapidly. LC-MS revealed the formation of transient intramolecular aspartimides prior to hydrolysis to carboxylic acids. In vitro proof-of-concept experiments showed esterifying αCT11 to increase cell migration into a scratch, highlighting the potential of multi-site esterification as a tunable, reversible strategy to enable the delivery of therapeutic peptides.
Collapse
Affiliation(s)
- Mark S Bannon
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Jeffrey F Ellena
- Biomolecular Magnetic Resonance Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Aditi S Gourishankar
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Spencer R Marsh
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Dilza Trevisan-Silva
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - L Jane Jourdan
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Robert G Gourdie
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| |
Collapse
|
5
|
Ojah EO, Gneid H, Herschede SR, Busschaert N. Structure-Activity Relationships in Supramolecular Hosts Targeting Bacterial Phosphatidylethanolamine (PE) Lipids. Chemistry 2024:e202402698. [PMID: 39231001 DOI: 10.1002/chem.202402698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The World Health Organization has described the antimicrobial resistance crisis as one of the top ten global public health threats. New antimicrobial agents that can fight infections caused by antimicrobial resistant pathogens are therefore needed. A potential strategy is the development of small molecules that can selectively interact with bacterial membranes (or membranes of other microbial pathogens), and thereby rapidly kill the bacteria. Here, we report the structure-activity relationship within a group of 22 compounds that were designed to bind the bacterial lipid phosphatidylethanolamine (PE). Liposome-based studies reveal that the lipophilicity of the compounds has the strongest effect on both the affinity and selectivity for PE. The best results were obtained for compounds with logP≈3.75, which showed a 5x-7x selectivity for bacterial PE lipids over human PC (phosphatidylcholine) lipids. Furthermore, these compounds also showed potent antibacterial activity against the Gram-positive bacterium B. cereus, with minimum inhibitory concentrations (MICs) below 10 μM, a concentration where they showed minimal hemolytic activity against human red blood cells. These results not only show the possibility of PE-binding small molecules to function as antibiotics, but also provide guidelines for the development of compounds targeting other types of biologically relevant membrane lipids.
Collapse
Affiliation(s)
- Emmanuel O Ojah
- Chemistry, Tulane University, New Orleans, LA, United States
| | - Hassan Gneid
- Chemistry, Tulane University, New Orleans, LA, United States
| | | | | |
Collapse
|
6
|
Takatsu H, Nishimura N, Kosugi Y, Ogawa H, Nakayama K, Colin E, Platzer K, Abou Jamra R, Redler S, Prouteau C, Ziegler A, Shin HW. De Novo Missense Variations of ATP8B2 Impair Its Phosphatidylcholine Flippase Activity. Mol Cell Biol 2024; 44:473-488. [PMID: 39219493 DOI: 10.1080/10985549.2024.2391829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
P4-ATPases comprise a family of lipid flippases that translocate lipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of biological membranes. Of the 14 known human P4-ATPases, ATP8B2 is a phosphatidylcholine flippase at the plasma membrane, but its physiological function is not well understood. Although ATP8B2 could interact with both CDC50A and CDC50B, it required only the CDC50A interaction for its exit from the endoplasmic reticulum and subsequent transport to the plasma membrane. Three de novo monoallelic missense variations of ATP8B2 were found in patients with intellectual disability. None of these variations affected the interaction of ATP8B2 with CDC50A or its localization to the plasma membrane. However, variations of either of two amino acid residues, which are conserved in all P4-ATPases, significantly reduced the phosphatidylcholine flippase activity of ATP8B2. Furthermore, mutations in the corresponding residues of ATP8B1 and ATP11C were found to decrease their flippase activities toward phosphatidylcholine and phosphatidylserine, respectively. These results indicate that the conserved amino acid residues are crucial for the enzymatic activities of the P4-ATPases.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Narumi Nishimura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Kosugi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Estelle Colin
- Department of Medical Genetics, Angers University Hospital, Angers, France
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Redler
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Clément Prouteau
- Department of Medical Genetics, Angers University Hospital, Angers, France
| | - Alban Ziegler
- Department of Medical Genetics, Angers University Hospital, Angers, France
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Yadav DS, Tivig I, Savopol T, Moisescu MG. Dielectrophoretic characterization of peroxidized retinal pigment epithelial cells as a model of age-related macular degeneration. BMC Ophthalmol 2024; 24:340. [PMID: 39138426 PMCID: PMC11320855 DOI: 10.1186/s12886-024-03617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a prevalent ocular pathology affecting mostly the elderly population. AMD is characterized by a progressive retinal pigment epithelial (RPE) cell degeneration, mainly caused by an impaired antioxidative defense. One of the AMD therapeutic procedures involves injecting healthy RPE cells into the subretinal space, necessitating pure, healthy RPE cell suspensions. This study aims to electrically characterize RPE cells to demonstrate a possibility using simulations to separate healthy RPE cells from a mixture of healthy/oxidized cells by dielectrophoresis. METHODS BPEI-1 rat RPE cells were exposed to hydrogen peroxide to create an in-vitro AMD cellular model. Cell viability was evaluated using various methods, including microscopic imaging, impedance-based real-time cell analysis, and the MTS assay. Healthy and oxidized cells were characterized by recording their dielectrophoretic spectra, and electric cell parameters (crossover frequency, membrane conductivity and permittivity, and cytoplasm conductivity) were computed. A COMSOL simulation was performed on a theoretical microfluidic-based dielectrophoretic separation chip using these parameters. RESULTS Increasing the hydrogen peroxide concentration shifted the first crossover frequency toward lower values, and the cell membrane permittivity progressively increased. These changes were attributed to progressive membrane peroxidation, as they were diminished when measured on cells treated with the antioxidant N-acetylcysteine. The changes in the crossover frequency were sufficient for the efficient separation of healthy cells, as demonstrated by simulations. CONCLUSIONS The study demonstrates that dielectrophoresis can be used to separate healthy RPE cells from oxidized ones based on their electrical properties. This method could be a viable approach for obtaining pure, healthy RPE cell suspensions for AMD therapeutic procedures.
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari blvd., Bucharest, 050474, Romania
| | - Ioan Tivig
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari blvd., Bucharest, 050474, Romania.
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Mihaela G Moisescu
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Tajima M, Nakamura H, Ohsaki S, Watano S. Effect of cholesterol on nanoparticle translocation across a lipid bilayer. Phys Chem Chem Phys 2024; 26:21229-21239. [PMID: 39073356 DOI: 10.1039/d4cp00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nanoparticles (NPs) have attracted significant attention as carriers for the delivery of drugs, genes, and macromolecules for biomedical and therapeutic applications. These technologies require NPs to be delivered to the interior of the cell. However, this translocation is unlikely because of the presence of a cell membrane composed of phospholipids, cholesterol, proteins, and glycans. The cell membrane composition can influence its rigidity; thus, membrane composition is a crucial factor in determining the translocation of NPs across the cell membrane. Here, we focus on cholesterol, which is an essential component of biological cell membranes, and investigate NP translocation across membranes containing cholesterol under an applied electric field using a coarse-grained molecular dynamics simulation. We found that NPs could translocate directly across cholesterol-containing membranes without irreversible membrane disruption. This unique translocation was induced by two key phenomena. Before NP translocation, a phospholipid-rich/cholesterol-poor domain was formed at the NP-membrane contact interface. Second, a smaller transmembrane pore was formed in the cholesterol-containing membrane during membrane crossing of the NP. Our findings imply that the delivery of NPs to the cell interior across the cholesterol-containing membrane can be achieved by appropriately controlling the strength of the applied electric field, depending on the cholesterol content in the membrane.
Collapse
Affiliation(s)
- Masaya Tajima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
9
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
10
|
Caputo M, Ivanova D, Chasserot-Golaz S, Doussau F, Haeberlé AM, Royer C, Ozkan S, Ecard J, Vitale N, Cousin MA, Tóth P, Gasman S, Ory S. Phospholipid Scramblase 1 Controls Efficient Neurotransmission and Synaptic Vesicle Retrieval at Cerebellar Synapses. J Neurosci 2024; 44:e0042242024. [PMID: 38839301 PMCID: PMC11223464 DOI: 10.1523/jneurosci.0042-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Phospholipids (PLs) are asymmetrically distributed at the plasma membrane. This asymmetric lipid distribution is transiently altered during calcium-regulated exocytosis, but the impact of this transient remodeling on presynaptic function is currently unknown. As phospholipid scramblase 1 (PLSCR1) randomizes PL distribution between the two leaflets of the plasma membrane in response to calcium activation, we set out to determine its role in neurotransmission. We report here that PLSCR1 is expressed in cerebellar granule cells (GrCs) and that PLSCR1-dependent phosphatidylserine egress occurred at synapses in response to neuron stimulation. Synaptic transmission is impaired at GrC Plscr1 -/- synapses, and both PS egress and synaptic vesicle (SV) endocytosis are inhibited in Plscr1 -/- cultured neurons from male and female mice, demonstrating that PLSCR1 controls PL asymmetry remodeling and SV retrieval following neurotransmitter release. Altogether, our data reveal a novel key role for PLSCR1 in SV recycling and provide the first evidence that PL scrambling at the plasma membrane is a prerequisite for optimal presynaptic performance.
Collapse
Affiliation(s)
- Margherita Caputo
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Daniela Ivanova
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Frédéric Doussau
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Anne-Marie Haeberlé
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro, Centre National de la Recherche Scientifique UPS3256, Strasbourg F-67000, France
| | - Sebahat Ozkan
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Jason Ecard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Petra Tóth
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg F-67000, France
| |
Collapse
|
11
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
12
|
Laquel P, Ayciriex S, Doignon F, Camougrand N, Fougère L, Rocher C, Wattelet-Boyer V, Bessoule JJ, Testet E. Mlg1, a yeast acyltransferase located in ER membranes associated with mitochondria (MAMs), is involved in de novo synthesis and remodelling of phospholipids. FEBS J 2024; 291:2683-2702. [PMID: 38297966 DOI: 10.1111/febs.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.
Collapse
Affiliation(s)
- Patricia Laquel
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | - Sophie Ayciriex
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ISA, UMR 5280, Villeurbanne, France
| | | | | | - Louise Fougère
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | | | | | | | - Eric Testet
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
- Bordeaux INP, LBM, UMR 5200, Villenave d'Ornon, France
| |
Collapse
|
13
|
Rigamonti AE, Polledri E, Favero C, Caroli D, Bondesan A, Grugni G, Mai S, Cella SG, Fustinoni S, Sartorio A. Metabolomic profiling of Prader-Willi syndrome compared with essential obesity. Front Endocrinol (Lausanne) 2024; 15:1386265. [PMID: 38812813 PMCID: PMC11133515 DOI: 10.3389/fendo.2024.1386265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Prader-Willi syndrome (PWS) is a rare disease, which shows a peculiar clinical phenotype, including obesity, which is different from essential obesity (EOB). Metabolomics might represent a valuable tool to reveal the biochemical mechanisms/pathways underlying clinical differences between PWS and EOB. The aim of the present (case-control, retrospective) study was to determine the metabolomic profile that characterizes PWS compared to EOB. Methods A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to measure a total of 188 endogenous metabolites in plasma samples of 32 patients with PWS (F/M = 23/9; age: 31.6 ± 9.2 years; body mass index [BMI]: 42.1 ± 7.0 kg/m2), compared to a sex-, age- and BMI-matched group of patients with EOB (F/M = 23/9; age: 31.4 ± 6.9 years; BMI: 43.5 ± 3.5 kg/m2). Results Body composition in PWS was different when compared to EOB, with increased fat mass and decreased fat-free mass. Glycemia and HDL cholesterol were higher in patients with PWS than in those with EOB, while insulinemia was lower, as well as heart rate. Resting energy expenditure was lower in the group with PWS than in the one with EOB, a difference that was missed after fat-free mass correction. Carrying out a series of Tobit multivariable linear regressions, adjusted for sex, diastolic blood pressure, and C reactive protein, a total of 28 metabolites was found to be associated with PWS (vs. non-PWS, i.e., EOB), including 9 phosphatidylcholines (PCs) ae, 5 PCs aa, all PCs aa, 7 lysoPCs a, all lysoPCs, 4 acetylcarnitines, and 1 sphingomyelin, all of which were higher in PWS than EOB. Conclusions PWS exhibits a specific metabolomic profile when compared to EOB, suggesting a different regulation of some biochemical pathways, fundamentally related to lipid metabolism.
Collapse
Affiliation(s)
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Graziano Grugni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Metabolic Research, Piancavallo-Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Milan, Italy
| |
Collapse
|
14
|
Motsa BB, Sharma T, Cioffi MD, Chapagain PP, Stahelin RV. Minor electrostatic changes robustly increase VP40 membrane binding, assembly, and budding of Ebola virus matrix protein derived virus-like particles. J Biol Chem 2024; 300:107213. [PMID: 38522519 PMCID: PMC11061732 DOI: 10.1016/j.jbc.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.
Collapse
Affiliation(s)
- Balindile B Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Michael D Cioffi
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
15
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024:10.1007/s00424-024-02948-7. [PMID: 38573347 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
16
|
Cioffi MD, Husby ML, Gerstman BS, Stahelin RV, Chapagain PP. Role of phosphatidic acid lipids on plasma membrane association of the Ebola virus matrix protein VP40. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159464. [PMID: 38360201 DOI: 10.1016/j.bbalip.2024.159464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The Ebola virus matrix protein VP40 is responsible for the formation of the viral matrix by localizing at the inner leaflet of the human plasma membrane (PM). Various lipid types, including PI(4,5)P2 (i.e. PIP2) and phosphatidylserine (PS), play active roles in this process. Specifically, the negatively charged headgroups of both PIP2 and PS interact with the basic residues of VP40 and stabilize it at the membrane surface, allowing for eventual egress. Phosphatidic acid (PA), resulting from the enzyme phospholipase D (PLD), is also known to play an active role in viral development. In this work, we performed a biophysical and computational analysis to investigate the effects of the presence of PA on the membrane localization and association of VP40. We used coarse-grained molecular dynamics simulations to quantify VP40 hexamer interactions with the inner leaflet of the PM. Analysis of the local distribution of lipids shows enhanced lipid clustering when PA is abundant in the membrane. We observed that PA lipids have a similar role to that of PS lipids in VP40 association due to the geometry and charge. Complementary experiments performed in cell culture demonstrate competition between VP40 and a canonical PA-binding protein for the PM. Also, inhibition of PA synthesis reduced the detectable budding of virus-like particles. These computational and experimental results provide new insights into the early stages of Ebola virus budding and the role that PA lipids have on the VP40-PM association.
Collapse
Affiliation(s)
- Michael D Cioffi
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Monica L Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
17
|
Elter JK, Liščáková V, Moravec O, Vragović M, Filipová M, Štěpánek P, Šácha P, Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024; 57:1050-1071. [PMID: 38370914 PMCID: PMC10867888 DOI: 10.1021/acs.macromol.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Veronika Liščáková
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
- First
Faculty of Medicine, Charles University
Kateřinská, 1660/32, 121 08, Praha 2, Czech Republic
| | - Oliver Moravec
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Martina Vragović
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Petr Štěpánek
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| |
Collapse
|
18
|
Aryal CM, Pan J. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:57-67. [PMID: 38172352 DOI: 10.1007/s00249-023-01697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer's elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
- , 2920 Burnet Ave Apt 3, Cincinnati, OH, 45219, USA
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
19
|
Liu S, Li Y, Shi L, Liu J, Ren Y, Laman JD, van der Mei HC, Busscher HJ. Maintaining sidedness and fluidity in cell membrane coatings supported on nano-particulate and planar surfaces. Bioact Mater 2024; 32:344-355. [PMID: 37927898 PMCID: PMC10622627 DOI: 10.1016/j.bioactmat.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Supported cell membrane coatings meet many requirements set to bioactive nanocarriers and materials, provided sidedness and fluidity of the natural membrane are maintained upon coating. However, the properties of a support-surface responsible for maintaining correct sidedness and fluidity are unknown. Here, we briefly review the properties of natural membranes and membrane-isolation methods, with focus on the asymmetric distribution of functional groups in natural membranes (sidedness) and the ability of molecules to float across a membrane to form functional domains (fluidity). This review concludes that hydrophilic sugar-residues of glycoproteins in the outer-leaflet of cell membranes direct the more hydrophobic inner-leaflet towards a support-surface to create a correctly-sided membrane coating, regardless of electrostatic double-layer interactions. On positively-charged support-surfaces however, strong, electrostatic double-layer attraction of negatively-charged membranes can impede homogeneous coating. In correctly-sided membrane coatings, fluidity is maintained regardless of whether the surface carries a positive or negative charge. However, membranes are frozen on positively-charged, highly-curved, small nanoparticles and localized nanoscopic structures on a support-surface. This leaves an unsupported membrane coating in between nanostructures on planar support-surfaces that is in dual-sided contact with its aqueous environment, yielding enhanced fluidity in membrane coatings on nanostructured, planar support-surfaces as compared with smooth ones.
Collapse
Affiliation(s)
- Sidi Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, 325035, PR China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Jian Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jon D. Laman
- University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
20
|
Motsa BB, Sharma T, Chapagain PP, Stahelin RV. Minor changes in electrostatics robustly increase VP40 membrane binding, assembly, and budding of Ebola virus matrix protein derived virus-like particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578092. [PMID: 38352396 PMCID: PMC10862912 DOI: 10.1101/2024.01.30.578092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ebola virus (EBOV) is a filamentous negative-sense RNA virus which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine (PS) and PI(4,5)P2 in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles (VLPs). In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.
Collapse
Affiliation(s)
- Balindile B. Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
21
|
Khavani M, Mehranfar A, Mofrad MRK. Antimicrobial peptide interactions with bacterial cell membranes. J Biomol Struct Dyn 2024:1-14. [PMID: 38263741 DOI: 10.1080/07391102.2024.2304683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
Antimicrobial peptides (AMPs) are potential alternatives for common antibiotics because of their greater activity and efficiency against a broad range of viruses, bacteria, fungi, and parasites. In this project, two antimicrobial peptides including magainin 2 and protegrin 1 with α-helix and β-sheet secondary structures were selected to investigate their interactions with different lipid bilayers such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), POPC/POPG (7:3), POPC/POPS (7:3), POPG/POPE(1:3), and POPG/POPE(3:1). The obtained structures of the AMPs illustrated that protegrin 1 cannot maintain its secondary structure in the solution phase in contrast to magainin 2. The head groups of the lipid units play a key role in the stability of the lipid bilayers. The head parts of the lipid membranes by increasing the internal H-bond contribute to membrane compactness. The POPG and POPS units inside the POPC/POPG and POPC/POPS membranes increase the order of the POPC units. The cationic residues of the AMPs form remarkable electrostatic interactions with the negatively charged membrane surfaces, which play a key role in the stabilization process of the peptide secondary structures. The Arg residues of protegrin 1 and the Gly1, Lys4, Lys10, Lys11, Lys14, and Glu19 of the magainin 2 have the most important roles in the complexation process. The values of Gibbs binding energies (ΔG) indicate that the complexation process between AMPs and different bacterial membranes is favorable from the thermodynamic viewpoint and AMPs could form stable complexes with the lipid bilayers. As a result of ΔG values, protegrin 1 forms a more stable complex with POPG/POPE(3:1), while the α-helix has more affinity to the POPG/POPE(1:3) bacterial membranes. Therefore, it can be considered that β-sheet and α-helix AMPs are more effective against gram-positive and gram-negative bacteria, respectively. The results of this study can provide useful details about the antimicrobial peptide interactions with the bacterial cell, which can be employed for designing new antimicrobial materials with greater efficiency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
22
|
Clarke RJ. Electrostatic switch mechanisms of membrane protein trafficking and regulation. Biophys Rev 2023; 15:1967-1985. [PMID: 38192346 PMCID: PMC10771482 DOI: 10.1007/s12551-023-01166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Lipid-protein interactions are normally classified as either specific or general. Specific interactions refer to lipid binding to specific binding sites within a membrane protein, thereby modulating the protein's thermal stability or kinetics. General interactions refer to indirect effects whereby lipids affect membrane proteins by modulating the membrane's physical properties, e.g., its fluidity, thickness, or dipole potential. It is not widely recognized that there is a third distinct type of lipid-protein interaction. Intrinsically disordered N- or C-termini of membrane proteins can interact directly but nonspecifically with the surrounding membrane. Many peripheral membrane proteins are held to the cytoplasmic surface of the plasma membrane via a cooperative combination of two forces: hydrophobic anchoring and electrostatic attraction. An acyl chain, e.g., myristoyl, added post-translationally to one of the protein's termini inserts itself into the lipid matrix and helps hold peripheral membrane proteins onto the membrane. Electrostatic attraction occurs between positively charged basic amino acid residues (lysine and arginine) on one of the protein's terminal tails and negatively charged phospholipid head groups, such as phosphatidylserine. Phosphorylation of either serine or tyrosine residues on the terminal tails via regulatory protein kinases allows for an electrostatic switch mechanism to control trafficking of the protein. Kinase action reduces the positive charge on the protein's tail, weakening the electrostatic attraction and releasing the protein from the membrane. A similar mechanism regulates many integral membrane proteins, but here only electrostatic interactions are involved, and the electrostatic switch modulates protein activity by altering the stabilities of different protein conformational states.
Collapse
Affiliation(s)
- Ronald J. Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006 Australia
| |
Collapse
|
23
|
Schütz GJ, Pabst G. The asymmetric plasma membrane-A composite material combining different functionalities?: Balancing Barrier Function and Fluidity for Effective Signaling. Bioessays 2023; 45:e2300116. [PMID: 37712937 PMCID: PMC11475564 DOI: 10.1002/bies.202300116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
One persistent puzzle in the life sciences is the asymmetric lipid composition of the cellular plasma membrane: while the exoplasmic leaflet is enriched in lipids carrying predominantly saturated fatty acids, the cytoplasmic leaflet hosts preferentially lipids with (poly-)unsaturated fatty acids. Given the high energy requirements necessary for cells to maintain this asymmetry, the question naturally arises regarding its inherent benefits. In this paper, we propose asymmetry to represent a potential solution for harmonizing two conflicting requirements for the plasma membrane: first, the need to build a barrier for the uncontrolled influx or efflux of substances; and second, the need to form a fluid and dynamic two-dimensional substrate for signaling processes. We hence view here the plasma membrane as a composite material, where the exoplasmic leaflet is mainly responsible for the functional integrity of the barrier and the cytoplasmic leaflet for fluidity. We reinforce the validity of the proposed mechanism by presenting quantitative data from the literature, along with multiple examples that bolster our model.
Collapse
Affiliation(s)
| | - Georg Pabst
- BiophysicsInstitute of Molecular Bioscience (IMB)NAWI GrazUniversity of GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth—University of GrazGrazAustria
| |
Collapse
|
24
|
Li R, Zhao R, Yang M, Zhang X, Lin J. Membrane microdomains: Structural and signaling platforms for establishing membrane polarity. PLANT PHYSIOLOGY 2023; 193:2260-2277. [PMID: 37549378 DOI: 10.1093/plphys/kiad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Cell polarity results from the asymmetric distribution of cellular structures, molecules, and functions. Polarity is a fundamental cellular trait that can determine the orientation of cell division, the formation of particular cell shapes, and ultimately the development of a multicellular body. To maintain the distinct asymmetric distribution of proteins and lipids in cellular membranes, plant cells have developed complex trafficking and regulatory mechanisms. Major advances have been made in our understanding of how membrane microdomains influence the asymmetric distribution of proteins and lipids. In this review, we first give an overview of cell polarity. Next, we discuss current knowledge concerning membrane microdomains and their roles as structural and signaling platforms to establish and maintain membrane polarity, with a special focus on the asymmetric distribution of proteins and lipids, and advanced microscopy techniques to observe and characterize membrane microdomains. Finally, we review recent advances regarding membrane trafficking in cell polarity establishment and how the balance between exocytosis and endocytosis affects membrane polarity.
Collapse
Affiliation(s)
- Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Mei Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Honsho M, Fujiki Y. Asymmetric Distribution of Plasmalogens and Their Roles-A Mini Review. MEMBRANES 2023; 13:764. [PMID: 37755186 PMCID: PMC10534842 DOI: 10.3390/membranes13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. The synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. Plasmalogens are transported to the post-Golgi compartment, including endosomes and plasma membranes, in a manner dependent on ATP, but not vesicular transport. Plasmalogens are preferentially localized in the inner leaflet of the plasma membrane in a manner dependent on P4-type ATPase ATP8B2, that associates with the CDC50 subunit. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and controls the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. The physiological consequences of such asymmetric localization and homeostasis of plasmalogens are discussed in this review.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yukio Fujiki
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka 811-2501, Japan
- Graduate School of Science, University of Hyogo, Himeji 671-2280, Japan
| |
Collapse
|
26
|
Müller K, Müller P, Lui F, Kroh PD, Braun BC. Porcine spermadhesin AQN-3 binds to negatively charged phospholipids. Chem Phys Lipids 2023; 254:105306. [PMID: 37156322 DOI: 10.1016/j.chemphyslip.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The spermadhesin AQN-3 is a major component of porcine seminal plasma. While various studies suggest that this protein binds to boar sperm cells, its attachment to the cells is poorly understood. Therefore, the capacity of AQN-3 to interact with lipids was investigated. For that purpose, AQN-3 was recombinantly expressed in E. coli and purified via the included His-tag. Characterizing the quaternary structure by size exclusion chromatography revealed that recombinant AQN-3 (recAQN-3) is largely present as multimer and/or aggregate. To determine the lipid specificity of recAQN-3, a lipid stripe method and a multilamellar vesicle (MLV)-based binding assay were used. Both assays show that recAQN-3 selectively interacts with negatively charged lipids, like phosphatidic acid, phosphatidylinositol phosphates, and cardiolipin. No interaction was observed with phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or cholesterol. The affinity to negatively charged lipids can be explained by electrostatic interactions because binding is partly reversed under high-salt condition. However, more factors have to be assumed like hydrogen bonds and/or hydrophobic forces because the majority of bound molecules was not released by high salt. To confirm the observed binding behavior for the native protein, porcine seminal plasma was incubated with MLVs comprising phosphatidic acid or phosphatidyl-4,5-bisphosphate. Attached proteins were isolated, digested, and analyzed by mass spectrometry. Native AQN-3 was detected in all samples analyzed and was - besides AWN - the most abundant protein. It remains to be investigated whether AQN-3, together with other sperm associated seminal plasma proteins, acts as decapacitation factor by targeting negative lipids with signaling or other functional roles in fertilization.
Collapse
Affiliation(s)
- Karin Müller
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany.
| | - Peter Müller
- Faculty of Life Sciences, Department of Biology, Humboldt University Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Fan Lui
- Mass spectrometry, Leibniz Institute of Molecular Pharmacology, Robert-Rössle-Straße 10, D-13125 Berlin, Germany
| | - Pascal D Kroh
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Beate C Braun
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany.
| |
Collapse
|
27
|
Zhu X, Huang C, Li N, Ma X, Li Z, Fan J. Distinct roles of graphene and graphene oxide nanosheets in regulating phospholipid flip-flop. J Colloid Interface Sci 2023; 637:112-122. [PMID: 36689797 DOI: 10.1016/j.jcis.2023.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Two-dimensional (2D) nanomaterials, such as graphene nanosheets (GNs) and graphene oxide nanosheets (GOs), could adhere onto or insert into a biological membrane, leading to a change in membrane properties and biological activities. Consequently, GN and GO become potential candidates for mediating interleaflet phospholipid transfer. In this work, molecular dynamics (MD) simulations were employed to investigate the effects of GN and GO on lipid flip-flop behavior and the underlying molecular mechanisms. Of great interest is that GN and GO work in opposite directions. The inserted GN can induce the formation of an ordered nanodomain, which dramatically elevates the free energy barrier of flipping phospholipids from one leaflet to the other, thus leading to a decreased lipid flip-flop rate. In contrast, the embedded GO can catalyze the transport of phospholipids between membrane leaflets by facilitating the formation of water pores. These results suggest that GN may work as an inhibitor of the interleaflet lipid translocation, while GO may play the role of scramblases. These findings are expected to expand promising biomedical applications of 2D nanomaterials.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS BIO & MED CHEM AU 2023; 3:114-136. [PMID: 37101812 PMCID: PMC10125326 DOI: 10.1021/acsbiomedchemau.2c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 04/28/2023]
Abstract
RNA therapy is a disruptive technology comprising a rapidly expanding category of drugs. Further translation of RNA therapies to the clinic will improve the treatment of many diseases and help enable personalized medicine. However, in vivo delivery of RNA remains challenging due to the lack of appropriate delivery tools. Current state-of-the-art carriers such as ionizable lipid nanoparticles still face significant challenges, including frequent localization to clearance-associated organs and limited (1-2%) endosomal escape. Thus, delivery vehicles must be improved to further unlock the full potential of RNA therapeutics. An emerging strategy is to modify existing or new lipid nanocarriers by incorporating bioinspired design principles. This method generally aims to improve tissue targeting, cellular uptake, and endosomal escape, addressing some of the critical issues facing the field. In this review, we introduce the different strategies for creating bioinspired lipid-based RNA carriers and discuss the potential implications of each strategy based on reported findings. These strategies include incorporating naturally derived lipids into existing nanocarriers and mimicking bioderived molecules, viruses, and exosomes. We evaluate each strategy based on the critical factors required for delivery vehicles to succeed. Finally, we point to areas of research that should be furthered to enable the more successful rational design of lipid nanocarriers for RNA delivery.
Collapse
Affiliation(s)
- Alex Golubovic
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Shannon Tsai
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Bowen Li
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
29
|
Morikawa T, Takahashi M, Izumi Y, Bamba T, Moriyama K, Hattori G, Fujioka R, Miura S, Shibata H. Oleic Acid-Containing Phosphatidylinositol Is a Blood Biomarker Candidate for SPG28. Biomedicines 2023; 11:biomedicines11041092. [PMID: 37189713 DOI: 10.3390/biomedicines11041092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Hereditary spastic paraplegia is a genetic neurological disorder characterized by spasticity of the lower limbs, and spastic paraplegia type 28 is one of its subtypes. Spastic paraplegia type 28 is a hereditary neurogenerative disorder with an autosomal recessive inheritance caused by loss of function of DDHD1. DDHD1 encodes phospholipase A1, which catalyzes phospholipids to lysophospholipids such as phosphatidic acids and phosphatidylinositols to lysophosphatidic acids and lysophoshatidylinositols. Quantitative changes in these phospholipids can be key to the pathogenesis of SPG28, even at subclinical levels. By lipidome analysis using plasma from mice, we globally examined phospholipids to identify molecules showing significant quantitative changes in Ddhd1 knockout mice. We then examined reproducibility of the quantitative changes in human sera including SPG28 patients. We identified nine kinds of phosphatidylinositols that show significant increases in Ddhd1 knockout mice. Of these, four kinds of phosphatidylinositols replicated the highest level in the SPG28 patient serum. All four kinds of phosphatidylinositols contained oleic acid. This observation suggests that the amount of oleic acid-containing PI was affected by loss of function of DDHD1. Our results also propose the possibility of using oleic acid-containing PI as a blood biomarker for SPG28.
Collapse
Affiliation(s)
- Takuya Morikawa
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosei Moriyama
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Nutritional Sciences, Nakamura Gakuen University, 5-7-1, Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Gohsuke Hattori
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka 830-0011, Japan
| | - Ryuta Fujioka
- Department of Food and Nutrition, Beppu University Junior College, 82, Kitaishigaki, Oita 874-8501, Japan
| | - Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, 454, Shitsukawa, Toon 791-0295, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Yamaguchi T, Hirakawa R, Ochiai H. Correlation between sphingomyelin and the membrane stability of mammalian erythrocytes. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110833. [PMID: 36738823 DOI: 10.1016/j.cbpb.2023.110833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Lipid compositions of mammalian erythrocyte membranes are different among species. Therefore, the information on hemolysis from mammalian erythrocytes is useful to understand membrane properties of human erythrocytes. In this work, pressure-induced hemolysis and hypotonic one were examined using erythrocytes of human, sheep, cow, cat, dog, pig, horse, rat, and mouse. Pressure-induced hemolysis was suppressed by membrane sphingomyelin, whereas hypotonic hemolysis decreased upon increment of cell diameter. Mass spectra of erythrocyte membrane lipids demonstrated that sphingomyelin with an acyl chain 24:1 was associated with the suppression of pressure-induced hemolysis. In cow erythrocytes, pressure-induced hemolysis was greatly suppressed and the detachment of cytoskeletal proteins from the membrane under hypotonic conditions was also inhibited. Taken together, these results suggest that sphingomyelin with 24:1 fatty acid plays an important role in the stability of the erythrocyte membrane, perhaps via cholesterol.
Collapse
Affiliation(s)
- Takeo Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Ruka Hirakawa
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hideharu Ochiai
- Research Institute of Bioscience, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
31
|
Adélaïde M, Salnikov E, Ramos-Martín F, Aisenbrey C, Sarazin C, Bechinger B, D’Amelio N. The Mechanism of Action of SAAP-148 Antimicrobial Peptide as Studied with NMR and Molecular Dynamics Simulations. Pharmaceutics 2023; 15:pharmaceutics15030761. [PMID: 36986623 PMCID: PMC10051583 DOI: 10.3390/pharmaceutics15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: SAAP-148 is an antimicrobial peptide derived from LL-37. It exhibits excellent activity against drug-resistant bacteria and biofilms while resisting degradation in physiological conditions. Despite its optimal pharmacological properties, its mechanism of action at the molecular level has not been explored. Methods: The structural properties of SAAP-148 and its interaction with phospholipid membranes mimicking mammalian and bacterial cells were studied using liquid and solid-state NMR spectroscopy as well as molecular dynamics simulations. Results: SAAP-148 is partially structured in solution and stabilizes its helical conformation when interacting with DPC micelles. The orientation of the helix within the micelles was defined by paramagnetic relaxation enhancements and found similar to that obtained using solid-state NMR, where the tilt and pitch angles were determined based on 15N chemical shift in oriented models of bacterial membranes (POPE/POPG). Molecular dynamic simulations revealed that SAAP-148 approaches the bacterial membrane by forming salt bridges between lysine and arginine residues and lipid phosphate groups while interacting minimally with mammalian models containing POPC and cholesterol. Conclusions: SAAP-148 stabilizes its helical fold onto bacterial-like membranes, placing its helix axis almost perpendicular to the surface normal, thus probably acting by a carpet-like mechanism on the bacterial membrane rather than forming well-defined pores.
Collapse
Affiliation(s)
- Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Evgeniy Salnikov
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| | - Christopher Aisenbrey
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| |
Collapse
|
32
|
Grafted dinuclear zinc complexes for selective recognition of phosphatidylserine: Application to the capture of extracellular membrane microvesicles. J Inorg Biochem 2023; 239:112065. [PMID: 36403435 DOI: 10.1016/j.jinorgbio.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.
Collapse
|
33
|
Le LTM, Thompson JR, Dehghani‐Ghahnaviyeh S, Pant S, Dang PX, French JB, Kanikeyo T, Tajkhorshid E, Alam A. Cryo-EM structures of human ABCA7 provide insights into its phospholipid translocation mechanisms. EMBO J 2023; 42:e111065. [PMID: 36484366 PMCID: PMC9890230 DOI: 10.15252/embj.2022111065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Phospholipid extrusion by ABC subfamily A (ABCA) exporters is central to cellular physiology, although the specifics of the underlying substrate interactions and transport mechanisms remain poorly resolved at the molecular level. Here we report cryo-EM structures of lipid-embedded human ABCA7 in an open state and in a nucleotide-bound, closed state at resolutions between 3.6 and 4.0 Å. The former reveals an ordered patch of bilayer lipids traversing the transmembrane domain (TMD), while the latter reveals a lipid-free, closed TMD with a small extracellular opening. These structures offer a structural framework for both substrate entry and exit from the ABCA7 TMD and highlight conserved rigid-body motions that underlie the associated conformational transitions. Combined with functional analysis and molecular dynamics (MD) simulations, our data also shed light on lipid partitioning into the ABCA7 TMD and localized membrane perturbations that underlie ABCA7 function and have broader implications for other ABCA family transporters.
Collapse
Affiliation(s)
- Le Thi My Le
- The Hormel InstituteUniversity of MinnesotaAustinMNUSA
| | | | - Sepehr Dehghani‐Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Present address:
Loxo Oncology at LillyLouisvilleCOUSA
| | | | | | | | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Amer Alam
- The Hormel InstituteUniversity of MinnesotaAustinMNUSA
| |
Collapse
|
34
|
Grassi S, Cabitta L, Prioni S, Mauri L, Ciampa MG, Yokoyama N, Iwabuchi K, Zorina Y, Prinetti A. Identification of the Lipid Antigens Recognized by rHIgM22, a Remyelination-Promoting Antibody. Neurochem Res 2023; 48:1783-1797. [PMID: 36695984 DOI: 10.1007/s11064-023-03859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Failure of the immune system to discriminate myelin components from foreign antigens plays a critical role in the pathophysiology of multiple sclerosis. In fact, the appearance of anti-myelin autoantibodies, targeting both proteins and glycolipids, is often responsible for functional alterations in myelin-producing cells in this disease. Nevertheless, some of these antibodies were reported to be beneficial for remyelination. Recombinant human IgM22 (rHIgM22) binds to myelin and to the surface of O4-positive oligodendrocytes, and promotes remyelination in mouse models of chronic demyelination. Interestingly, the identity of the antigen recognized by this antibody remains to be elucidated. The preferential binding of rHIgM22 to sulfatide-positive cells or tissues suggests that sulfatide might be part of the antigen pattern recognized by the antibody, however, cell populations lacking sulfatide expression are also responsive to rHIgM22. Thus, we assessed the binding of rHIgM22 in vitro to purified lipids and lipid extracts from various sources to identify the antigen(s) recognized by this antibody. Our results show that rHIgM22 is indeed able to bind both sulfatide and its deacylated form, whereas no significant binding for other myelin sphingolipids has been detected. Remarkably, binding of rHIgM22 to sulfatide in lipid monolayers can be positively or negatively regulated by the presence of other lipids. Moreover, rHIgM22 also binds to phosphatidylinositol, phosphatidylserine and phosphatidic acid, suggesting that not only sulfatide, but also other membrane lipids might play a role in the binding of rHIgM22 to oligodendrocytes and to other cell types not expressing sulfatide.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy.
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Noriko Yokoyama
- Institute for Environmental and Gender Specific Medicine, Graduate School of Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine, Graduate School of Medicine, Juntendo University, Urayasu, Chiba, Japan
| | | | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| |
Collapse
|
35
|
Mapping trasmembrane distribution of sphingomyelin. Emerg Top Life Sci 2023; 7:31-45. [PMID: 36692108 DOI: 10.1042/etls20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Our knowledge on the asymmetric distribution of sphingomyelin (SM) in the plasma membrane is largely based on the biochemical analysis of erythrocytes using sphingomyelinase (SMase). However, recent studies showed that the product of SMase, ceramide, disturbs transmembrane lipid distribution. This led to the development of the complimentary histochemical method, which combines electron microscopy and SM-binding proteins. This review discusses the advantages and caveats of published methods of measuring transbilayer distribution of SM. Recent finding of the proteins involved in the transbilayer movement of SM will also be summarized.
Collapse
|
36
|
Gulshan K. Crosstalk Between Cholesterol, ABC Transporters, and PIP2 in Inflammation and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:353-377. [PMID: 36988888 DOI: 10.1007/978-3-031-21547-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The lowering of plasma low-density lipoprotein cholesterol (LDL-C) is an easily achievable and highly reliable modifiable risk factor for preventing cardiovascular disease (CVD), as validated by the unparalleled success of statins in the last three decades. However, the 2021 American Heart Association (AHA) statistics show a worrying upward trend in CVD deaths, calling into question the widely held belief that statins and available adjuvant therapies can fully resolve the CVD problem. Human biomarker studies have shown that indicators of inflammation, such as human C-reactive protein (hCRP), can serve as a reliable risk predictor for CVD, independent of all traditional risk factors. Oxidized cholesterol mediates chronic inflammation and promotes atherosclerosis, while anti-inflammatory therapies, such as an anti-interleukin-1 beta (anti-IL-1β) antibody, can reduce CVD in humans. Cholesterol removal from artery plaques, via an athero-protective reverse cholesterol transport (RCT) pathway, can dampen inflammation. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a role in RCT by promoting adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from arterial macrophages. Cholesterol crystals activate the nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome in advanced atherosclerotic plaques, leading to IL-1β release in a PIP2-dependent fashion. PIP2 thus is a central player in CVD pathogenesis, serving as a critical link between cellular cholesterol levels, ATP-binding cassette (ABC) transporters, and inflammasome-induced IL-1β release.
Collapse
Affiliation(s)
- Kailash Gulshan
- College of Sciences and Health Professions, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
37
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Bombyx mori Cecropin D could trigger cancer cell apoptosis by interacting with mitochondrial cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184003. [PMID: 35850261 DOI: 10.1016/j.bbamem.2022.184003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Cecropin D is an antimicrobial peptide from Bombyx mori displaying anticancer and pro-apoptotic activities and, together with Cecropin XJ and Cecropin A, one of the very few peptides targeting esophageal cancer. Cecropin D displays poor similarity to other cecropins but a remarkable similarity in the structure and activity spectrum with Cecropin A and Cecropin XJ, offering the possibility to highlight key motifs at the base of the biological activity. In this work we show by NMR and MD simulations that Cecropin D is partially structured in solution and stabilizes its two-helix folding upon interaction with biomimetic membranes. Simulations show that Cecropin D strongly interacts with the surface of cancer cell biomimetic bilayers where it recognises the phosphatidylserine headgroup often exposed in the outer leaflet of cancerous cells by means of specific salt bridges. Cecropin D is also able to penetrate deeply in bilayers containing cardiolipin, a phospholipid found in mitochondria, causing significant destabilization in the lipid packing which might account for its pro-apoptotic activity. In bacterial membranes, phosphatidylglycerol and phosphatidylethanolamine act synergically by electrostatically attracting cecropin D and providing access to the membrane core, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| |
Collapse
|
38
|
Heinonen S, Lautala S, Koivuniemi A, Bunker A. Insights into the behavior of unsaturated diacylglycerols in mixed lipid bilayers in relation to protein kinase C activation-A molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183961. [PMID: 35568204 DOI: 10.1016/j.bbamem.2022.183961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The lipid second messenger diacylglycerol (DAG) is known for its involvement in many types of cellular signaling, especially as an endogenous agonist for protein kinase C (PKC). Evidence has emerged that the degree of saturation of the DAG molecules can affect PKC activation. DAG molecules with different acyl chain saturation have not only been observed to induce varying extents of PKC activation, but also to express selectivity towards different PKC isozymes. Both qualities are important for precise therapeutic activation of PKC; understanding DAG behavior at the molecular level in different environments has much potential in the development of drugs to target PKC. We used molecular dynamics simulations to study the behavior of two different unsaturated DAG species in lipid environments with varying degrees of unsaturation. We focus on phosphatidylethanolamine (PE) instead of phosphatidylcholine (PC) to more accurately model the relevant biomembranes. The effect of cholesterol (CHOL) on these systems was also explored. We found that both high level of unsaturation in the acyl chains of the DAG species and presence of CHOL in the surrounding membrane increase DAG molecule availability at the lipid-water interface. This can partially explain the previously observed differences in PKC activation strength and specificity, the complete mechanism is, however, likely to be more complex. Our simulations coupled with the current understanding of lipids highlight the need for more simulations of biologically accurate lipid environments in order to determine the correct correlations between molecular mechanisms and biological behavior when studying PKC activation.
Collapse
Affiliation(s)
- Suvi Heinonen
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Saara Lautala
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Artturi Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
39
|
Allender DW, Schick M. Extent of raft composition in a model plasma membrane. Biophys J 2022:S0006-3495(22)00723-8. [PMID: 36050886 DOI: 10.1016/j.bpj.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
"Rafts" are nanometer-size inhomogeneities in the plasma membrane that, in the outer leaflet, are enriched in sphingomyelin and cholesterol. They are thought to provide a platform for proteins to carry out biological processes (1-4). Here we employ a model asymmetric plasma membrane to address the question of the range of sphingomyelin and cholesterol compositions in which one would expect the formation of rafts. We define a weight for the likelihood of raft formation, and evaluate it as a function of the sphingomyelin mole fraction in the outer leaflet for three bilayers with total cholesterol mole fractions of 0.30, 0.40, and 0.50. Not surprisingly, the weight decreases when there is little sphingomyelin. Less expected, we find that the weight also decreases when there is a large mole fraction of sphingomyelin. The weight is largest in the bilayer with a total cholesterol mole fraction of 0.30, and decreases rapidly with increasing total cholesterol. We explicate the reasons for these behaviors. In the 0.30 cholesterol bilayer, the largest weight occurrs at a sphingomyelin mole fraction in the outer leaflet of approximately 0.23. The weight falls to one half its maximum value at sphingomylin mole fractions of 0.15 and 0.33. In terms of the sphingomyelin mole fraction of the asymmetric bilayer, the maximum weight occurs at 0.12 and falls to half maximum at 0.08 and 0.17.
Collapse
Affiliation(s)
- David W Allender
- Department of Physics, University of Washington, Seattle WA; Department of Physics, Kent State University, Kent OH
| | - Michael Schick
- Department of Physics, University of Washington, Seattle WA
| |
Collapse
|
40
|
Hullin-Matsuda F, Colosetti P, Rabia M, Luquain-Costaz C, Delton I. Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid. Biochimie 2022; 203:77-92. [DOI: 10.1016/j.biochi.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
41
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
42
|
Buyan A, Allender DW, Corry B, Schick M. Lipid redistribution in the highly curved footprint of Piezo1. Biophys J 2022:S0006-3495(22)00595-1. [PMID: 35927961 DOI: 10.1016/j.bpj.2022.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
We investigate the effects on the distribution of lipids in the plasma membrane that are caused by the insertion of a protein, Piezo1, that significantly distorts the membrane toward the cytosol. From coarse-grained molecular dynamics simulations, we find that the major effects occur in the outer, extracellular, leaflet. The mol fraction of cholesterol increases significantly in the curved region of the membrane close to Piezo1, while those of phosphatidylcholine and of sphingomyelin decrease. In the inner leaflet, mol fractions of cholesterol and of phosphatidylethanolamine decrease slightly as the protein is approached, while that of phosphatidylserine increases slightly. The mol fraction of phosphatidylcholine decreases markedly as the protein is approached. Most of these results are understood in the context of a theoretical model that utilizes two elements; (i) a coupling between the leaflets' actual curvatures and their compositionally-dependent spontaneous curvatures and, (ii) the dependence of the spontaneous curvatures not only on the mol fractions of the phospholipids, but also on the effect that cholesterol has on the spontaneous curvatures of the phospholipids.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, The Australian National University, Acton, Australia
| | - D W Allender
- Department of Physics, University of Washington, Seattle WA; Department of Physics, Kent State University, Kent OH
| | - Ben Corry
- Research School of Biology, The Australian National University, Acton, Australia
| | - M Schick
- Department of Physics, University of Washington, Seattle WA
| |
Collapse
|
43
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
44
|
Shin HW, Takatsu H. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases. Chem Pharm Bull (Tokyo) 2022; 70:524-532. [DOI: 10.1248/cpb.c22-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | |
Collapse
|
45
|
Nakao H, Nakano M. Flip-Flop Promotion Mechanisms by Model Transmembrane Peptides. Chem Pharm Bull (Tokyo) 2022; 70:519-523. [DOI: 10.1248/cpb.c22-00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
46
|
Norris MJ, Husby ML, Kiosses WB, Yin J, Saxena R, Rennick LJ, Heiner A, Harkins SS, Pokhrel R, Schendel SL, Hastie KM, Landeras-Bueno S, Salie ZL, Lee B, Chapagain PP, Maisner A, Duprex WP, Stahelin RV, Saphire EO. Measles and Nipah virus assembly: Specific lipid binding drives matrix polymerization. SCIENCE ADVANCES 2022; 8:eabn1440. [PMID: 35857835 PMCID: PMC9299542 DOI: 10.1126/sciadv.abn1440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/06/2022] [Indexed: 05/03/2023]
Abstract
Measles virus, Nipah virus, and multiple other paramyxoviruses cause disease outbreaks in humans and animals worldwide. The paramyxovirus matrix (M) protein mediates virion assembly and budding from host cell membranes. M is thus a key target for antivirals, but few high-resolution structures of paramyxovirus M are available, and we lack the clear understanding of how viral M proteins interact with membrane lipids to mediate viral assembly and egress that is needed to guide antiviral design. Here, we reveal that M proteins associate with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane. Using x-ray crystallography, electron microscopy, and molecular dynamics, we demonstrate that PI(4,5)P2 binding induces conformational and electrostatic changes in the M protein surface that trigger membrane deformation, matrix layer polymerization, and virion assembly.
Collapse
Affiliation(s)
- Michael J. Norris
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Monica L. Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - William B. Kiosses
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roopashi Saxena
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anja Heiner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephanie S. Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhe Li Salie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
47
|
Breisch J, Schumm C, Poehlein A, Daniel R, Averhoff B. The carnitine degradation pathway of Acinetobacter baumannii and its role in virulence. Environ Microbiol 2022; 24:4437-4448. [PMID: 35652489 DOI: 10.1111/1462-2920.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
The opportunistic human pathogen Acinetobacter baumannii can grow with carnitine but its metabolism, regulation and role in virulence remained elusive. Recently, we identified a carnitine transporter encoded by a gene closely associated with potential carnitine degradation genes. Among those is a gene coding for a putative d-malate dehydrogenase (Mdh). Deletion of the mdh gene led to a loss of growth with carnitine but not l-malate; growth with d-malate was strongly reduced. Therefore, it is hypothesized that d-malate is formed during carnitine oxidation and further oxidized to CO2 and pyruvate and, that not, as previously suggested, l-malate is the product and funnelled directly into the TCA cycle. Mutant analyses revealed that the hydrolase in this cluster funnels acetylcarnitine into the degradation pathway by deacetylation. A transcriptional regulator CarR bound in a concentration-dependent manner to the intergenic region between the mdh gene, the first gene of the carnitine catabolic operon and the carR gene in the presence and absence of carnitine. Both carnitine and d-malate induced CarR-dependent expression of the carnitine operon. Infection studies with Galleria mellonella larvae demonstrated a strong increase in virulence by addition of carnitine indicating that carnitine degradation plays a pivotal role in virulence of A. baumannii.
Collapse
Affiliation(s)
- Jennifer Breisch
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Clemens Schumm
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
48
|
Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Biomolecules 2022; 12:biom12050639. [PMID: 35625567 PMCID: PMC9138838 DOI: 10.3390/biom12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the interactions between carbon nanoparticles (CNPs) and biological membranes is critically important for applications of CNPs in biomedicine and toxicology. Due to the complexity and diversity of the systems, most molecular simulation studies have focused on the interactions of CNPs and single component bilayers. In this work, we performed coarse-grained molecular dynamic (CGMD) simulations to investigate the behaviors of fullerenes in the presence of multiple lipid components in the plasma membranes with varying fullerene concentrations. Our results reveal that fullerenes can spontaneously penetrate the plasma membrane. Interestingly, fullerenes prefer to locate themselves in the region of the highly unsaturated lipids that are enriched in the inner leaflet of the plasma membrane. This causes fullerene aggregation even at low concentrations. When increasing fullerene concentrations, the fullerene clusters grow, and budding may emerge at the inner leaflet of the plasma membrane. Our findings suggest by tuning the lipid composition, fullerenes can be loaded deeply inside the plasma membrane, which can be useful for designing drug carrier liposomes. Moreover, the mechanisms of how fullerenes perturb multicomponent cell membranes and how they directly enter the cell are proposed. These insights can help to determine fullerene toxicity in living cells.
Collapse
|
49
|
Hymel HC, Rahnama A, Sanchez OM, Liu D, Gauthier TJ, Melvin AT. How Cargo Identity Alters the Uptake of Cell-Penetrating Peptide (CPP)/Cargo Complexes: A Study on the Effect of Net Cargo Charge and Length. Cells 2022; 11:cells11071195. [PMID: 35406759 PMCID: PMC8997848 DOI: 10.3390/cells11071195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have emerged as a powerful tool for the delivery of otherwise impermeable cargoes into intact cells. Recent efforts to improve the delivery capability of peptides have mainly focused on the identity of the CPP; however, there is evidence that the identity of the cargo itself affects the uptake. The goal of this work was to investigate how the characteristics of a peptide cargo, including net charge and length, either enhance or diminish the internalization efficiency of the CPP/cargo complex. A small library of CPP/cargo complexes were synthesized consisting of structured and unstructured CPPs with cargoes of net positive, negative, or neutral charge and lengths of 4 or 8 amino acids. Cargoes with a net positive charge were found to enhance the overall uptake of the complexes while net neutral and negatively charged cargoes diminished uptake. Conversely, the net length of the cargo had no significant effect on uptake of the CPP/cargo complexes. Microcopy images confirmed the increased uptake of the positively charged cargoes; however, an increase in punctate regions with the addition of a cargo was also observed. The effects of the net positively charged cargoes were confirmed with both structured and unstructured CPPs, which demonstrated similar trends of an increase in uptake with the addition of positively charged residues. These findings demonstrate that the net charge of cargoes impacts the uptake of the complex, which can be considered in the future when designing peptide-based reporters or therapeutics.
Collapse
Affiliation(s)
- Hannah C. Hymel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.H.); (A.R.); (O.M.S.)
| | - Alireza Rahnama
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.H.); (A.R.); (O.M.S.)
| | - Olivia M. Sanchez
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.H.); (A.R.); (O.M.S.)
| | - Dong Liu
- LSU AgCenter Biotechnology Laboratory, Louisiana State University, Baton Rouge, LA 70803, USA; (D.L.); (T.J.G.)
| | - Ted J. Gauthier
- LSU AgCenter Biotechnology Laboratory, Louisiana State University, Baton Rouge, LA 70803, USA; (D.L.); (T.J.G.)
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.H.); (A.R.); (O.M.S.)
- Correspondence:
| |
Collapse
|
50
|
Pater JA, Penney C, O'Rielly DD, Griffin A, Kamal L, Brownstein Z, Vona B, Vinkler C, Shohat M, Barel O, French CR, Singh S, Werdyani S, Burt T, Abdelfatah N, Houston J, Doucette LP, Squires J, Glaser F, Roslin NM, Vincent D, Marquis P, Woodland G, Benoukraf T, Hawkey-Noble A, Avraham KB, Stanton SG, Young TL. Autosomal dominant non-syndromic hearing loss maps to DFNA33 (13q34) and co-segregates with splice and frameshift variants in ATP11A, a phospholipid flippase gene. Hum Genet 2022; 141:431-444. [PMID: 35278131 PMCID: PMC9035003 DOI: 10.1007/s00439-022-02444-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Sequencing exomes/genomes have been successful for identifying recessive genes; however, discovery of dominant genes including deafness genes (DFNA) remains challenging. We report a new DFNA gene, ATP11A, in a Newfoundland family with a variable form of bilateral sensorineural hearing loss (SNHL). Genome-wide SNP genotyping linked SNHL to DFNA33 (LOD = 4.77), a locus on 13q34 previously mapped in a German family with variable SNHL. Whole-genome sequencing identified 51 unremarkable positional variants on 13q34. Continuous clinical ascertainment identified several key recombination events and reduced the disease interval to 769 kb, excluding all but one variant. ATP11A (NC_000013.11: chr13:113534963G>A) is a novel variant predicted to be a cryptic donor splice site. RNA studies verified in silico predictions, revealing the retention of 153 bp of intron in the 3' UTR of several ATP11A isoforms. Two unresolved families from Israel were subsequently identified with a similar, variable form of SNHL and a novel duplication (NM_032189.3:c.3322_3327+2dupGTCCAGGT) in exon 28 of ATP11A extended exon 28 by 8 bp, leading to a frameshift and premature stop codon (p.Asn1110Valfs43Ter). ATP11A is a type of P4-ATPase that transports (flip) phospholipids from the outer to inner leaflet of cell membranes to maintain asymmetry. Haploinsufficiency of ATP11A, the phospholipid flippase that specially transports phosphatidylserine (PS) and phosphatidylethanolamine (PE), could leave cells with PS/PE at the extracellular side vulnerable to phagocytic degradation. Given that surface PS can be pharmaceutically targeted, hearing loss due to ATP11A could potentially be treated. It is also likely that ATP11A is the gene underlying DFNA33.
Collapse
Affiliation(s)
- Justin A Pater
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cindy Penney
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
- Centre for Translational Genomics, Memorial University, 300 Prince Phillip Dr., St. John's, NL, Canada
| | - Darren D O'Rielly
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
- Centre for Translational Genomics, Memorial University, 300 Prince Phillip Dr., St. John's, NL, Canada
| | - Anne Griffin
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Lara Kamal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Zippora Brownstein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, 58100, Holon, Israel
| | - Mordechai Shohat
- Bioinformatic Center, Cancer Research Institute, The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Bioinformatic Center, Cancer Research Institute, The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Curtis R French
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Sushma Singh
- Communication Sciences and Disorders, Elborn College, Western University, 1201 Western Road, London, ON, Canada
| | - Salem Werdyani
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Taylor Burt
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Nelly Abdelfatah
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Jim Houston
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Lance P Doucette
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Jessica Squires
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Fabian Glaser
- The Lorry I. Lokey Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, Canada
| | - Daniel Vincent
- Genome Quebec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montreal, QC, Canada
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montreal, QC, Canada
| | - Geoffrey Woodland
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Touati Benoukraf
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Alexia Hawkey-Noble
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Susan G Stanton
- Communication Sciences and Disorders, Elborn College, Western University, 1201 Western Road, London, ON, Canada
| | - Terry-Lynn Young
- Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, Canada.
- Centre for Translational Genomics, Memorial University, 300 Prince Phillip Dr., St. John's, NL, Canada.
- Communication Sciences and Disorders, Elborn College, Western University, 1201 Western Road, London, ON, Canada.
| |
Collapse
|