1
|
Bourassa J, Paris G, Trinkle-Mulcahy L, Côté J. Biochemical Properties of CARM1: Impact on Western Blotting and Proteomic Studies. ACS OMEGA 2024; 9:40204-40213. [PMID: 39346878 PMCID: PMC11425859 DOI: 10.1021/acsomega.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
CARM1 is an arginine methyltransferase that has crucial roles in a number of cellular pathways and is being explored as a therapeutic target in diseases such as cancer and neurodegenerative disorders. Its deregulation at the protein level was found to have potential prognostic value, and as such, its protein levels are regularly assessed through the common practice of western blotting (WB). Our group uncovered that CARM1 has biochemical properties that complicate its analysis by standard WB sample preparation techniques. Here, we show that CARM1 has the ability to form SDS-resistant aggregates that effectively hinder gel migration in SDS-PAGE. CARM1 levels and the temperature at the denaturation step can both influence CARM1 aggregation, which prompts the use of additional measures to ensure representative detection at the protein level. We have demonstrated the formation of CARM1 aggregates in both cell and tissue extracts, making these findings an important consideration for any CARM1-related study. We also show how aggregate formation in models of CARM1 overexpression can hinder proteomic studies. Having identified factors that can induce CARM1 aggregation, we suggest alternative sample preparation techniques that allow for clear resolution of the protein in stringent denaturing conditions while avoiding aggregation.
Collapse
Affiliation(s)
- Julie Bourassa
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Genevieve Paris
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Laura Trinkle-Mulcahy
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, University
of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jocelyn Côté
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Center
for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
2
|
Žuna K, Tyschuk T, Beikbaghban T, Sternberg F, Kreiter J, Pohl EE. The 2-oxoglutarate/malate carrier extends the family of mitochondrial carriers capable of fatty acid and 2,4-dinitrophenol-activated proton transport. Acta Physiol (Oxf) 2024; 240:e14143. [PMID: 38577966 PMCID: PMC11475482 DOI: 10.1111/apha.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
AIMS Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.
Collapse
Affiliation(s)
- Kristina Žuna
- Physiology and Biophysics, Department of Biological Sciences and PathobiologyUniversity of Veterinary MedicineViennaAustria
| | - Tatyana Tyschuk
- Physiology and Biophysics, Department of Biological Sciences and PathobiologyUniversity of Veterinary MedicineViennaAustria
- Present address:
Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVAViennaAustria
| | - Taraneh Beikbaghban
- Physiology and Biophysics, Department of Biological Sciences and PathobiologyUniversity of Veterinary MedicineViennaAustria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and PathobiologyUniversity of Veterinary MedicineViennaAustria
| | - Jürgen Kreiter
- Physiology and Biophysics, Department of Biological Sciences and PathobiologyUniversity of Veterinary MedicineViennaAustria
- Present address:
Institute of Molecular and Cellular PhysiologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Elena E. Pohl
- Physiology and Biophysics, Department of Biological Sciences and PathobiologyUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
3
|
Liu L, Manley JL. Non-canonical isoforms of the mRNA polyadenylation factor WDR33 regulate STING-mediated immune responses. Cell Rep 2024; 43:113886. [PMID: 38430516 PMCID: PMC11019558 DOI: 10.1016/j.celrep.2024.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/04/2024] Open
Abstract
The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-β induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
4
|
Taoka M, Kamei K, Kashima A, Nobe Y, Takekiyo T, Uekita T, Ichimura T. An ionic liquid-assisted sample preparation method for sensitive integral-membrane proteome analysis. Anal Biochem 2023; 683:115349. [PMID: 37852348 DOI: 10.1016/j.ab.2023.115349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Many ion channels and receptor proteins are potential targets for new drugs. However, standard methods for profiling these integral membrane proteins (IMPs) have not been fully established, especially when applied to rare and quantity-limited biological samples. We previously demonstrated that a mixture containing 1-butyl-3-methylimidazolium cyanate, an ionic liquid (IL), and NaOH (termed i-soln) is an excellent solubilizer for insoluble aggregates. In this study, we present a combined i-soln-assisted proteomic sample preparation platform (termed pTRUST), which is compatible with starting materials in the sub-microgram range, using our previously reported i-soln-based sample preparation strategy (iBOPs) and an in-StageTip technique. This novel and straightforward approach allows for the rapid solubilization and processing of a variety of IMPs from human samples to support highly sensitive mass spectrometry analysis. We also demonstrated that the performance of this technology surpasses that of conventional methods such as filter-aided sample preparation methods, FASP and i-FASP. The convenience and availability of pTRUST technology using the IL system have great potential for proteomic identification and characterization of novel drug targets and disease biology in research and clinical settings.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kota Kamei
- Department of Applied Chemistry, National Defense Academy, Yokosuka, 239-8686, Japan
| | | | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, 239-8686, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, 239-8686, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, 239-8686, Japan.
| |
Collapse
|
5
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
6
|
Király M, Kiss BD, Horváth P, Drahos L, Mirzahosseini A, Pálfy G, Antal I, Ludányi K. Investigating thermal stability based on the structural changes of lactase enzyme by several orthogonal methods. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00637. [PMID: 34136367 PMCID: PMC8182373 DOI: 10.1016/j.btre.2021.e00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
Thermal stability of lactase (β-galactosidase) enzyme has been studied by a variety of physico-chemical methods. β-galactosidase is the main active ingredient of medications for lactose intolerance. It is typically produced industrially by the Aspergillus oryzae filamentous fungus. Lactase was used as a model to help understand thermal stability of enzyme-type biopharmaceuticals. Enzyme activity (hydrolyzation of lactose) of β-galactosidase was determined after storing the solid enzyme substance at various temperatures. For a better understanding of the relationship between structure and activity changes we determined the mass and size of the molecules with gel electrophoresis and dynamic light scattering and detected aggregation processes. A bottom-up proteomic procedure was used to determine the primary amino acid sequence and to investigate changes in the N-glycosylation pattern of the protein. NMR and CD spectroscopic methods were used to observe changes in higher order structures and to reveal relationships between structural and functional changes.
Collapse
Affiliation(s)
- Márton Király
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Borbála Dalmadi Kiss
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., H-1117, Budapest, Hungary
| | - Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, 1538, Budapest, P.O.B. 32, Hungary
| | - István Antal
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7., 1092, Budapest, Hungary
| |
Collapse
|
7
|
Parrini M, Naskar S, Alberti M, Colombi I, Morelli G, Rocchi A, Nanni M, Piccardi F, Charles S, Ronzitti G, Mingozzi F, Contestabile A, Cancedda L. Restoring neuronal chloride homeostasis with anti-NKCC1 gene therapy rescues cognitive deficits in a mouse model of Down syndrome. Mol Ther 2021; 29:3072-3092. [PMID: 34058387 PMCID: PMC8531145 DOI: 10.1016/j.ymthe.2021.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 01/24/2023] Open
Abstract
A common feature of diverse brain disorders is the alteration of GABA-mediated inhibition because of aberrant, intracellular chloride homeostasis induced by changes in the expression and/or function of chloride transporters. Notably, pharmacological inhibition of the chloride importer NKCC1 is able to rescue brain-related core deficits in animal models of these pathologies and in some human clinical studies. Here, we show that reducing NKCC1 expression by RNA interference in the Ts65Dn mouse model of Down syndrome (DS) restores intracellular chloride concentration, efficacy of gamma-aminobutyric acid (GABA)-mediated inhibition, and neuronal network dynamics in vitro and ex vivo. Importantly, adeno-associated virus (AAV)-mediated, neuron-specific NKCC1 knockdown in vivo rescues cognitive deficits in diverse behavioral tasks in Ts65Dn animals. Our results highlight a mechanistic link between NKCC1 expression and behavioral abnormalities in DS mice and establish a molecular target for new therapeutic approaches, including gene therapy, to treat brain disorders characterized by neuronal chloride imbalance.
Collapse
Affiliation(s)
- Martina Parrini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Shovan Naskar
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Micol Alberti
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Ilaria Colombi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Giovanni Morelli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy; IRCSS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marina Nanni
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Federica Piccardi
- Animal Facility, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Severine Charles
- Genethon, 91000 Evry, France; Paris-Saclay University, University Evry, Inserm, Integrare research unit UMR_S951, 91000 Evry, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Paris-Saclay University, University Evry, Inserm, Integrare research unit UMR_S951, 91000 Evry, France
| | - Federico Mingozzi
- Genethon, 91000 Evry, France; Paris-Saclay University, University Evry, Inserm, Integrare research unit UMR_S951, 91000 Evry, France
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
8
|
Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021; 44:378-392. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
KCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging. Thus, KCC2 has emerged as one of the most important molecules that shape the overall neuronal phenotype.
Collapse
Affiliation(s)
- Mari A Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland; Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jean Christophe Poncer
- INSERM, UMRS 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
9
|
Dotzler SM, Kim CSJ, Gendron WAC, Zhou W, Ye D, Bos JM, Tester DJ, Barry MA, Ackerman MJ. Suppression-Replacement KCNQ1 Gene Therapy for Type 1 Long QT Syndrome. Circulation 2021; 143:1411-1425. [PMID: 33504163 DOI: 10.1161/circulationaha.120.051836] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Type 1 long QT syndrome (LQT1) is caused by loss-of-function variants in the KCNQ1-encoded Kv7.1 potassium channel α-subunit that is essential for cardiac repolarization, providing the slow delayed rectifier current. No current therapies target the molecular cause of LQT1. METHODS A dual-component suppression-and-replacement (SupRep) KCNQ1 gene therapy was created by cloning a KCNQ1 short hairpin RNA and a short hairpin RNA-immune KCNQ1 cDNA modified with synonymous variants in the short hairpin RNA target site, into a single construct. The ability of KCNQ1-SupRep gene therapy to suppress and replace LQT1-causative variants in KCNQ1 was evaluated by means of heterologous expression in TSA201 cells. For a human in vitro cardiac model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from 4 patients with LQT1 (KCNQ1-Y171X, -V254M, -I567S, and -A344A/spl) and an unrelated healthy control. CRISPR-Cas9 corrected isogenic control iPSC-CMs were made for 2 LQT1 lines (correction of KCNQ1-V254M and KCNQ1-A344A/spl). FluoVolt voltage dye was used to measure the cardiac action potential duration (APD) in iPSC-CMs treated with KCNQ1-SupRep. RESULTS In TSA201 cells, KCNQ1-SupRep achieved mutation-independent suppression of wild-type KCNQ1 and 3 LQT1-causative variants (KCNQ1-Y171X, -V254M, and -I567S) with simultaneous replacement of short hairpin RNA-immune KCNQ1 as measured by allele-specific quantitative reverse transcription polymerase chain reaction and Western blot. Using FluoVolt voltage dye to measure the cardiac APD in the 4 LQT1 patient-derived iPSC-CMs, treatment with KCNQ1-SupRep resulted in shortening of the pathologically prolonged APD at both 90% and 50% repolarization, resulting in APD values similar to those of the 2 isogenic controls. CONCLUSIONS This study provides the first proof-of-principle gene therapy for complete correction of long QT syndrome. As a dual-component gene therapy vector, KCNQ1-SupRep successfully suppressed and replaced KCNQ1 to normal wild-type levels. In TSA201 cells, cotransfection of LQT1-causative variants and KCNQ1-SupRep caused mutation-independent suppression and replacement of KCNQ1. In LQT1 iPSC-CMs, KCNQ1-SupRep gene therapy shortened the APD, thereby eliminating the pathognomonic feature of LQT1.
Collapse
Affiliation(s)
- Steven M Dotzler
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - C S John Kim
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - William A C Gendron
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory (W.A.C.G., M.A.B.), Mayo Clinic, Rochester, MN
| | - Wei Zhou
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael A Barry
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory (W.A.C.G., M.A.B.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Esteban PF, Molina-Holgado E. Tips and tricks for cannabinoid receptor 1 detection, interaction and interpretation. Neural Regen Res 2021; 16:1535-1536. [PMID: 33433470 PMCID: PMC8323698 DOI: 10.4103/1673-5374.300984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
11
|
Esteban PF, Garcia-Ovejero D, Paniagua-Torija B, Moreno-Luna R, Arredondo LF, Zimmer A, Arevalo-Martin A, Molina-Holgado E. Revisiting CB1 cannabinoid receptor detection and the exploration of its interacting partners. J Neurosci Methods 2020; 337:108680. [DOI: 10.1016/j.jneumeth.2020.108680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
|
12
|
Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Composition of the Intranuclear Inclusions of Fragile X-associated Tremor/Ataxia Syndrome. Acta Neuropathol Commun 2019; 7:143. [PMID: 31481131 PMCID: PMC6720097 DOI: 10.1186/s40478-019-0796-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.
Collapse
Affiliation(s)
- Lisa Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Anthony W Herren
- Genome Center, University of California Davis, Davis, California, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Jamie Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Bridget McLaughlin
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California Davis Health, Sacramento, California, USA
| | - Isaac N Pessah
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA.
- MIND Institute, University of California Davis Health, Sacramento, California, USA.
| |
Collapse
|
13
|
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, Valli J, Becvar T, Myskova J, Lestinova T, Shafiq S, Sadlova J, Volf P, Wheeler RJ, Gluenz E. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog 2019; 15:e1007828. [PMID: 31242261 PMCID: PMC6615630 DOI: 10.1371/journal.ppat.1007828] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/09/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite’s life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies. Leishmania are protozoan parasites, transmitted between mammals by the bite of phlebotomine sand flies. Promastigote forms in the sand fly have a long flagellum, which is motile and used for anchoring the parasites to prevent clearance with the digested blood meal remnants. To dissect flagellar functions and their importance in life cycle progression, we generated here a comprehensive list of >300 flagellar proteins and produced a CRISPR-Cas9 gene knockout library of 100 mutant Leishmania. We studied their behaviour in vitro before examining their fate in the sand fly Lutzomyia longipalpis. Measuring mutant swimming speeds showed that about half behaved differently compared to the wild type: a few swam faster, many slower and some were completely paralysed. We also found a group of uncoordinated swimmers. To test whether flagellar motility is required for parasite migration from the fly midgut to the foregut from where they reach the next host, we infected sand flies with a mixed mutant population. Each mutant carried a unique tag and tracking these tags up to nine days after infection showed that paralysed and uncoordinated Leishmania were rapidly lost from flies. These data indicate that directional swimming is important for successful colonisation of sand flies.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - François Demay
- University of Lille 1, Cité Scientifique, Villeneuve d’Ascq, France
| | - Edward Hookway
- Research Department of Pathology, University College London, London, United Kingdom
| | - Nicole Ashman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Heather Jeffery
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jessica Valli
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomas Becvar
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shahaan Shafiq
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Scott KM, Leonard JM, Boden R, Chaput D, Dennison C, Haller E, Harmer TL, Anderson A, Arnold T, Budenstein S, Brown R, Brand J, Byers J, Calarco J, Campbell T, Carter E, Chase M, Cole M, Dwyer D, Grasham J, Hanni C, Hazle A, Johnson C, Johnson R, Kirby B, Lewis K, Neumann B, Nguyen T, Nino Charari J, Morakinyo O, Olsson B, Roundtree S, Skjerve E, Ubaldini A, Whittaker R. Diversity in CO 2-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide. Appl Environ Microbiol 2019; 85:e02096-18. [PMID: 30446552 PMCID: PMC6344615 DOI: 10.1128/aem.02096-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.IMPORTANCE Autotrophic organisms take up and fix DIC, introducing carbon into the biological portion of the global carbon cycle. The mechanisms for DIC uptake and fixation by autotrophic Bacteria and Archaea are likely to be diverse but have been well characterized only for "Cyanobacteria" Based on genome sequences, members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus have a variety of mechanisms for DIC uptake and fixation. We verified that most of these organisms are capable of growing under low-DIC conditions, when they upregulate carboxysome loci and transporter genes collocated with these loci on their chromosomes. When these genes, which fall into four evolutionarily independent families of transporters, are expressed in E. coli, DIC transport is detected. This expansion in known DIC transporters across four families, from organisms from a variety of environments, provides insight into the ecophysiology of autotrophs, as well as a toolkit for engineering microorganisms for carbon-neutral biochemistries of industrial importance.
Collapse
Affiliation(s)
- Kathleen M Scott
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Juliana M Leonard
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Rich Boden
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- Sustainable Earth Institute, University of Plymouth, Plymouth, United Kingdom
| | - Dale Chaput
- Proteomics and Mass Spectrometry Facility, University of South Florida, Tampa, Florida, USA
| | - Clare Dennison
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Edward Haller
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Tara L Harmer
- Biology Program, Stockton University, Galloway, New Jersey, USA
| | - Abigail Anderson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Tiffany Arnold
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Samantha Budenstein
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Rikki Brown
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Juan Brand
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jacob Byers
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Timothy Campbell
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Erica Carter
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Max Chase
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Montana Cole
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Deandra Dwyer
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jonathon Grasham
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Christopher Hanni
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Ashlee Hazle
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Cody Johnson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Ryan Johnson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Brandi Kirby
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Katherine Lewis
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Brianna Neumann
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Tracy Nguyen
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | | | - Ooreoluwa Morakinyo
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Bengt Olsson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Shanetta Roundtree
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Emily Skjerve
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Ashley Ubaldini
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Robert Whittaker
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Godiee C, Cerny O, Durkin CH, Hoiden DW. SrcA is a chaperone for the Salmonella SPI-2 type three secretion system effector SteD. MICROBIOLOGY (READING, ENGLAND) 2019; 165:15-25. [PMID: 30457515 PMCID: PMC7614968 DOI: 10.1099/mic.0.000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Effector proteins of type three secretion systems (T3SS) often require cytosolic chaperones for their stabilization, to interact with the secretion machinery and to enable effector delivery into host cells. We found that deletion of srcA, previously shown to encode a chaperone for the Salmonella pathogenicity island 2 (SPI-2) T3SS effectors SseL and PipB2, prevented the reduction of mature Major Histocompatibility Complex class II (mMHCII) from the surface of antigen-presenting cells during Salmonella infection. This activity was shown previously to be caused by the SPI-2 T3SS effector SteD. Since srcA and steD are located in the same operon on the Salmonella chromosome, this suggested that the srcA phenotype might be due to an indirect effect on SteD. We found that SrcA is not translocated by the SPI-2 T3SS but interacts directly and forms a stable complex with SteD in bacteria with a 2 : 1 stoichiometry. We found that SrcA was not required for SPI-2 T3SS-dependent, neutral pH-induced secretion of either SseL or PipB2 but was essential for secretion of SteD. SrcA therefore functions as a chaperone for SteD, explaining its requirement for the reduction in surface levels of mMHCII.
Collapse
Affiliation(s)
- Camilla Godiee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Charlotte H. Durkin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - David W. Hoiden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
16
|
Kapphahn RJ, Richards MJ, Ferrington DA, Fliesler SJ. Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome. Exp Eye Res 2018; 178:247-254. [PMID: 30114413 DOI: 10.1016/j.exer.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Oxidative modification of proteins can perturb their structure and function, often compromising cellular viability. Such modifications include lipid-derived adducts (e.g., 4-hydroxynonenal (HNE) and carboxyethylpyrrole (CEP)) as well as nitrotyrosine (NTyr). We compared the retinal proteome and levels of such modifications in the AY9944-treated rat model of Smith-Lemli-Opitz syndrome (SLOS), in comparison to age-matched controls. Retinas harvested at 3 months of age were either subjected to proteomic analysis or to immuno-slot blot analysis, the latter probing blots with antibodies raised against HNE, CEP, and NTyr, followed by quantitative densitometry. HNE modification of retinal proteins was markedly (>9-fold) higher in AY9944-treated rats compared to controls, whereas CEP modification was only modestly (≤2-fold) greater, and NTyr modification was minimal and exhibited no difference as a function of AY9944 treatment. Anti-HNE immunoreactivity was greatest in the plexiform and ganglion cell layers, but also present in the RPE, choroid, and photoreceptor outer segment layer in AY9944-treated rats; control retinas showed minimal HNE labeling. 1D-PAGE/Western blot analysis of rod outer segment (ROS) membranes revealed HNE modification of both opsin and β-transducin. Proteomic analysis revealed the differential expression of several retinal proteins as a consequence of AY9944 treatment. Upregulated proteins included those involved in chaperone/protein folding, oxidative and cellular stress responses, transcriptional regulation, and energy production. βA3/A1 Crystallin, which has a role in regulation of lysosomal acidification, was down-regulated. Hence, oxidative modification of retinal proteins occurs in the SLOS rat model, in addition to the previously described oxidation of lipids. The results are discussed in the context of the histological and physiological changes that occur in the retina in the SLOS rat model.
Collapse
Affiliation(s)
- Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Richards
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Steven J Fliesler
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA; Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, The State University of New York (SUNY)- University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Buffalo, NY, USA.
| |
Collapse
|
17
|
Posgai AL, Wasserfall CH, Kwon KC, Daniell H, Schatz DA, Atkinson MA. Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice. Sci Rep 2017; 7:42372. [PMID: 28205558 PMCID: PMC5304332 DOI: 10.1038/srep42372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Autoantigen-specific immunological tolerance represents a central objective for prevention of type 1 diabetes (T1D). Previous studies demonstrated mucosal antigen administration results in expansion of Foxp3+ and LAP+ regulatory T cells (Tregs), suggesting oral delivery of self-antigens might represent an effective means for modulating autoimmune disease. Early preclinical experiments using the non-obese diabetic (NOD) mouse model reported mucosal administration of T1D-related autoantigens [proinsulin or glutamic acid decarboxylase 65 (GAD)] delayed T1D onset, but published data are conflicting regarding dose, treatment duration, requirement for combinatorial agents, and extent of efficacy. Recently, dogma was challenged in a report demonstrating oral insulin does not prevent T1D in NOD mice, possibly due to antigen digestion prior to mucosal immune exposure. We used transplastomic plants expressing proinsulin and GAD to protect the autoantigens from degradation in an oral vaccine and tested the optimal combination, dose, and treatment duration for the prevention of T1D in NOD mice. Our data suggest oral autoantigen therapy alone does not effectively influence disease incidence or result in antigen-specific tolerance assessed by IL-10 measurement and Treg frequency. A more aggressive approach involving tolerogenic cytokine administration and/or lymphocyte depletion prior to oral antigen-specific immunotherapy will likely be required to impart durable therapeutic efficacy.
Collapse
Affiliation(s)
- Amanda L. Posgai
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Clive H. Wasserfall
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kwang-Chul Kwon
- Department of Biochemistry School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Biochemistry School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Bennett K, Sadler NC, Wright AT, Yeager C, Hyman MR. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol 2016; 82:2270-2279. [PMID: 26826234 PMCID: PMC4959501 DOI: 10.1128/aem.03556-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2 (-)) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4 (+)-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.
Collapse
Affiliation(s)
- Kristen Bennett
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Natalie C Sadler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Chris Yeager
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Michael R Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 2016; 6:20833. [PMID: 26888634 PMCID: PMC4757872 DOI: 10.1038/srep20833] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 01/26/2023] Open
Abstract
The hyperphosphorylated microtubule-associated protein tau is present in several neurodegenerative diseases, although the causal relationship remains elusive. Few mouse models used to study Alzheimer-like dementia target tau phosphorylation. We created an inducible pseudophosphorylated tau (Pathological Human Tau, PH-Tau) mouse model to study the effect of conformationally modified tau in vivo. Leaky expression resulted in two levels of PH-Tau: low basal level and higher upon induction (4% and 14% of the endogenous tau, respectively). Unexpectedly, low PH-Tau resulted in significant cognitive deficits, decrease in the number of synapses (seen by EM in the CA1 region), reduction of synaptic proteins, and localization to the nucleus. Induction of PH-Tau triggered neuronal death (60% in CA3), astrocytosis, and loss of the processes in CA1. These findings suggest, that phosphorylated tau is sufficient to induce neurodegeneration and that two different mechanisms can induce cognitive impairment depending on the levels of PH-Tau expression.
Collapse
|
20
|
Zeino M, Brenk R, Gruber L, Zehl M, Urban E, Kopp B, Efferth T. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase. J Steroid Biochem Mol Biol 2015; 150:97-111. [PMID: 25797029 DOI: 10.1016/j.jsbmb.2015.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Cardiotonic steroids have long been in clinical use for treatment of heart failure and are now emerging as promising agents in various diseases, especially cancer. Their main target is Na(+)/K(+)-ATPase, a membrane protein involved in cellular ion homeostasis. Na(+)/K(+)-ATPase has been implicated in cancer biology by affecting several cellular events and signaling pathways in both sensitive and drug-resistant cancer cells. Hence, we investigated the cytotoxic activities of 66 cardiotonic steroids and cardiotonic steroid derivatives in sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Data were then subjected to quantitative structure-activity relationship analysis (QSAR) and molecular docking into Na(+)/K(+)-ATPase, which both indicated a possible differential expression of the pump in the mentioned cell lines. This finding was confirmed by western blotting, intracellular potassium labeling and next generation sequencing which showed that Na(+)/K(+)-ATPase was less expressed in multidrug-resistant than in sensitive cells.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ruth Brenk
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Lisa Gruber
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
21
|
Tang D, Qian AH, Song DD, Ben QW, Yao WY, Sun J, Li WG, Xu TL, Yuan YZ. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2015; 308:G767-78. [PMID: 25792562 DOI: 10.1152/ajpgi.00313.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/06/2015] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity represents an important hallmark in the pathophysiology of irritable bowel syndrome (IBS), of which the mechanisms remain elusive. The present study was designed to examine whether cation-chloride cotransporter (CCC)-mediated chloride (Cl(-)) homeostasis of the spinal cord is involved in chronic stress-induced visceral hypersensitivity. Chronic visceral hypersensitivity was induced by exposing male Wistar rats to water avoidance stress (WAS). RT-PCR, Western blotting, and immunohistochemistry were used to assess the expression of CCCs in the spinal cord. Patch-clamp recordings were performed on adult spinal cord slices to evaluate Cl(-) homeostasis and Cl(-) extrusion capacity of lamina I neurons. Visceral sensitivity was estimated by measuring the abdominal withdrawal reflex in response to colorectal distension (CRD). After 10 days of WAS exposure, levels of both total protein and the oligomeric form of the K(+)-Cl(-) cotransporter isoform 2 (KCC2), but not Na(+)-K(+)-2Cl(-) transporter isoform 1 (NKCC1), were significantly decreased in the dorsal horn of the lumbosacral spinal cord. The downregulation of KCC2 resulted in a depolarizing shifted equilibrium potential of GABAergic inhibitory postsynaptic current and impaired Cl(-) extrusion capacity in lamina I neurons of the lumbosacral spinal cord from WAS rats. Acute noxious CRD disrupted spinal KCC2 expression and function 2 h after the final distention in sham rats, but not in WAS rats. Pharmacological blockade of KCC2 activity by intrathecal injection of a KCC2 inhibitor [(dihydroindenyl)oxy] alkanoic acid enhanced visceral nociceptive sensitivity in sham rats, but not in WAS rats. These results suggest that KCC2 downregulation-mediated impairment of spinal cord Cl(-) homeostasis may play an important role in chronic stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Ai-Hua Qian
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Dan-Dan Song
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Qi-Wen Ben
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Wei-Yan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| | - Wei-Guang Li
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Zong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai, China; and
| |
Collapse
|
22
|
Toselli F, Booth Depaz IM, Worrall S, Etheridge N, Dodd PR, Wilce PA, Gillam EMJ. Expression of CYP2E1 and CYP2U1 Proteins in Amygdala and Prefrontal Cortex: Influence of Alcoholism and Smoking. Alcohol Clin Exp Res 2015; 39:790-7. [DOI: 10.1111/acer.12697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Francesca Toselli
- School of Chemistry and Molecular Biosciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| | - Iris M. Booth Depaz
- School of Biomedical Sciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| | - Simon Worrall
- School of Chemistry and Molecular Biosciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| | - Naomi Etheridge
- School of Chemistry and Molecular Biosciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| | - Peter R. Dodd
- School of Chemistry and Molecular Biosciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| | - Peter A. Wilce
- School of Chemistry and Molecular Biosciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences; The University of Queensland, St. Lucia; Brisbane Queensland Australia
| |
Collapse
|
23
|
Zeino M, Paulsen MS, Zehl M, Urban E, Kopp B, Efferth T. Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids. Biochem Pharmacol 2014; 93:11-24. [PMID: 25451686 DOI: 10.1016/j.bcp.2014.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
P-glycoprotein (ABCB1, MDR1) is capable of extruding chemotherapeutics outside the cell and its overexpression in certain cancer cells may cause failure of chemotherapy. Many attempts were carried out to identify potent inhibitors of this transporter and numerous compounds were shown to exert inhibitory effects in vitro, but so far none were able to make their way to the clinic due to serious complications. Natural compounds represent a great source of therapeutics, which are believed to be safe and effective. Therefore, we have screened a large library of naturally occurring cardiotonic steroids and their derivatives using high throughput flow cytometry. We were able to identify six compounds capable of modulating P-glycoprotein activity. By using P-glycoprotein ATPase assays, molecular docking in silico studies and resazurin reduction assays, the outcome of this high throughput screening platform has been validated. These novel compounds may serve as candidates to reverse doxorubicin resistance in leukemia cells.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Malte S Paulsen
- St. Mary's, Respiratory Infections NHLI, Flow Cytometry Core Facility, Imperial College, London, Great Britain
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Departments of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Ernst Urban
- Departments of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
24
|
Markkanen M, Karhunen T, Llano O, Ludwig A, Rivera C, Uvarov P, Airaksinen MS. Distribution of neuronal KCC2a and KCC2b isoforms in mouse CNS. J Comp Neurol 2014; 522:1897-914. [PMID: 24639001 DOI: 10.1002/cne.23510] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/13/2022]
Abstract
The neuronal K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing actions of inhibitory neurotransmitters in mature central nervous system (CNS). The KCC2 gene produces two isoforms, KCC2a and KCC2b, that differ in their N-termini. Increase of KCC2b in the cortex underlies the developmental shift in γ-aminobutyric acid (GABA)ergic responses, whereas the physiological role of KCC2a is still poorly characterized. The two KCC2 isoforms show equal distribution in mouse brainstem neurons at birth; however their postnatal expression patterns, and the subcellular localization of KCC2a, have not yet been described. Here, we compared the pattern of KCC2a and KCC2b expression in different regions of postnatal mouse CNS by immunohistochemistry by using isoform-specific antibodies. Tissue from KCC2a isoform-specific knockout mice was used as a negative control. KCC2b expression increased postnatally and was widely expressed in adult brain. KCC2a immunoreactivity was low or absent in most parts of the adult cortex, hippocampus, thalamus, and cerebellar cortex. Both isoforms were widely present in the developing and mature hypothalamus, a large part of the brainstem, and the spinal cord. A notable exception was the lack of KCC2a staining in the brainstem auditory system. At the subcellular level, the isoforms were only partially colocalized. In neuronal somas, KCC2b immunoreactivity was concentrated at the plasma membrane, whereas KCC2a signal was not. Moreover, although both isoforms were expressed in microtubule-associated protein (MAP)2-positive dendrites, they appeared in non-overlapping dendritic compartments. The results, together with those of previous studies, suggest that KCC2a and KCC2b have overlapping roles in neonatal neurons but presumably different roles in mature neurons.
Collapse
Affiliation(s)
- Marika Markkanen
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
25
|
Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function. PLoS One 2013; 8:e80404. [PMID: 24312215 PMCID: PMC3842347 DOI: 10.1371/journal.pone.0080404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.
Collapse
|
26
|
Huang WC, Hsu SC, Huang SJ, Chen YJ, Hsiao YC, Zhang W, Fidler IJ, Hung MC. Exogenous expression of human SGLT1 exhibits aggregations in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Am J Transl Res 2013; 5:441-9. [PMID: 23724167 PMCID: PMC3665917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Sodium/glucose co-transporter 1 (SGLT1), which actively and energy-dependently uptakes glucose, plays critical roles in the development of various diseases including diabetes mellitus and cancer, and has been viewed as a promising therapeutic target for these diseases. Protein-protein interaction with EGFR has been shown to regulate the expression and activity of SGLT1. Exogenous expression of SGLT1 is one of the essential approaches to characterize its functions; however, exogenously expressed SGLT1 is not firmly detectable by Western blot at its calculated molecular weight, which creates a hurdle for further understanding the molecular events by which SGLT1 is regulated. In this study, we demonstrated that exogenous SGLT1 functions in glucose-uptake normally but is consistently detected near the interface between stacking gel and running gel rather than at the calculated molecular weight in Western blot analysis, suggesting that the overexpressed SGLT1 forms SDS-resistant aggregates, which cannot be denatured and effectively separated on SDS-PAGE. Co-expression of EGFR enhances both the glucose-uptake activity and protein level of the SGLT1. However, fusion with Flag or HA tag at its carboxy- but not its amino-terminus abolished the glucose-uptake activity of exogenous SGLT1 without affecting its protein level. Furthermore, the solubility of SGLT1 aggregates was not affected by other detergents but was partially improved by inhibition of o-link glycosylation. These findings suggested exogenous overexpression of SGLT1 can function normally but may not be consistently detectable at its formula weight due to its gel-shift behavior by forming the SDS-resistant aggregates.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
- Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
- the Ph.D. program for Cancer Biology and Drug Discovery, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| | - Sheng-Chie Hsu
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Shyh-Jer Huang
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Yun-Ju Chen
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
- Department of Medical Research, E-Da HospitalKaohsiung 824, Taiwan
- Department of Biological Science & Technology, I-Shou UniversityKaohsiung 824, Taiwan
| | - Yu-Chun Hsiao
- Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
- the Ph.D. program for Cancer Biology and Drug Discovery, China Medical UniversityTaichung 404, Taiwan
| | - Weihua Zhang
- Department of Biology and Biochemistry, University of HoustonHouston, TX, 77204, USA
| | - Isaiah J Fidler
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer CenterHouston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science CenterHouston, TX 77030, USA
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
- Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
- Graduate School of Biomedical Sciences, The University of Texas Health Science CenterHouston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
27
|
Storbeck KH, Swart AC, Goosen P, Swart P. Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 2013; 371:87-99. [PMID: 23228600 DOI: 10.1016/j.mce.2012.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
Cytochrome b(5) (cyt-b(5)) is essential for the regulation of steroidogenesis and as such has been implicated in a number of clinical conditions. It is well documented that this small hemoprotein augments the 17,20-lyase activity of cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1). Studies have revealed that this augmentation is accomplished by cyt-b(5) enhancing the interaction between cytochrome P450 reductase (POR) and CYP17A1. In this paper we present evidence that cyt-b(5) induces a conformational change in CYP17A1, in addition to facilitating the interaction between CYP17A1 and POR. We also review the recently published finding that cyt-b(5) allosterically augments the activity of 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD), a non cytochrome P450 enzyme, by increasing the enzymes affinity for its cofactor, NAD(+). The physiological importance of this finding, in terms of understanding adrenal androstenedione production, is examined. Finally, evidence that cyt-b(5) is able to form homomeric complexes in living cells is presented and discussed.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | | | |
Collapse
|
28
|
Zhao Y, Hu J, Miao G, Qu L, Wang Z, Li G, Lv P, Ma D, Chen Y. Transmembrane protein 208: a novel ER-localized protein that regulates autophagy and ER stress. PLoS One 2013; 8:e64228. [PMID: 23691174 PMCID: PMC3653875 DOI: 10.1371/journal.pone.0064228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/11/2013] [Indexed: 12/11/2022] Open
Abstract
Autophagy and endoplasmic reticulum (ER) stress are both tightly regulated cellular processes that play central roles in various physiological and pathological conditions. Recent reports have indicated that ER stress is a potent inducer of autophagy. However, little is known about the underlying molecular link between the two processes. Here we report a novel human protein, transmembrane protein 208 (TMEM208) that can regulate both autophagy and ER stress. When overexpressed, TMEM208 impaired autophagy as characterized by the decrease of the accumulation of LC3-II, decreased degradation of autophagic substrates, and reduced expression of critical effectors and vital molecules of the ER stress and autophagy processes. In contrast, knockdown of the TMEM208 gene promoted autophagy, as demonstrated by the increase of LC3-II, increased degradation of autophagic substrates, and enhanced expression levels for genes key in the ER stress and autophagic processes. Taken together, our results reveal that this novel ER-located protein regulates both ER stress and autophagy, and represents a possible link between the two different cellular processes.
Collapse
Affiliation(s)
- Yuanbo Zhao
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Jia Hu
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Guangyan Miao
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Liujing Qu
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Zhenda Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Ge Li
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Ping Lv
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Dalong Ma
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
| | - Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Health Science Center, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Storbeck KH, Swart AC, Lombard N, Adriaanse CV, Swart P. Cytochrome b(5) forms homomeric complexes in living cells. J Steroid Biochem Mol Biol 2012; 132:311-21. [PMID: 22878120 DOI: 10.1016/j.jsbmb.2012.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
Cytochrome b(5) (cyt-b(5)) is a ubiquitous hemoprotein also associated with microsomal cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1). In the steroidogenic pathway CYP17A1 catalyses the metabolism of pregnenolone, yielding both glucocorticoid and androgen precursors. While not affecting the 17α-hydroxylation of pregnenolone, cyt-b(5) augments the 17,20 lyase reaction of 17-hydroxypregnenolone, catalyzing the formation of DHEA, through direct protein-protein interactions. In this study, multimeric complex formation of cyt-b(5) and the possible regulatory role of these complexes were investigated. Cyt-b(5) was isolated from ovine liver and used to raise anti-sheep cyt-b(5) immunoglobulins. Immunochemical studies revealed that, in vivo, cyt-b(5) is primarily found in the tetrameric form. Subsequent fluorescent resonance energy transfer (FRET) studies in COS-1 cells confirmed the formation of homomeric complexes by cyt-b(5) in live cells. Site-directed mutagenesis revealed that the C-terminal linker domain of cyt-b(5) is vital for complex formation. The 17,20-lyase activity of CYP17 was augmented by truncated cyt-b(5), which is unable to form complexes when co-expressed in COS-1 cells, thereby implicating the monomeric form of cyt-b(5) as the active species. This study has shown for the first time that cyt-b(5) forms homomeric complexes in vivo, implicating complex formation as a possible regulatory mechanism in steroidogenesis.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | | | | | | | | |
Collapse
|
30
|
Mechanisms for epigallocatechin gallate induced inhibition of drug metabolizing enzymes in rat liver microsomes. Toxicol Lett 2012; 214:328-38. [DOI: 10.1016/j.toxlet.2012.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 01/17/2023]
|
31
|
Sahni J, Song Y, Scharenberg AM. The B. subtilis MgtE magnesium transporter can functionally compensate TRPM7-deficiency in vertebrate B-cells. PLoS One 2012; 7:e44452. [PMID: 22970223 PMCID: PMC3435302 DOI: 10.1371/journal.pone.0044452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/06/2012] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the vertebrate magnesium transporters Solute carrier family 41, members 1 and 2 (SLC41A1, SLC41A2) and Magnesium transporter subtype 1 (MagT1) can endow vertebrate B-cells lacking the ion-channel kinase Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) with a capacity to grow and proliferate. SLC41A1 and SLC41A2 display distant homology to the prokaryotic family of Mg2+ transporters, MgtE, first characterized in Bacillus subtilis. These sequence similarities prompted us to investigate whether MgtE could potentially compensate for the lack of TRPM7 in the vertebrate TRPM7-deficient DT40 B-cell model system. Here, we report that overexpression of MgtE is able to rescue the growth of TRPM7-KO DT40 B-cells. However, contrary to a previous report that describes regulation of MgtE channel gating by Mg2+ in a bacterial spheroplast model system, whole cell patch clamp analysis revealed no detectable current development in TRPM7-deficient cells expressing MgtE. In addition, we observed that MgtE expression is strongly downregulated at high magnesium concentrations, similar to what has been described for its vertebrate homolog, SLC41A1. We also show that the N-terminal cytoplasmic domain of MgtE is required for normal MgtE channel function, functionally confirming the predicted importance of this domain in regulation of MgtE-mediated Mg2+ entry. Overall, our findings show that consistent with its proposed function, Mg2+ uptake mediated by MgtE is able to restore cell growth and proliferation of TRPM7-deficient cells and supports the concept of functional homology between MgtE and its vertebrate homologs.
Collapse
Affiliation(s)
- Jaya Sahni
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail: (JS); (AS)
| | - Yumei Song
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Andrew M. Scharenberg
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (JS); (AS)
| |
Collapse
|
32
|
Mitra M, Dewez D, García-Cerdán JG, Melis A. Polyclonal antibodies against the TLA1 protein also recognize with high specificity the D2 reaction center protein of PSII in the green alga Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2012; 112:39-47. [PMID: 22442055 DOI: 10.1007/s11120-012-9733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
The Chlamydomonas reinhardtii DNA-insertional transformant truncated light-harvesting antenna 1 (tla1) mutant, helped identify the novel TLA1 gene (GenBank Accession # AF534570-71) as an important genetic determinant in the chlorophyll antenna size of photosynthesis. Down-regulation in the amount of the TLA1 23 kDa protein in the cell resulted in smaller chlorophyll antenna size for both photosystems (in Tetali et al. Planta 225:813-829, 2007). Specific polyclonal antibodies, raised against the recombinant TLA1 protein, showed a cross-reaction with the predicted 23 kDa TLA1 protein in C. reinhardtii protein extracts, but also showed a strong cross-reaction with a protein band migrating to 28.5 kDa. Questions of polymorphism, or posttranslational modification of the TLA1 protein were raised as a result of the unexpected 28.5 kDa cross-reaction. Work in this paper aimed to elucidate the nature of the unexpected 28.5 kDa cross-reaction, as this was deemed to be important in terms of the functional role of the TLA1 protein in the regulation of the chlorophyll antenna size of photosynthesis. Immuno-precipitation of the 28.5 kDa protein, followed by LC-mass spectrometry, showed amino acid sequences ascribed to the psbD/D2 reaction center protein of PSII. The common antigenic determinant between TLA1 and D2 was shown to be a stretch of nine conserved amino acids V-F-L(V)LP-GNAL in the C-terminus of the two proteins, constituting a high antigenicity "GNAL" domain. Antibodies raised against the TLA1 protein containing this domain recognized both the TLA1 and the D2 protein. Conversely, antibodies raised against the TLA1 protein minus the GNAL domain specifically recognized the 23 kDa TLA1 protein and failed to recognize the 28.5 kDa D2 protein. D2 antibodies raised against an oligopeptide containing this domain also cross-reacted with the TLA1 protein. It is concluded that the 28.5 kDa cross-reaction of C. reinhardtii protein extracts with antiTLA1 antibodies is due to antibody affinity for the GNAL domain of the D2 protein and has no bearing on the identity or function of the TLA1 protein.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Biology, University of West Georgia, 1601 Maple Drive, Carrollton, GA 30118, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Martínez-Abundis E, Correa F, Rodríguez E, Soria-Castro E, Rodríguez-Zavala JS, Pacheco-Alvarez D, Zazueta C. A CRAC-like motif in BAX sequence: relationship with protein insertion and pore activity in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1888-95. [PMID: 21440528 DOI: 10.1016/j.bbamem.2011.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 02/08/2023]
Abstract
Several proteins that interact with cholesterol have a highly conserved sequence, corresponding to the cholesterol recognition/interaction amino acid consensus. Since cholesterol has been proposed to modulate both oligomerization and insertion of the pro-apoptotic protein BAX, we investigated the existence of such a motif in the BAX sequence. Residues 113 to 119 of the recombinant BAX α5-helix, LFYFASK, correspond with the sequence motif described for the consensus pattern, -L/V-(X)(1-5)-Y-(X)(1-5)-R/K. Functional characterization of the point mutations, K119A, Y115F, and L113A in BAX, was performed in liposomes supplemented with cholesterol, comparing binding, integration, and pore forming activities. Our results show that the mutations Y115F and L113A changed the cholesterol-dependent insertion observed in the wild type protein. In addition, substitutions in the BAX sequence modified the concentration dependency of carboxyfluorescein release in liposomes, although neither pore activity of the wild type or of any of the mutants significantly increased in cholesterol-enriched liposomes. Thus, while it is likely that the putative CRAC motif in BAX accounts for its enhanced insertion in cholesterol-enriched liposomes; the pore forming properties of BAX did not depend on cholesterol content in the membranes, albeit those mutations changed the pore channeling activity of the protein.
Collapse
|
35
|
Christopeit T, Stenberg G, Gossas T, Nyström S, Baraznenok V, Lindström E, Danielson UH. A surface plasmon resonance-based biosensor with full-length BACE1 in a reconstituted membrane. Anal Biochem 2011; 414:14-22. [PMID: 21382336 DOI: 10.1016/j.ab.2011.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/17/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
A surface plasmon resonance (SPR) biosensor-based assay for membrane-embedded full-length BACE1 (β-site amyloid precursor protein cleaving enzyme 1), a drug target for Alzheimer's disease, has been developed. It allows the analysis of interactions with the protein in its natural lipid membrane environment. The enzyme was captured via an antibody recognizing a C-terminal His6 tag, after which a lipid membrane was reconstituted on the chip using a brain lipid extract. The interaction between the enzyme and several inhibitors confirmed that the surface was functional. It had slightly different interaction characteristics as compared with a reference surface with immobilized ectodomain BACE1 but had the same inhibitor characteristic pH effect. The possibility of studying interactions with BACE1 under more physiological conditions than assays using truncated enzyme or conditions dictated by high enzyme activity is expected to increase our understanding of the role of BACE1 in Alzheimer's disease and contribute to the discovery of clinically efficient BACE1 inhibitors. The strategy exploited in the current study can be adapted to other membrane-bound drug targets by selecting suitable capture antibodies and lipid mixtures for membrane reconstitution.
Collapse
Affiliation(s)
- Tony Christopeit
- Department of Biochemistry and Organic Chemistry, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Tsitoura P, Andronopoulou E, Tsikou D, Agalou A, Papakonstantinou MP, Kotzia GA, Labropoulou V, Swevers L, Georgoussi Z, Iatrou K. Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells. PLoS One 2010; 5:e15428. [PMID: 21082026 PMCID: PMC2972716 DOI: 10.1371/journal.pone.0015428] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/21/2010] [Indexed: 12/21/2022] Open
Abstract
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties.
Collapse
Affiliation(s)
- Panagiota Tsitoura
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Evi Andronopoulou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Daniela Tsikou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Adamantia Agalou
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Maria P. Papakonstantinou
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Georgia A. Kotzia
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
37
|
Yokoyama N, Golebiewska U, Wang HY, Malbon CC. Wnt-dependent assembly of supermolecular Dishevelled-3-based complexes. J Cell Sci 2010; 123:3693-702. [PMID: 20940260 DOI: 10.1242/jcs.075275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dishevelled-3 (Dvl3) is a multivalent scaffold protein that is essential to Wnt signaling during development. Although Dvl-based punctae have been visualized by fluorescence microscopy; the physical nature and dynamic character of the such complexes are enigmatic. We use steric-exclusion chromatography, affinity pull-downs, proteomics and fluorescence correlation microscopy to characterize supermolecular Dvl3-based complexes of totipotent mouse F9 cells. The molecular mass of the complexes ranges from that of homodimeric Dvl3 to well-defined peaks harboring supermolecular complexes of 0.4 to 2.0 MDa. Addition of Wnt3a stimulates the formation of Dvl3-based complexes of greater molecular mass within 30 minutes. The presence of DKK1 and knockdown of Dishevelled proteins block formation of the 2 MDa Dvl3-based complexes and also block Wnt3a stimulation of the canonical pathway. Fluorescent correlation microscopy identified supermolecular Dvl3-based complexes with a molecular mass >30 MDa in live cells; these complexes were provoked to form structures with even greater molecular mass by Wnt3a. We establish for the first time the physical and functional nature of very large, supermolecular Dvl3-based complexes.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Pharmacology, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | | | |
Collapse
|
38
|
Dittmann M, Sauermann J, Seidel R, Zimmermann W, Engelhard M. Native chemical ligation of hydrophobic peptides in organic solvents. J Pept Sci 2010; 16:558-62. [DOI: 10.1002/psc.1285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1407-17. [PMID: 19633269 PMCID: PMC2747833 DOI: 10.1128/ec.00178-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB(3)H(4) labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB(3)H(4) labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.
Collapse
|
40
|
Abstract
The Serratia marcescens NucC protein is structurally and functionally homologous to the P2 Ogr family of eubacterial zinc finger transcription factors required for late gene expression in P2- and P4-related bacteriophages. These activators exhibit site-specific binding to a conserved DNA sequence, TGT-N(3)-R-N(4)-Y-N(3)-aCA, that is located upstream of NucC-dependent S. marcescens promoters and the late promoters of P2-related phages. In this report we describe the interactions of NucC with the P2 FETUD late operon promoter P(F). NucC is shown to bind P(F) as a tetramer and to make 12 symmetrical contacts to the DNA phosphodiester backbone. The backbone contacts are centered on the TGT-N(3)-R-N(4)-Y-N(3)-aCA motif. Major groove base contacts can be seen at most positions within the approximately 24-bp binding site. Minor groove contacts map to adjacent positions in the downstream half of the binding site, which corresponds to the area in which the DNA also appears to be bent by NucC binding. NucC binding provides a new example of protein-DNA interaction that is strikingly different from the DNA binding demonstrated for eukaryotic zinc-finger transcription factors.
Collapse
|
41
|
Uvarov P, Ludwig A, Markkanen M, Soni S, Hübner CA, Rivera C, Airaksinen MS. Coexpression and heteromerization of two neuronal K-Cl cotransporter isoforms in neonatal brain. J Biol Chem 2009; 284:13696-13704. [PMID: 19307176 PMCID: PMC2679471 DOI: 10.1074/jbc.m807366200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/20/2009] [Indexed: 11/06/2022] Open
Abstract
The neuron-specific K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing actions of inhibitory neurotransmitters. The KCC2 gene codes for two isoforms, KCC2a and KCC2b, which differ in their N termini. The relative expression and cellular distribution of the two KCC2 protein isoforms are unknown. Here, we characterize an antibody against the KCC2a isoform and show that a previously described antibody against KCC2 is specific for the KCC2b isoform (Hubner, C. A., Stein, V., Hermans-Borgmeyer, I., Meyer, T., Ballanyi, K., and Jentsch, T. J. (2001) Neuron 30, 515-524). Immunostaining of dissociated hippocampal cultures confirms that both KCC2 isoforms are neuron-specific. Immunoblot analysis indicates that KCC2b is the major KCC2 isoform in the adult brain, whereas in the neonatal mouse central nervous system, half of total KCC2 protein is KCC2a. At this stage, the two KCC2 isoforms are largely colocalized and show similar patterns of distribution in the brain. When coexpressed in HEK293 cells, KCC2a and KCC2b proteins form heteromeric complexes. Moreover, the two isoforms can be coimmunoprecipitated from the neonatal brain, suggesting the presence of endogenous KCC2a-KCC2b heteromers. Consistent with this, native gel analysis shows that a substantial part of endogenous KCC2 isoforms in the neonatal brain constitute dimers.
Collapse
Affiliation(s)
- Pavel Uvarov
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Anastasia Ludwig
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Marika Markkanen
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Shetal Soni
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Christian A Hübner
- Department of Clinical Chemistry, Friedrich-Schiller-Universität, D-07747 Jena, Germany
| | - Claudio Rivera
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Matti S Airaksinen
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland.
| |
Collapse
|
42
|
Bergemalm D, Forsberg K, Jonsson PA, Graffmo KS, Brännström T, Andersen PM, Antti H, Marklund SL. Changes in the spinal cord proteome of an amyotrophic lateral sclerosis murine model determined by differential in-gel electrophoresis. Mol Cell Proteomics 2009; 8:1306-17. [PMID: 19357085 DOI: 10.1074/mcp.m900046-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by loss of motor neurons resulting in progressive paralysis. To date, more than 140 different mutations in the gene encoding CuZn-superoxide dismutase (SOD1) have been associated with ALS. Several transgenic murine models exist in which various mutant SOD1s are expressed. We used DIGE to analyze the changes in the spinal cord proteome induced by expression of the unstable SOD1 truncation mutant G127insTGGG (G127X) in mice. Unlike mutants used in most other models, G127X lacks SOD activity and is present at low levels, thus reducing the risk of overexpression artifacts. The mice were analyzed at their peak body weights just before onset of symptoms. Variable importance plot analysis showed that 420 of 1,800 detected protein spots contributed significantly to the differences between the groups. By MALDI-TOF MS analysis, 54 differentially regulated proteins were identified. One spot was found to be a covalently linked mutant SOD1 dimer, apparently analogous to SOD1-immunoreactive bands migrating at double the molecular weight of SOD1 monomers previously detected in humans and mice carrying mutant SOD1s and in sporadic ALS cases. Analyses of affected functional pathways and the subcellular representation of alterations suggest that the toxicity exerted by mutant SODs induces oxidative stress and affects mitochondria, cellular assembly/organization, and protein degradation.
Collapse
Affiliation(s)
- Daniel Bergemalm
- Clinical Chemistry, Dept. of Medical Biosciences, Umeå University, SE-90185 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Eravci M, Fuxius S, Broedel O, Weist S, Krause E, Stephanowitz H, Schluter H, Eravci S, Baumgartner A. The whereabouts of transmembrane proteins from rat brain synaptosomes during two-dimensional gel electrophoresis. Proteomics 2008; 8:1762-70. [DOI: 10.1002/pmic.200700193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Hill JK, Brett CL, Chyou A, Kallay LM, Sakaguchi M, Rao R, Gillespie PG. Vestibular hair bundles control pH with (Na+, K+)/H+ exchangers NHE6 and NHE9. J Neurosci 2006; 26:9944-55. [PMID: 17005858 PMCID: PMC6674470 DOI: 10.1523/jneurosci.2990-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In hair cells of the inner ear, robust Ca2+/H+ exchange mediated by plasma-membrane Ca2+-ATPase would rapidly acidify mechanically sensitive hair bundles without efficient removal of H+. We found that, whereas the basolateral membrane of vestibular hair cells from the frog saccule extrudes H+ via an Na+-dependent mechanism, bundles rapidly remove H+ in the absence of Na+ and HCO3(-), even when the soma is acidified. K+ was fully effective and sufficient for H+ removal; in contrast, Rb+ failed to support pH recovery. Na+/H+-exchanger isoform 1 (NHE1) was present on hair-cell soma membranes and was likely responsible for Na+-dependent H+ extrusion. NHE6 and NHE9 are organellar isoforms that can appear transiently on plasma membranes and have been proposed to mediate K+/H+ exchange. We identified NHE6 in a subset of hair bundles; NHE9 was present in all bundles. Heterologous expression of these isoforms in yeast strains lacking endogenous exchangers conferred pH-dependent tolerance to high levels of KCl and NaCl. NHE9 preferred cations in the order K+, Na+ >> Rb+, consistent with the relative efficacies of these ions in promoting pH recovery in hair bundles. Electroneutral K+/H+ exchange, which we propose is performed by NHE9 in hair bundles, exploits the high-K+ endolymph, responds only to pH imbalance across the bundle membrane, is unaffected by the +80 mV endocochlear potential, and uses mechanisms already present in the ear for K+ recycling. This mechanism allows the hair cell to remove H+ generated by Ca2+ pumping without ATP hydrolysis in the cell.
Collapse
Affiliation(s)
- Jennifer K. Hill
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Christopher L. Brett
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Anthony Chyou
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Laura M. Kallay
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Masao Sakaguchi
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Peter G. Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
45
|
Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006; 119:4199-206. [PMID: 16984975 DOI: 10.1242/jcs.03164] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insulin-secreting pancreatic beta cells are exceptionally rich in zinc. In these cells, zinc is required for zinc-insulin crystallization within secretory vesicles. Secreted zinc has also been proposed to be a paracrine and autocrine modulator of glucagon and insulin secretion in pancreatic alpha and beta cells, respectively. However, little is known about the molecular mechanisms underlying zinc accumulation in insulin-containing vesicles. We previously identified a pancreas-specific zinc transporter, ZnT-8, which colocalized with insulin in cultured beta cells. In this paper we studied its localization in human pancreatic islet cells, and its effect on cellular zinc content and insulin secretion. In human pancreatic islet cells, ZnT-8 was exclusively expressed in insulin-producing beta cells, and colocalized with insulin in these cells. ZnT-8 overexpression stimulated zinc accumulation and increased total intracellular zinc in insulin-secreting INS-1E cells. Furthermore, ZnT-8-overexpressing cells display enhanced glucose-stimulated insulin secretion compared with control cells, only for a high glucose challenge, i.e. >10 mM glucose. Altogether, these data strongly suggest that the zinc transporter ZnT-8 is a key protein for both zinc accumulation and regulation of insulin secretion in pancreatic beta cells.
Collapse
Affiliation(s)
- Fabrice Chimienti
- DRFMC/SCIB/LAN, UMR-E3 CEA/UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble CEDEX 9, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamada HY, Gorbsky GJ. Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene 2006; 25:1330-9. [PMID: 16314844 PMCID: PMC2713668 DOI: 10.1038/sj.onc.1209167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The region of human chromosome 11p15.5 is linked with Beckwith-Wiedemann syndrome that is associated with susceptibility to Wilms' tumor, rhabdomyosarcoma and hepatoblastoma. TSSC5 (tumor-suppressing subchromosomal transferable fragment cDNA; also known as ORCTL2/IMPT1/BWR1A/SLC22A1L) is located in the region. The expression of TSSC5 and other genes in the region is regulated through paternal imprinting. Mutations and/or reduced expression of TSSC5 have been found in certain tumors. TSSC5 encodes an efflux transporter-like protein with 10 transmembrane domains, whose regulation may affect drug sensitivity, cellular metabolism and growth. Here, we present evidences indicating that RING105, a novel conserved RING-finger protein with a PA (protease-associated) domain and a PEST sequence, is a ubiquitin ligase for TSSC5 that can function in concert with the ubiquitin-conjugating enzyme UbcH6. The polyubiquitin target site on TSSC5 was mapped to a region in the 6th hydrophilic loop. Ectopic expression of RING105 in HeLa cells caused an accumulation of cells during G1 that was not observed with the expression of a form of RING105 in which a residue within the RING finger was mutated to inactivate its ligase activity. UbcH6-RING105 may define a novel ubiquitin-proteasome pathway that targets TSSC5 in mammalian cells.
Collapse
Affiliation(s)
- H Y Yamada
- Oklahoma Medical Research Foundation (OMRF), Molecular, Cell and Developmental Biology Research Program, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
47
|
Castelli S, Vitale A. The phaseolin vacuolar sorting signal promotes transient, strong membrane association and aggregation of the bean storage protein in transgenic tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1379-87. [PMID: 15809284 DOI: 10.1093/jxb/eri139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Vacuolar storage proteins of the 7S class are co-translationally introduced into the endoplasmic reticulum and reach storage vacuoles via the Golgi complex and dense vesicles. The signal for vacuolar sorting of one of these proteins, phaseolin of Phaseolus vulgaris, consists of a four-amino acid hydrophobic propeptide at the C-terminus. When this sequence is deleted, phaseolin is secreted instead of being sorted to vacuoles. It is shown here that in transgenic tobacco plants newly-synthesized phaseolin has unusual affinity to membranes and forms SDS-resistant aggregates, but mutated phaseolin polypeptides that are either secreted or defective in assembly do not have these characteristics. Association to membranes and aggregation are transient events: phaseolin accumulated in vacuoles is soluble in the absence of detergents and is not aggregated. Association to membranes starts before the phaseolin glycan acquires a complex structure and therefore before the protein reaches the medial or trans-cisternae of the Golgi complex. These results support the hypothesis of a relationship between aggregation and vacuolar sorting of phaseolin and indicate that sorting may start in early compartments of the secretory pathway.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, I-20133 Milano, Italy
| | | |
Collapse
|
48
|
Seye CI, De Meyer GR, Martinet W, Knaapen MWM, Bult H, Herman AG, Kockx MM. Upregulation and formation of SDS-resistant oligomers of the proapoptotic factor Bax in experimental atherosclerosis. Ann N Y Acad Sci 2004; 1010:738-41. [PMID: 15033820 DOI: 10.1196/annals.1299.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cheikh I Seye
- Division of Pharmacology, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Blackburn PE, Simpson CV, Nibbs RJB, O'Hara M, Booth R, Poulos J, Isaacs NW, Graham GJ. Purification and biochemical characterization of the D6 chemokine receptor. Biochem J 2004; 379:263-72. [PMID: 14723600 PMCID: PMC1224083 DOI: 10.1042/bj20031266] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 12/23/2003] [Accepted: 01/15/2004] [Indexed: 11/17/2022]
Abstract
There is much interest in chemokine receptors as therapeutic targets in diseases such as AIDS, autoimmune and inflammatory disorders, and cancer. Hampering such studies is the lack of accurate three-dimensional structural models of these molecules. The CC-chemokine receptor D6 is expressed at exceptionally high levels in heterologous transfectants. Here we report the purification and biochemical characterization of milligram quantities of D6 protein from relatively small cultures of transfected mammalian cells. Importantly, purified D6 retains full functional activity, shown by displaceable binding of 125I-labelled MIP-1beta (macrophage inflammatory protein-1beta) and by complete binding of the receptor to a MIP-1alpha affinity column. In addition, we show that D6 is decorated on the N-terminus by N-linked glycosylation. Mutational analysis reveals that this glycosylation is dispensable for ligand binding and high expression in transfected cells. Metabolic labelling has revealed the receptor to also be sulphated and phosphorylated. Phosphorylation is ligand independent and is not enhanced by ligand binding and internalization, suggesting similarities with the viral chemokine receptor homologue US28. Like US28, an analysis of the full cellular complement of D6 in transfected cells indicates that >80% is found associated with intracellular vesicular structures. This may account for the high quantities of D6 that can be synthesized in these cells. These unusual properties of D6, and the biochemical characterization described here, leads the way towards work aimed at generating the three-dimensional structure of this seven-transmembrane-spanning receptor.
Collapse
Affiliation(s)
- Paul E Blackburn
- The Beatson Institute for Cancer Research, Cancer Research U.K. Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Magalhães PP, Paulino TP, Thedei G, Larson RE, Ciancaglini P. A 100 kDa vanadate and lanzoprazole-sensitive ATPase from Streptococcus mutans membrane. Arch Oral Biol 2003; 48:815-24. [PMID: 14596871 DOI: 10.1016/s0003-9969(03)00177-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cariogenic potential of Streptococcus mutans is due to the production of organic acids derived from energy metabolism, which implies the need of mechanisms for the organism to tolerate this acidic environment. The F(1)F(o)-ATPase is generally considered as the main enzyme responsible for cytoplasmic proton extrusion, but mutations that resulted in a 50% reduction in F(1)F(o)-ATPase activity in S. mutans still allowed the micro-organism to grow and extrude acid, keeping the intracellular pH one pH unit above the extracellular ambient. This finding suggests the existence of other enzymatic (or cellular) mechanisms that keep the cytosolic pH neutral during micro-organism growth. This paper describes a membrane protein in S. mutans, with a molecular weight of 100 kDa, which exhibits ATPase activity inhibited by classic inhibitors of P-type ATPases (orthovanadate) and H(+),K(+)-ATPase (lanzoprazole), has an optimum pH comparable to other H(+)-ATPases and undergoes phosphorylation during the catalytic reaction, like that of H(+)-ATPases described in yeast and plant plasma membrane. Together, these results strongly suggest that the enzyme we describe here is a P-type H(+)-ATPase or H(+),ion-ATPase that can act in association with F(1)F(o)-ATPase during the growth of the S. mutans.
Collapse
Affiliation(s)
- Prislaine P Magalhães
- Departamento de Qui;mica, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, SP, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|