1
|
Chen Y, Zhang W, Zeng Y, Yang P, Li Y, Liang X, Liu K, Lin H, Dai Y, Zhou J, Hou B, Ma Z, Lin Y, Pang W, Zeng L. GDNF-induced phosphorylation of MUC21 promotes pancreatic cancer perineural invasion and metastasis by activating RAC2 GTPase. Oncogene 2024; 43:2564-2577. [PMID: 39020072 DOI: 10.1038/s41388-024-03102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Perineural invasion (PNI) is an adverse prognostic feature of pancreatic ductal adenocarcinoma (PDAC). However, the understanding of the interactions between tumors and neural signaling within the tumor microenvironment is limited. In the present study, we found that MUC21 servers as an independent risk factor for poor prognosis in PDAC. Furthermore, we demonstrated that MUC21 promoted the metastasis and PNI of PDAC cells by activating JNK and inducing epithelial-mesenchymal transition (EMT). Mechanistically, glial cell-derived neurotrophic factor, secreted by Schwann cells, phosphorylates the intracellular domain S543 of MUC21 via CDK1 in PDAC cells, facilitating the interaction between MUC21 and RAC2. This interaction leads to membrane anchoring and activation of RAC2, which in turn activates the JNK/ZEB1/EMT axis, ultimately enhancing the metastasis and PNI of PDAC cells. Our results present a novel mechanism of PNI, suggesting that MUC21 is a potential prognostic marker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Yutong Chen
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Weiyu Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yan Zeng
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Pengfei Yang
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yaning Li
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Xinyue Liang
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Kecheng Liu
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Hai Lin
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yalan Dai
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jiancong Zhou
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Bingqi Hou
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zhenting Ma
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yujing Lin
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenzheng Pang
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Linjuan Zeng
- Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
2
|
Alakunle E, Kolawole D, Diaz-Cánova D, Alele F, Adegboye O, Moens U, Okeke MI. A comprehensive review of monkeypox virus and mpox characteristics. Front Cell Infect Microbiol 2024; 14:1360586. [PMID: 38510963 PMCID: PMC10952103 DOI: 10.3389/fcimb.2024.1360586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Monkeypox virus (MPXV) is the etiological agent of monkeypox (mpox), a zoonotic disease. MPXV is endemic in the forested regions of West and Central Africa, but the virus has recently spread globally, causing outbreaks in multiple non-endemic countries. In this paper, we review the characteristics of the virus, including its ecology, genomics, infection biology, and evolution. We estimate by phylogenomic molecular clock that the B.1 lineage responsible for the 2022 mpox outbreaks has been in circulation since 2016. We interrogate the host-virus interactions that modulate the virus infection biology, signal transduction, pathogenesis, and host immune responses. We highlight the changing pathophysiology and epidemiology of MPXV and summarize recent advances in the prevention and treatment of mpox. In addition, this review identifies knowledge gaps with respect to the virus and the disease, suggests future research directions to address the knowledge gaps, and proposes a One Health approach as an effective strategy to prevent current and future epidemics of mpox.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | - Daniel Kolawole
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | - Diana Diaz-Cánova
- Department of Medical Biology, UIT – The Arctic University of Norway, Tromsø, Norway
| | - Faith Alele
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Oyelola Adegboye
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ugo Moens
- Department of Medical Biology, UIT – The Arctic University of Norway, Tromsø, Norway
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
3
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Oh S, Park S, Park Y, Kim YA, Park G, Cui X, Kim K, Joo S, Hur S, Kim G, Choi J. Culturing characteristics of Hanwoo myosatellite cells and C2C12 cells incubated at 37°C and 39°C for cultured meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:664-678. [PMID: 37332290 PMCID: PMC10271921 DOI: 10.5187/jast.2023.e10] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 11/21/2023]
Abstract
To improve culture efficiency of Hanwoo myosatellite cells, these cells were cultured at different temperatures. Hanwoo myosatellite cells were compared with C2C12 cells to observe proliferation and differentiation at culture temperatures of 37°C and 39°C and determine the possibility of using them as cultured meat. Immunofluorescence staining using Pax7 and Hoechst, both cells cultured at 37°C proliferated better than cultured at 39°C (p < 0.05). When differentiated cells were stained with myosin and Hoechst, there was no significant difference in myotube thickness and Fusion index (p > 0.05). In Western blotting analysis, Hanwoo myosatellite cells were no significant difference in the expression of myosin between cells differentiated at the two temperatures (p > 0.05). C2C12 cells were no significant difference in the expression of myosin between cells differentiated at the two temperatures (p > 0.05). In reverse transcription and quantitative polymerase chain reaction (RT-qPCR) analysis, Hanwoo myosatellite cells cultured at 39°C had significantly (p < 0.05) higher expression levels of MyHC, MYF6, and MB than those cultured at 37°C. C2C12 cells cultured at 39°C showed significantly (p < 0.05) higher expression levels of MYOG and MB than those cultured at 37°C. To increase culture efficiency of Hanwoo myosatellite cells, proliferating at 37°C and differentiating at 39°C are appropriate. Since results of temperature differences of Hanwoo myosatellite cells were similar to those of C2C12 cells, they could be used as a reference for producing cultured meat using Hanwoo satellite cells.
Collapse
Affiliation(s)
- Sehyuk Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yunhwan Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yun-a Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Gyutae Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Xiangshun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Kwansuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Seontea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Korea
| | - Sunjin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Gapdon Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
5
|
Rajak P, Roy S, Podder S, Dutta M, Sarkar S, Ganguly A, Mandi M, Dutta A, Nanda S, Khatun S. Synergistic action of organophosphates and COVID-19 on inflammation, oxidative stress, and renin-angiotensin system can amplify the risk of cardiovascular maladies. Toxicol Appl Pharmacol 2022; 456:116267. [PMID: 36240863 PMCID: PMC9554205 DOI: 10.1016/j.taap.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive application of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholinesterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India,Corresponding author
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | | | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya; Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Govt. College, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
6
|
Likonen D, Pinchasi M, Beery E, Sarsor Z, Signorini LF, Gervits A, Sharan R, Lahav M, Raanani P, Uziel O. Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation. Sci Rep 2022; 12:16415. [PMID: 36180493 PMCID: PMC9525320 DOI: 10.1038/s41598-022-20186-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
It is now well accepted that cancer cells change their microenvironment from normal to tumor-supportive state to provide sustained tumor growth, metastasis and drug resistance. These processes are partially carried out by exosomes, nano-sized vesicles secreted from cells, shuttled from donor to recipient cells containing a cargo of nucleic acids, proteins and lipids. By transferring biologically active molecules, cancer-derived exosomes may transform microenvironmental cells to become tumor supportive. Telomerase activity is regarded as a hallmark of cancer. We have recently shown that the transcript of human telomerase reverse transcriptase (hTERT), is packaged in cancer cells derived- exosomes. Following the engulfment of the hTERT transcript into fibroblasts, it is translated into a fully active enzyme [after assembly with its RNA component (hTERC) subunit]. Telomerase activity in the recipient, otherwise telomerase negative cells, provides them with a survival advantage. Here we show that exosomal telomerase might play a role in modifying normal fibroblasts into cancer associated fibroblasts (CAFs) by upregulating \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}αSMA and Vimentin, two CAF markers. We also show that telomerase activity changes the transcriptome of microRNA in these fibroblasts. By ectopically expressing microRNA 342, one of the top identified microRNAs, we show that it may mediate the proliferative phenotype that these cells acquire upon taking-up exosomal hTERT, providing them with a survival advantage.
Collapse
Affiliation(s)
- Daniela Likonen
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Maria Pinchasi
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Zinab Sarsor
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | | | - Asia Gervits
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Meir Lahav
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Petah-Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Petah-Tikva, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel.
| |
Collapse
|
7
|
Zhang B, Xiao J, Cheng X, Liu T. MAL2 interacts with IQGAP1 to promote pancreatic cancer progression by increasing ERK1/2 phosphorylation. Biochem Biophys Res Commun 2021; 554:63-70. [PMID: 33780861 DOI: 10.1016/j.bbrc.2021.02.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a digestive tract malignancy characterized by an occult onset and rapid progression. The genetic heterogeneity of pancreatic cancer is closely related to its highly malignant biological behavior. The myelin and lymphocyte protein 2 (MAL2) is upregulated in multiple cancers at the transcriptional level. However, the exact role of MAL2 in pancreatic cancer remains elusive. In this study, we demonstrated that MAL2 protein and mRNA levels were upregulated in pancreatic cancer. MAL2 overexpression was significantly associated with poor prognosis in patients with pancreatic cancer. We further showed that MAL2 interacted with IQGAP1 to increase ERK1/2 phosphorylation levels, which promoted pancreatic cancer progression. Therefore, these results suggest that MAL2 could be a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Xiao
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Cheng
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Schulze S, Igiraneza AB, Kösters M, Leufken J, Leidel SA, Garcia BA, Fufezan C, Pohlschroder M. Enhancing Open Modification Searches via a Combined Approach Facilitated by Ursgal. J Proteome Res 2021; 20:1986-1996. [PMID: 33514075 DOI: 10.1021/acs.jproteome.0c00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.
Collapse
Affiliation(s)
- Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aime Bienfait Igiraneza
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Kösters
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Johannes Leufken
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Sebastian A Leidel
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christian Fufezan
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mechthild Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
10
|
Seebald L, Madec AGE, Imperiali B. Deploying Fluorescent Nucleoside Analogues for High-Throughput Inhibitor Screening. Chembiochem 2020; 21:108-112. [PMID: 31709708 PMCID: PMC6980326 DOI: 10.1002/cbic.201900671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 12/27/2022]
Abstract
High-throughput small-molecule screening in drug discovery processes commonly rely on fluorescence-based methods including fluorescent polarization and fluorescence/Förster resonance energy transfer. These techniques use highly accessible instrumentation; however, they can suffer from high false-negative rates and background signals, or might involve complex schemes for the introduction of fluorophore pairs. Herein we present the synthesis and application of fluorescent nucleoside analogues as the foundation for directed approaches for competitive binding analyses. The general approach describes selective fluorescent environment-sensitive (ES) nucleoside analogues that are adaptable to diverse enzymes that act on nucleoside-based substrates. We demonstrate screening a set of uridine analogues and development of an assay for fragment-based lead discovery with the TcdB glycosyltransferase (GT), an enzyme associated with virulence in Clostridium difficile. The uridine-based probe used for this high-throughput screen has a KD value of 7.2 μm with the TcdB GT and shows a >30-fold increase in fluorescence intensity upon binding. The ES-based probe assay is benchmarked against two other screening approaches.
Collapse
Affiliation(s)
- Leah Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amaël G E Madec
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Huck K, Sens C, Wuerfel C, Zoeller C, A. Nakchbandi I. The Rho GTPase RAC1 in Osteoblasts Controls Their Function. Int J Mol Sci 2020; 21:ijms21020385. [PMID: 31936261 PMCID: PMC7014472 DOI: 10.3390/ijms21020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
The regulation of the differentiation of the bone-forming cells, the osteoblasts, is complex. Many signaling pathways converge on the master regulator of osteoblast differentiation Runx2. The role of molecules that integrate several signaling pathways such as the Rho GTPases need to be better understood. We, therefore, asked at which stage Rac1, one of the Rho GTPase, is needed for osteoblast differentiation and whether it is involved in two pathways, the anabolic response to parathyroid hormone and the stimulatory effect of fibronectin isoforms on integrins. Genetic deletion of Rac1 in preosteoblasts using the osterix promoter diminished osteoblast differentiation in vitro. This effect was however similar to the presence of the promoter by itself. We, therefore, applied a Rac1 inhibitor and confirmed a decrease in differentiation. In vivo, Rac1 deletion using the osterix promoter decreased bone mineral density as well as histomorphometric measures of osteoblast function. In contrast, deleting Rac1 in differentiating osteoblasts using the collagen α1(I) promoter had no effects. We then evaluated whether intermittent parathyroid hormone (PTH) was able to affect bone mineral density in the absence of Rac1 in preosteoblasts. The increase in bone mineral density was similar in control animals and in mice in which Rac1 was deleted using the osterix promoter. Furthermore, stimulation of integrin by integrin isoforms was able to enhance osteoblast differentiation, despite the deletion of Rac1. In summary, Rac1 in preosteoblasts is required for normal osteoblast function and bone density, but it is neither needed for PTH-mediated anabolic effects nor for integrin-mediated enhancement of differentiation.
Collapse
Affiliation(s)
- Katrin Huck
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Carla Sens
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Carina Wuerfel
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Caren Zoeller
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
- Correspondence: ; Tel.: +49-6221-56-8744; Fax: +49-6221-56-5611
| |
Collapse
|
12
|
Xu Z, Lin Z, Wei N, Di Q, Cao J, Zhou Y, Gong H, Zhang H, Zhou J. Immunomodulatory effects of Rhipicephalus haemaphysaloides serpin RHS2 on host immune responses. Parasit Vectors 2019; 12:341. [PMID: 31296257 PMCID: PMC6624921 DOI: 10.1186/s13071-019-3607-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Rhipicephalus haemaphysaloides is a widespread tick species in China and other South East Asian countries, where it is the vector of many pathogens. The objective of this study was to study the role of serpin (serine protease inhibitor) during the tick-host interaction. Methods The differentiation of bone marrow-derived dendritic cells (BMDC) was induced in vitro, and the effect of RHS2 on the maturation of DCs was evaluated. The effects of RHS2 on T cell activation and cytotoxic T lymphocytes’ (CTLs) activity were analyzed by flow cytometry. Antibody subtypes after immunization of mice with RHS2 and OVA were determined. Results RHS2 can inhibit the differentiation of bone marrow-derived cells into DCs and promote their differentiation into macrophages. RHS2 can inhibit the maturation of DCs and the expression of CD80, CD86 and MHCII. The number of CD3+CD4+ and CD3+CD8+ T cells secreting IFN-γ, IL-2 and TNF-α was decreased, and the number of CD3+CD4+ T cells secreting IL-4 was increased, indicating that RHS2 can inhibit the activation of CD4 T cells and CD8 T cells, leading to inhibition of Th1 immune response. RHS2 inhibits the elimination of target cells by cytotoxic T lymphocytes. After immunization of mice with RHS2 and OVA, serum IgG2b was significantly reduced and IgM was increased. Conclusions The results show that RHS2 has an inhibitory effect on the host immune response. Ticks have evolved various ways to circumvent adaptive immunity. Their serpin inhibits BMDC differentiation to reduce immune responses.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhibing Lin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nana Wei
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qing Di
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
13
|
Moriguchi M, Watanabe T, Kadota A, Fujimuro M. Capsaicin Induces Apoptosis in KSHV-Positive Primary Effusion Lymphoma by Suppressing ERK and p38 MAPK Signaling and IL-6 Expression. Front Oncol 2019; 9:83. [PMID: 30838176 PMCID: PMC6389641 DOI: 10.3389/fonc.2019.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
Primary effusion lymphoma (PEL) is defined as a rare subtype of non-Hodgkin's B-cell lymphoma which is caused by Kaposi's sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. PEL is an aggressive lymphoma and is frequently resistant to conventional chemotherapies. Therefore, it is critical to investigate novel therapeutic options for PEL. Capsaicin is a pungent component of chili pepper and possesses unique pharmacological effects, such as pain relief, anti-microbial and anti-cancer properties. Here, we demonstrate that capsaicin markedly inhibited the growth of KSHV latently infected PEL cells by inhibiting ERK, p38 MAPK and expression hIL-6, which are known to contribute to PEL growth and survival. The underlying mechanism of action by capsaicin was through the inhibition of ERK and p38 MAPK phosphorylation and signaling that affected hIL-6 expression. As a result, capsaicin induced apoptosis in PEL cells in a caspase-9 dependent manner. In line with these results, ERK (U0126) and p38 MAPK (SB203580) specific signaling inhibitors suppressed hIL-6 expression and attenuated cell growth in PEL cells. Furthermore, the addition of hIL-6 neutralizing antibody to culture medium suppressed the growth of PEL cells. We also demonstrate that capsaicin suppressed PEL cell growth in the absence of nascent viral replication. Finally, we confirmed ex vivo treatment of capsaicin attenuated PEL development in SCID mice. Taken together, capsaicin could represent a lead compound for PEL therapy without the risk of de novo KSHV infection.
Collapse
Affiliation(s)
- Misato Moriguchi
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayano Kadota
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
14
|
Erickson KE, Rukhlenko OS, Posner RG, Hlavacek WS, Kholodenko BN. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling. Semin Cancer Biol 2019; 54:162-173. [PMID: 29518522 PMCID: PMC6123307 DOI: 10.1016/j.semcancer.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023]
Abstract
RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.
Collapse
Affiliation(s)
- Keesha E Erickson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Xue C, Huang Q, Zhang T, Zhao D, Ma Q, Tian T, Cai X. Matrix stiffness regulates arteriovenous differentiation of endothelial progenitor cells during vasculogenesis in nude mice. Cell Prolif 2018; 52:e12557. [PMID: 30485569 PMCID: PMC6495479 DOI: 10.1111/cpr.12557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives The aim of the study was to investigate the effect of matrix stiffness on arteriovenous differentiation of endothelial progenitor cells (EPCs) during vasculogenesis in nude mice. Materials and methods Dextran hydrogels of differing stiffnesses were first prepared by controlling the crosslinking reaction to generate different thioether bonds. Hydrogels with stiffnesses matching those of the arterial extracellular matrix and venous extracellular matrix were separately combined with mouse bone marrow‐derived EPCs and subcutaneously implanted on either side of the backs of nude mice. After 14 days, artery‐specific marker Efnb2 and vein‐specific marker Ephb4 in the neovasculature were detected to determine the effect of matrix stiffness on the arteriovenous differentiation of EPCs in vivo. Results Fourteen days after the implantation of the EPC‐loaded dextran hydrogels, new blood vessels were observed in both types of hydrogels. We further verified that matrix stiffness regulated the arteriovenous differentiation of EPCs during vasculogenesis via the Ras/Mek pathway. Conclusions Matrix stiffness regulates the arteriovenous differentiation of EPCs during vasculogenesis in nude mice through the Ras/Mek pathway.
Collapse
Affiliation(s)
- Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qian Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol 2018; 55:6939-6955. [PMID: 29372544 DOI: 10.1007/s12035-018-0885-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Neurotrophins are a family of proteins that play an important role in the regulation of the growth, survival, and differentiation of neurons in the central and peripheral nervous system. Neurotrophins were earlier characterized by their role in early development, growth, maintenance, and the plasticity of the nervous system during development, but recent findings also indicate their complex role during normal physiology in both neuronal and non-neuronal tissues. Therefore, it is important to recognize a deficiency in the expression of neurotrophins, a major factor driving the debilitating features of several neurologic and psychiatric diseases/disorders. On the other hand, overexpression of neurotrophins is well known to play a critical role in pathogenesis of chronic pain and afferent sensitization, underlying conditions such as lower urinary tract symptoms (LUTS)/disorders and osteoarthritis. The existence of a redundant receptor system of high-and low-affinity receptors accounts for the diverse, often antagonistic, effects of neurotrophins in neurons and non-neuronal tissues in a spatial and temporal manner. In addition, studies looking at bladder dysfunction because of conditions such as spinal cord injury and diabetes mellitus have found alterations in the levels of these neurotrophins in the bladder, as well as in sensory afferent neurons, which further opens a new avenue for therapeutic targets. In this review, we will discuss the characteristics and roles of key neurotrophins and their involvement in the central and periphery nervous system in both normal and diseased conditions.
Collapse
|
17
|
Kunjiappan S, Panneerselvam T, Somasundaram B, Sankaranarayanan M, Chowdhury R, Chowdhury A, Bhattacharjee C. Design,
in silico
modeling, biodistribution study of rutin and quercetin loaded stable human hair keratin nanoparticles intended for anticancer drug delivery. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa1cf] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Xue C, Zhang T, Xie X, Zhang Q, Zhang S, Zhu B, Lin Y, Cai X. Substrate stiffness regulates arterial-venous differentiation of endothelial progenitor cells via the Ras/Mek pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1799-1808. [DOI: 10.1016/j.bbamcr.2017.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
|
19
|
Salazar M, Lerma-Ortiz A, Hooks GM, Ashley AK, Ashley RL. Progestin-mediated activation of MAPK and AKT in nuclear progesterone receptor negative breast epithelial cells: The role of membrane progesterone receptors. Gene 2016; 591:6-13. [PMID: 27349565 DOI: 10.1016/j.gene.2016.06.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/19/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Progesterone (P4), a steroid produced during estrous cycles and gestation for maintenance of pregnancy, also plays key roles in breast development to allow lactation post-parturition. Progestins (P4 and related steroids) are also implicated in breast cancer etiology. Hormone replacement therapy containing both estrogen and progestins increases breast cancer incidence while estrogen hormone therapy lowers breast cancer risk. P4 signaling via nuclear P4 receptors (PRs) has been extensively studied in breast cancer, however, progestin signaling via non-classical membrane bound progestin receptors (MPRs and PGRMC1) remains unclear. Moreover, P4 metabolites and synthetic progestins may bind membrane progestin receptors. We hypothesized that PR-negative breast epithelial cells express non-classical progestin receptors, which activate intracellular signaling pathways differently depending on nature of progestin. Therefore, our objectives for the current study were to determine expression of MPRs and PGRMC1 in two PR-negative non-tumorigenic breast epithelial cell lines, assess progestin-mediated signaling and biological functions. We determined five MPR isoforms and PGRMC1 were present in MCF10A cells and all progestin receptors but MPRβ in MCF12A cells. MCF10A and MCF12A cells were treated with P4, select P4 metabolites (5αP and 3αHP), medroxyprogesterone acetate (MPA), or a specific MPR-Agonist (MPR-Ag) and phosphorylation of ERK, p38, JNK, and AKT was characterized following treatment. To our knowledge this is the first report of ERK and JNK activation in MCF10A and MCF12A cells with P4, P4 metabolites, MPA, and MPR-Ag. Activation of ERK and JNK in cells treated with MPR-Ag implicates MPRs may serve as the receptors responsible for their activation. In contrast, p38 activation varied with cell type and with progestin treatment. P4 and MPA promoted AKT phosphorylation in the MCF12A cell line only whereas no activation was observed in MCF10A cells. Interestingly, cellular proliferation increased in MCF10A cells treated with MPA or 5αP, while MPR-Ag tended to slightly decrease proliferation. Collectively, our data highlights the importance of investigating the effects of synthetic progestins in breast cancer biology. Our results add to the understanding that various progestins have on breast epithelial cells and underscores the importance of considering both membrane bound receptors and progestin type in breast cancer development.
Collapse
Affiliation(s)
- Monica Salazar
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States.
| | - Alejandra Lerma-Ortiz
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States.
| | - Grace M Hooks
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States.
| | - Amanda K Ashley
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States.
| | - Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States.
| |
Collapse
|
20
|
Vieira JCS, Cavecci B, Queiroz JV, Braga CP, Padilha CCF, Leite AL, Figueiredo WS, Buzalaf MAR, Zara LF, Padilha PM. Determination of the Mercury Fraction Linked to Protein of Muscle and Liver Tissue of Tucunaré (Cichla spp.) from the Amazon Region of Brazil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 69:422-430. [PMID: 25981407 DOI: 10.1007/s00244-015-0160-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
This study used metalloproteomic techniques to characterize mercury (Hg)-bound proteins in the muscle and liver tissue of Tucunaré (Cichla spp.) collected at the Jirau Hydroelectric Power Plant in Madeira River Basin, Brazil. The proteome of the muscle and liver tissue was obtained after two steps of fractional precipitation and separating the proteins by 2-D polyacrylamide gel electrophoresis. Hg was identified and quantified in the protein spots by graphite furnace atomic absorption spectrometry after acid mineralization in an ultrasound bath. Hg with a molecular weight <20 kDa and a concentration between 13.30 and 33.40 mg g(-1) was found in the protein spots. These protein spots were characterized by electrospray ionization tandem mass spectrometry after trypsin digestion. From a total of 12 analyzed spots, seven proteins showing Hg biomarker characteristics were identified: parvalbumin and its isoforms, ubiquitin-40S ribosomal protein S27a, zinc (Zn) finger and BTB domain-containing protein 24, and dual-specificity protein phosphatase 22-B.
Collapse
Affiliation(s)
- José C S Vieira
- Department of Chemistry and Biochemistry, Bioscience Institute - UNESP, São Paulo State University, Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| | - Bruna Cavecci
- Department of Chemistry and Biochemistry, Bioscience Institute - UNESP, São Paulo State University, Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil.
| | - João V Queiroz
- College of Veterinary and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Camila P Braga
- Department of Chemistry and Biochemistry, Bioscience Institute - UNESP, São Paulo State University, Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| | - Cilene C F Padilha
- Department of Chemistry and Biochemistry, Bioscience Institute - UNESP, São Paulo State University, Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| | - Aline L Leite
- Department of Biological Science, University of São Paulo, Bauru, São Paulo, Brazil
| | - Wllyane S Figueiredo
- College of Planaltina, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Marília A R Buzalaf
- Department of Biological Science, University of São Paulo, Bauru, São Paulo, Brazil
| | - Luiz F Zara
- College of Planaltina, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Pedro M Padilha
- Department of Chemistry and Biochemistry, Bioscience Institute - UNESP, São Paulo State University, Rubião Júnior, Botucatu, São Paulo, 18618-970, Brazil
| |
Collapse
|
21
|
An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na + -, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance. Fungal Genet Biol 2015; 83:68-77. [DOI: 10.1016/j.fgb.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/24/2022]
|
22
|
Liu Y, Liu T, Sun Q, Niu M, Jiang Y, Pang D. Downregulation of Ras GTPase‑activating protein 1 is associated with poor survival of breast invasive ductal carcinoma patients. Oncol Rep 2014; 33:119-24. [PMID: 25394563 DOI: 10.3892/or.2014.3604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/15/2014] [Indexed: 11/05/2022] Open
Abstract
Ras GTPase‑activating protein 1 (RASA1) functions to inactivate Ras‑GTPase and inhibit the mitogenic signal. Reduction or loss of RASA1 expression occurs during human cancer development and progression. This study investigated RASA1 expression in normal and breast cancer tissue specimens to determine the association with prognosis of breast cancer patients. Two sets of patient samples (45 fresh tissues and 373 paraffin‑embedded tissues) were analyzed for RASA1 expression using RT‑qPCR and immunohisto-chemistry. The results showed that the expression of RASA1 mRNA was lower in breast cancer tissues than in the corresponding normal tissues (P<0.001). Additionally, RASA1 expression was reduced in 60.6% (226/373) of breast cancer tissues. The reduced RASA1 expression was significantly associated with tumor lymph node metastasis (P=0.002), advanced TNM stages (P=0.017), estrogen receptor (ER) expression (P=0.002), Ki‑67 (P=0.009), higher histological grade (P<0.001), and triple‑negative breast cancer (P=0.041). Moreover, the reduced RASA1 expression was associated with shorter disease‑free survival (P=0.036) and overall survival (P<0.001) of breast cancer patients. RASA1 expression, together with tumor lymph‑node metastasis, TNM stage, Her‑2 expression, and triple‑negative breast cancer were independent factors in predicting survival of breast cancer patients. In conclusion, RASA1 expression is frequently reduced in breast cancer tissues, and the reduced RASA1 expression is associated with breast cancer progression and poor survival and disease‑free survival of patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Breast Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang, P.R. China
| | - Tong Liu
- Department of Breast Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang, P.R. China
| | - Qian Sun
- Department of Breast Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang, P.R. China
| | - Ming Niu
- Department of Breast Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang, P.R. China
| | - Yang Jiang
- Department of Pathology, The Affiliated Cancer Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang, P.R. China
| | - Da Pang
- Department of Breast Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
23
|
Role of rutin on nitric oxide synthesis in human umbilical vein endothelial cells. ScientificWorldJournal 2014; 2014:169370. [PMID: 25093198 PMCID: PMC4095739 DOI: 10.1155/2014/169370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H2O2; treatment with 300 μM rutin; and concomitant induction with rutin and H2O2 for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P < 0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells' NO production (P < 0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P < 0.05), eNOS protein synthesis (P < 0.01), and eNOS activity (P < 0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.
Collapse
|
24
|
Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7:ra52. [PMID: 24894995 DOI: 10.1126/scisignal.2005260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.
Collapse
Affiliation(s)
- Ho-Sung Lee
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sung-Young Shin
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
25
|
Verhein KC, Salituro FG, Ledeboer MW, Fryer AD, Jacoby DB. Dual p38/JNK mitogen activated protein kinase inhibitors prevent ozone-induced airway hyperreactivity in guinea pigs. PLoS One 2013; 8:e75351. [PMID: 24058677 PMCID: PMC3776780 DOI: 10.1371/journal.pone.0075351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 08/16/2013] [Indexed: 12/28/2022] Open
Abstract
Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction.
Collapse
Affiliation(s)
- Kirsten C. Verhein
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| | | | - Mark W. Ledeboer
- Vertex Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
26
|
Yang Y, Wang LL, Wang HX, Guo ZK, Gao XF, Cen J, Li YH, Dou LP, Yu L. The epigenetically-regulated miR-663 targets H-ras in K-562 cells. FEBS J 2013; 280:5109-17. [PMID: 23953123 DOI: 10.1111/febs.12485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023]
Abstract
miR-663 is a tumour suppressor that is potentially regulated by modification of CpG islands. Whether aberrant methylation is one of the reasons for miR-663 down-regulation in some malignant cells and whether miR-663 targets oncogenes warrants further research. In the present study, we report that the CpG islands in the upstream region of pre-miR-663 are aberrantly methylated in the k-562 cell line and in the white blood cells of some chronic myelogenous leukaemia patients, and also that H-ras is one of the genes targeted by miR-663. Over-expression of miR-663 may suppress proliferation of the k-562 cell line in part by enhancing cell apoptosis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Haematology and BMT Centre, Chinese PLA General Hospital, Beijing, China; Department of Haematology, Chinese PLA Air Force General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Salgado APC, Soares-Martins JAP, Andrade LG, Albarnaz JD, Ferreira PCP, Kroon EG, Bonjardim CA. Study of vaccinia and cowpox viruses' replication in Rac1-N17 dominant-negative cells. Mem Inst Oswaldo Cruz 2013; 108:554-62. [PMID: 23903969 DOI: 10.1590/s0074-02762013000500004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/13/2013] [Indexed: 11/22/2022] Open
Abstract
Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.
Collapse
Affiliation(s)
- Ana Paula Carneiro Salgado
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|
28
|
Salgado APC, Soares-Martins JAP, Andrade LG, Albarnaz JD, Ferreira PCP, Kroon EG, Bonjardim CA. Study of vaccinia and cowpox viruses' replication in Rac1-N17 dominant-negative cells. Mem Inst Oswaldo Cruz 2013; 108. [PMID: 23903969 PMCID: PMC3970603 DOI: 10.1590/0074-0276108052013004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.
Collapse
Affiliation(s)
- Ana Paula Carneiro Salgado
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS , Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil
| | - Jamária Adriana Pinheiro Soares-Martins
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS , Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil , Department of Microbiology and Molecular Genetics, Medical College
of Wisconsin, Milwaukee, WI, USA
| | - Luciana Garcia Andrade
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS , Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil
| | - Jonas Dutra Albarnaz
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS , Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil
| | - Paulo César Peregrino Ferreira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil
| | - Cláudio Antônio Bonjardim
- Grupo de Transdução de Sinal/Orthopoxvirus e Flavivírus - LABVÍRUS , Laboratório de Vírus, Departamento de Microbiologia, Instituto de
Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil , Corresponding author:
| |
Collapse
|
29
|
Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J, Zhang J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem 2013; 288:9508-18. [PMID: 23322774 DOI: 10.1074/jbc.m112.367763] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are known to play a vital role in colorectal cancer. We found a widespread disruption in miRNA expression during colorectal tumorigenesis using microarray and quantitative RT-PCR analysis; of the 161 miRNAs altered in colorectal cancer compared with normal adjacent tissue samples, miR-31 was the most significantly dysregulated. We identified candidate targets of miR-31 using bioinformatics approaches and validated RAS p21 GTPase activating protein 1 (RASA1) as a direct target. First, we found an inverse correlation between miR-31 and RASA1 protein levels in vivo. Second, in vitro evidence demonstrated that RASA1 expression was significantly decreased by treatment with pre-miR-31-LV, whereas anti-miR-31-LV treatment increased RASA1 protein levels. Third, a luciferase reporter assay confirmed that miR-31 directly recognizes a specific location within the 3'-untranslated region of RASA1 transcripts. Furthermore, the biological consequences of miR-31 targeting RASA1 were examined by the cell proliferation assay in vitro and by the immunodeficient mouse xenograft tumor model in vivo. Taken together, our results demonstrate for the first time that miR-31 plays a significant role in activating the RAS signaling pathway through the inhibition of RASA1 translation, thereby improving colorectal cancer cell growth and stimulating tumorigenesis.
Collapse
Affiliation(s)
- Defang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 22 Hankou Road, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsuoka S, Shibata T, Ueda M. Asymmetric PTEN distribution regulated by spatial heterogeneity in membrane-binding state transitions. PLoS Comput Biol 2013; 9:e1002862. [PMID: 23326224 PMCID: PMC3542079 DOI: 10.1371/journal.pcbi.1002862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/10/2012] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that underlie asymmetric PTEN distribution at the posterior of polarized motile cells and regulate anterior pseudopod formation were addressed by novel single-molecule tracking analysis. Heterogeneity in the lateral mobility of PTEN on a membrane indicated the existence of three membrane-binding states with different diffusion coefficients and membrane-binding lifetimes. The stochastic state transition kinetics of PTEN among these three states were suggested to be regulated spatially along the cell polarity such that only the stable binding state is selectively suppressed at the anterior membrane to cause local PTEN depletion. By incorporating experimentally observed kinetic parameters into a simple mathematical model, the asymmetric PTEN distribution can be explained quantitatively to illustrate the regulatory mechanisms for cellular asymmetry based on an essential causal link between individual stochastic reactions and stable localizations of the ensemble.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Japan
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
| | - Tatsuo Shibata
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
- Laboratories for Physical Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center, Suita, Japan
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- CREST, Japan Science and Technology Agency (JST), Suita, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
31
|
Schwartz YS, Svistelnik AV. Functional phenotypes of macrophages and the M1-M2 polarization concept. Part I. Proinflammatory phenotype. BIOCHEMISTRY (MOSCOW) 2013; 77:246-60. [PMID: 22803942 DOI: 10.1134/s0006297912030030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current concepts concerning the main functional phenotypes of mononuclear phagocytes are systematized, molecular mechanisms of their formation are considered, and the functional polarization concept of macrophages is critically analyzed. Mechanisms of macrophage priming activation mediated by pattern recognition receptors TLR, NLR, RLR, and CLR are described, and the features of each phenotype acquired via various pattern recognition receptors are emphasized. It is concluded that there is a huge variety of proinflammatory phenotypes from highly to poorly polarized ones. Thus the widespread notion of "classical activation" of macrophage concerns just a particular case of proinflammatory phenotype formation.
Collapse
Affiliation(s)
- Y Sh Schwartz
- Research Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630089, Russia.
| | | |
Collapse
|
32
|
Abstract
Like other cancers, uveal melanomas (UM) are characterised by an uncontrolled, clonal, cellular proliferation, occurring as a result of numerous genetic, and epigenetic aberrations. Signalling pathways known to be disrupted in UM include: (1) the retinoblastoma pathway, probably as a result of cyclin D1 overexpression; p53 signalling, possibly as a consequence of MDM2 overexpression; and the P13K/AKT and mitogen-activated protein kinase/extracellular signal-related kinase pathway pathways that are disturbed as a result of PTEN and GNAQ/11 mutations, respectively. Characteristic chromosomal abnormalities are common and include 6p gain, associated with a good prognosis, as well as 1p loss, 3 loss, and 8q gain, which correlate with high mortality. These are identified by techniques such as fluorescence in situ hybridisation, comparative genomic hybridisation, microsatellite analysis, multiplex ligation-dependent probe amplification, and single-nucleotide polymorphisms. UM can also be categorised by their gene expression profiles as class 1 or class 2, the latter correlating with poor survival, as do BRCA1-associated protein-1 (BAP1) inactivating mutations. Genetic testing of UM has enhanced prognostication, especially when results are integrated with histological and clinical data. The identification of abnormal signalling pathways, genes and proteins in UM opens the way for target-based therapies, improving prospects for conserving vision and prolonging life.
Collapse
|
33
|
Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles of nectins in cell adhesion, signaling and polarization. Handb Exp Pharmacol 2012:343-72. [PMID: 20455098 DOI: 10.1007/978-3-540-68170-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which constitute a family of four members. Nectins homophilically and heterophilically trans-interact and cause cell-cell adhesion. This nectin-based cell-cell adhesion plays roles in the organization of adherens junctions in epithelial cells and fibroblasts and synaptic junctions in neurons in cooperation with cadherins. The nectin-based cell-cell adhesion plays roles in the contacts between commissural axons and floor plate cells and in the organization of Sertoli cell-spermatid junctions in the testis, independently of cadherins. Nectins furthermore regulate intracellular signaling through Cdc42 and Rac small G proteins and cell polarization through cell polarity proteins. Pathologically, nectins serve as entry and cell-cell spread mediators of herpes simplex viruses.
Collapse
Affiliation(s)
- K Irie
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
34
|
Chen HP, He M, Mei ZJ, Huang QR, Huang M. Sasanquasaponin up-regulates anion exchanger 3 expression and elicits cardioprotection via NO/RAS/ERK1/2 pathway. Can J Physiol Pharmacol 2012; 90:873-80. [PMID: 22693949 DOI: 10.1139/y2012-072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown recently that sasanquasaponin (SQS) can inhibit ischemia/reperfusion-induced elevation of intracellular Cl(-) concentration ([Cl(-)](i)) and elicit cardioprotection by up-regulating anion exchanger 3 (AE(3)) expression. In the present study, we futher analysed the intracellular signal transduction pathways by which SQS up-regulates AE(3) expression and elicits cardioprotection. Cardiomyocytes were incubated for 24 h with or without 10 µmol/L SQS, followed by simulated ischemia/reperfusion (sI/R). NO formation, Ras activity, and extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation were measured appropriately. We showed that SQS pretreatment efficiently attenuated viability loss and lactate dehydrogenase leakage induced by sI/R in cardiomyocytes. Moreover, SQS induced NO production and promoted Ras activation, which futher promoted extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation. These effects were paralleled by an increase in AE(3) expression. However, when the cardiomyocytes were treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (c-PTIO; an NO scavenger), S-trans-trans-farnesylthiosalicylic acid (FTS) (a Ras inhibitor), U0126 (an ERK1/2 inhibitor), respectively, the increase in AE(3) expression occurring during SQS pretreatment was almost completely abolished and, as a result, SQS-induced cardioprotection was prevented. Our findings indicate that SQS might up-regulate AE(3) expression through NO/Ras/ERK1/2 signal pathway to elicit cardioprotection in cultured cardiomyocytes.
Collapse
Affiliation(s)
- He-Ping Chen
- Department of Pharmacology & Molecular Therapeutics, School of Pharmaceutical Science, Nanchang University, PR China
| | | | | | | | | |
Collapse
|
35
|
Duerr EM, Mizukami Y, Moriichi K, Gala M, Jo WS, Kikuchi H, Xavier RJ, Chung DC. Oncogenic KRAS regulates BMP4 expression in colon cancer cell lines. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1223-30. [PMID: 22383492 PMCID: PMC3362092 DOI: 10.1152/ajpgi.00047.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activating mutations in the KRAS oncogene are common in colorectal cancer. However, the complete spectrum of KRAS targets that mediate its tumorigenic effect has not yet been fully delineated. We identified bone morphogenetic protein 4 (Bmp4), a transforming growth factor-β family member that regulates development and tissue homeostasis, as a new target of KRAS. In SW480, Hela, and 293 cells, oncogenic KRAS(V12) downregulated BMP4 RNA levels, a BMP4 promoter luciferase construct, and Bmp4 protein levels. The MEK inhibitor PD98059 but not the phosphatidylinositol 3-kinase inhibitor LY294002 blocked this downregulation of BMP4. To identify the region of the BMP4 promoter that mediated this regulation by KRAS, serial 5'-deletions of the promoter were generated. An inhibitory region was identified between -3,285 and -3,258 bp in the Bmp4 promoter. In summary, oncogenic KRAS can downregulate Bmp4 through a transcriptional pathway that depends on ERK. These findings point to a unique link between two pathways that are frequently altered in colon cancer.
Collapse
Affiliation(s)
- Eva-Maria Duerr
- 1Gastrointestinal Unit, ,3Department of Gastroenterology, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Yusuke Mizukami
- 1Gastrointestinal Unit, ,4Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | | | | | | | | | - Ramnik J. Xavier
- 1Gastrointestinal Unit, ,2Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | | |
Collapse
|
36
|
Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Fehér A, Hückelhoven R. Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. PLANT PHYSIOLOGY 2012; 159:311-20. [PMID: 22415513 PMCID: PMC3375967 DOI: 10.1104/pp.111.191940] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
Certain plant receptor-like cytoplasmic kinases were reported to interact with small monomeric G-proteins of the RHO of plant (ROP; also called RAC) family in planta and to be activated by this interaction in vitro. We identified a barley (Hordeum vulgare) partial cDNA of a ROP binding protein kinase (HvRBK1) in yeast (Saccharomyces cerevisiae) two-hybrid screenings with barley HvROP bait proteins. Protein interaction of the constitutively activated (CA) barley HvROPs CA HvRACB and CA HvRAC1 with full-length HvRBK1 was verified in yeast and in planta. Green fluorescent protein-tagged HvRBK1 appears in the cytoplasm and nucleoplasm, but CA HvRACB or CA HvRAC1 can recruit green fluorescent protein-HvRBK1 to the cell periphery. Barley HvRBK1 is an active kinase in vitro, and activity is enhanced by CA HvRACB or GTP-loaded HvRAC1. Hence, HvRBK1 might act downstream of active HvROPs. Transient-induced gene silencing of barley HvRBK1 supported penetration by the parasitic fungus Blumeria graminis f. sp. hordei, suggesting a function of the protein in basal disease resistance. Transient knockdown of HvRBK1 also influenced the stability of cortical microtubules in barley epidermal cells. Hence, HvRBK1 might function in basal resistance to powdery mildew by influencing microtubule organization.
Collapse
|
37
|
Ptasinska-Wnuk D, Lawnicka H, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. Angiotensins inhibit cell growth in GH3 lactosomatotroph pituitary tumor cell culture: a possible involvement of the p44/42 and p38 MAPK pathways. ScientificWorldJournal 2012; 2012:189290. [PMID: 22619620 PMCID: PMC3349324 DOI: 10.1100/2012/189290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
The local renin-angiotensin system is present in the pituitary. We investigated the effects of angiotensins on GH3 lactosomatotroph cells proliferation in vitro and the involvement of p44/42 and p38 MAPK inhibitors in the growth-regulatory effects of angiotensins. Materials and Methods. Cell viability using the Mosmann method and proliferation by the measurement of BrdU incorporation during DNA synthesis were estimated. Results. Ang II and ang IV decreased the viability and proliferation of GH3 cells. Inhibitor of p44/42 MAPK attenuated the effects of ang II on cell viability and proliferation but did not affect the ang 5-8-dependent actions. Inhibitor of p38 MAPK prevented the decrease in the number of GH3 cells in ang-II- and ang-IV-treated groups. Conclusions. The growth-inhibitory effect of ang II is possibly mediated by the p44/42 MAPK. The p38 MAPK appears to mediate the inhibitory effects of both ang II and ang 5-8 upon cell survival.
Collapse
Affiliation(s)
- Dorota Ptasinska-Wnuk
- Department of Endocrinology, The County Hospital of Kutno, 52 Kosciuszki Street, 99-300 Kutno, Poland
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Slawomir Mucha
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Jolanta Kunert-Radek
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Marek Pawlikowski
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Henryk Stepien
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| |
Collapse
|
38
|
Gong Z, Shi Y, Zhu Z, Li X, Ye Y, Zhang J, Li A, Li G, Zhou J. JWA deficiency suppresses dimethylbenz[a]anthracene-phorbol ester induced skin papillomas via inactivation of MAPK pathway in mice. PLoS One 2012; 7:e34154. [PMID: 22461904 PMCID: PMC3312911 DOI: 10.1371/journal.pone.0034154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/23/2012] [Indexed: 12/17/2022] Open
Abstract
Our previous studies indicated that JWA plays an important role in DNA damage repair, cell migration, and regulation of MAPKs. In this study, we investigated the role of JWA in chemical carcinogenesis using conditional JWA knockout (JWAΔ2/Δ2) mice and two-stage model of skin carcinogenesis. Our results indicated that JWAΔ2/Δ2 mice were resistant to the development of skin papillomas initiated by 7, 12-dimethylbenz(a)anthracene (DMBA) followed by promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). In JWAΔ2/Δ2 mice, the induction of papilloma was delayed, and the tumor number and size were reduced. In primary keratinocytes from JWAΔ2/Δ2 mice, DMBA exposure induced more intensive DNA damage, while TPA-promoted cell proliferation was reduced. The further mechanistic studies showed that JWA deficiency blocked TPA-induced activation of MAPKs and its downstream transcription factor Elk1 both in vitro and in vivo. JWAΔ2/Δ2 mice are resistance to tumorigenesis induced by DMBA/TPA probably through inhibition of transcription factor Elk1 via MAPKs. These results highlight the importance of JWA in skin homeostasis and in the process of skin tumor development.
Collapse
Affiliation(s)
- Zhenghua Gong
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Yaowei Shi
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Ze Zhu
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuan Li
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Ye
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianbing Zhang
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
39
|
Domedel-Puig N, Rué P, Pons AJ, García-Ojalvo J. Information routing driven by background chatter in a signaling network. PLoS Comput Biol 2011; 7:e1002297. [PMID: 22174668 PMCID: PMC3234210 DOI: 10.1371/journal.pcbi.1002297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 10/25/2011] [Indexed: 11/18/2022] Open
Abstract
Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant. When information is received by a cell signaling network via one specific input, the existence of other stimuli can provide a background activity –or chatter– that may affect signal transmission through the network and, therefore, the response of the cell. Here we study the modulation of information processing by chatter in the signaling network of a human cell, specifically, in a Boolean model of the signal transduction network of a fibroblast. We observe that the level of external chatter shapes the response of the system to information carrying signals in a nontrivial manner, modulates the activity levels of the network outputs, and effectively determines the paths of information flow. Our results show that the interactions and node dynamics, far from being random, confer versatility to the signaling network and allow transitions between different information-processing scenarios. Far from being silent and static, the habitat of a cell is usually composed by multiple and simultaneous signals. We can consider nutrients, hormones, temperature, light, and other stimuli as elements building a default environment in which cells grow, divide and die. This environment, which has an intrinsically fluctuating nature, is the setting in which cells process all incoming stimuli. Here we examine the role that this background activity –or signaling chatter– plays in the transmission of information in a typical human cell. We address this question using a cellular model of signal transduction that we simulate using both random and periodic stimuli. We find that the level of background chatter determines the response of the whole signaling network to external stimuli. Different areas of the network are activated by specific levels of background activity, routing the information through chatter-dependent paths. In this way, different levels of chatter allow the network to select between different responses, given the same stimulus. These features depend on the architecture and functional connectivity of a truly biological network, since we find that randomized versions of the model are incapable of showing this behavior.
Collapse
Affiliation(s)
- Núria Domedel-Puig
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Barcelona, Spain
| | - Pau Rué
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Barcelona, Spain
| | - Antonio J. Pons
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Barcelona, Spain
| | - Jordi García-Ojalvo
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Barcelona, Spain
- * E-mail:
| |
Collapse
|
40
|
de Mello RA, Marques DS, Medeiros R, Araújo AM. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies. World J Clin Oncol 2011; 2:367-76. [PMID: 22087435 PMCID: PMC3215775 DOI: 10.5306/wjco.v2.i11.367] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer death in Western nations. Non-small cell lung cancer (NSCLC) represents 80% of all lung cancers, and adenocarcinoma is the predominant histological type. Despite the intensive research carried out on this field and therapeutic advances, the overall prognosis of these patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Nowadays, pharmacogenetics and pharmacogenomics represent the key to successful treatment. Recent studies suggest the existence of two distinct molecular pathways in the carcinogenesis of lung adenocarcinoma: one associated with smoking and activation of the K-Ras oncogene and the other not associated with smoking and activation of the epidermal growth factor receptor (EGFR). The K-ras mutation is mainly responsible for primary resistance to new molecules which inhibit tyrosine kinase EGFR (erlotinib and gefitinib) and most of the EGFR mutations are responsible for increased tumor sensitivity to these drugs. This article aims to conduct a systematic review of the literature regarding the molecular pathways involving the EGFR, K-Ras and EGFR targeted therapies in NSCLC tumor behavior.
Collapse
Affiliation(s)
- Ramon Andrade de Mello
- Ramon Andrade de Mello, Dânia Sofia Marques, Department of Medical Oncology, Portuguese Oncology Institute, Porto 4200-072, Portugal
| | | | | | | |
Collapse
|
41
|
Kweider N, Fragoulis A, Rosen C, Pecks U, Rath W, Pufe T, Wruck CJ. Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia. J Biol Chem 2011; 286:42863-72. [PMID: 22033923 DOI: 10.1074/jbc.m111.286880] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several recently published studies have suggested that decreasing VEGF levels result in placental oxidative stress in preeclampsia, although the question as to how decreased VEGF concentrations increase oxidative stress still remains unanswered. Here, we show that VEGF activated Nrf2, the main regulating factor of the intracellular redox balance, in the cytotrophic cell line BeWo. In turn, this activated the production of antioxidative enzymes thioredoxin, thioredoxin reductase, and heme oxygenase-1, which showed a decrease in their expression in the placentas of preeclamptic women. Nevertheless, this activation occurred without oxidative stress stimulus. As a consequence, the activation of Nrf2 protected BeWo cells against H(2)O(2)/Fe(2+)-induced oxidative damage. We further show that VEGF up-regulated the expression of itself. A positive feedback loop was described in which VEGF activated Nrf2 in an ERK1/2-dependent manner; the up-regulation of HO-1 expression by Nrf2 augmented the production of carbon monoxide, which in turn up-regulated VEGF expression. In conclusion, VEGF induces the Nrf2 pathway to protect against oxidative stress and, via a positive feedback loop, to elevate VEGF expression. Therefore, decreased VEGF bioavailability during preeclampsia may result in higher vulnerability to placental oxidative cell damage and a further reduction of VEGF bioavailability, a vicious circle that may end up in preeclampsia.
Collapse
Affiliation(s)
- Nisreen Kweider
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Guedea AL, Schrick C, Guzman YF, Leaderbrand K, Jovasevic V, Corcoran KA, Tronson NC, Radulovic J. ERK-associated changes of AP-1 proteins during fear extinction. Mol Cell Neurosci 2011; 47:137-44. [PMID: 21463687 DOI: 10.1016/j.mcn.2011.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/03/2011] [Accepted: 03/28/2011] [Indexed: 02/04/2023] Open
Abstract
Extensive research has unraveled the molecular basis of learning processes underlying contextual fear conditioning, but the mechanisms of fear extinction remain less known. Contextual fear extinction occurs when an aversive stimulus that initially caused fear is no longer present and depends on the activation of the extracellular signal-regulated kinase (ERK), among other molecules. Here we investigated how ERK signaling triggered by extinction affects its downstream targets belonging to the activator protein-1 (AP-1) transcription factor family. We found that extinction, when compared to conditioning of fear, markedly enhanced the interactions of active, phospho-ERK (pERK ) with c-Jun causing alterations of its phosphorylation state. The AP-1 binding of c-Jun was decreased whereas AP-1 binding of JunD, Jun dimerization protein 2 (JDP2) and ERK were significantly enhanced. The increased AP-1 binding of the inhibitory JunD and JDP2 transcription factors was paralleled by decreased levels of the AP-1 regulated proteins c-Fos and GluR2. These changes were specific for extinction and were MEK-dependent. Overall, fear extinction involves ERK/Jun interactions and a decrease of a subset of AP-1-regulated proteins that are typically required for fear conditioning. Facilitating the formation of inhibitory AP-1 complexes may thus facilitate the reduction of fear.
Collapse
Affiliation(s)
- Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kuribara M, van Bakel NHM, Ramekers D, de Gouw D, Neijts R, Roubos EW, Scheenen WJJM, Martens GJM, Jenks BG. Gene expression profiling of pituitary melanotrope cells during their physiological activation. J Cell Physiol 2011; 227:288-96. [PMID: 21412779 DOI: 10.1002/jcp.22734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pituitary melanotrope cells of the amphibian Xenopus laevis are responsible for the production of the pigment-dispersing peptide α-melanophore-stimulating hormone, which allows the animal to adapt its skin color to its environment. During adaptation to a dark background the melanotrope cells undergo remarkable changes characterized by dramatic increases in cell size and secretory activity. In this study we performed microarray mRNA expression profiling to identify genes important to melanotrope activation and growth. We show a strong increase in the expression of the immediate early gene (IEG) c-Fos and of the brain-derived neurotrophic factor gene (BDNF). Furthermore, we demonstrate the involvement of another IEG in the adaptation process, Nur77, and conclude from in vitro experiments that the expression of both c-Fos and Nur77 are partially regulated by the adenylyl cyclase system and calcium ions. In addition, we found a steady up-regulation of Ras-like product during the adaptation process, possibly evoked by BDNF/TrkB signaling. Finally, the gene encoding the 105-kDa heat shock protein HSPh1 was transiently up-regulated in the course of black-background adaptation and a gene product homologous to ferritin (ferritin-like product) was >100-fold up-regulated in fully black-adapted animals. We suggest that these latter two genes are induced in response to cellular stress and that they may be involved in changing the mode of mRNA translation required to meet the increased demand for de novo protein synthesis. Together, our results show that microarray analysis is a valuable approach to identify the genes responsible for generating coordinated responses in physiologically activated cells.
Collapse
Affiliation(s)
- Miyuki Kuribara
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online 2011; 10:9. [PMID: 21269490 PMCID: PMC3039627 DOI: 10.1186/1475-925x-10-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/26/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. METHODS The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs) undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF) and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR) were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP) and collagen type 1 (col1), and stress response markers, such as heat shock protein 27 (hsp27) and heat shock protein 70 (hsp70). Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG) imaging. RESULTS Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p < 0.05) in samples exposed to the electric field. A delayed but two fold increase in ALP and col1 transcript was detected by week 2 (p < 0.05) in differentiating hMSCs exposed to an electric field in comparison to the nonstimulated controls. Upregulation in stress marker, hsp27, and type 1 collagen deposition were correlated with this response. Increases in NADH, FAD, and lipofuscin were traced in the stimulation group during the first week of field exposure with differences statistically significant on day 10 (p < 0.05). Changes in hsp27 expression correlate well with changes in lipofuscin detected in the stimulation group, suggesting a connection with oxidative stress. Both differentiation factors and electrical stimulation improved hMSC differentiation potential to bone based on calcium deposition on day 28. CONCLUSIONS Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering,4 Colby Street, Science & Technology Center, Tufts University, Medford, MA 02155 USA
| | - William L Rice
- Department of Biomedical Engineering,4 Colby Street, Science & Technology Center, Tufts University, Medford, MA 02155 USA
| | - Mark Cronin-Golomb
- Department of Biomedical Engineering,4 Colby Street, Science & Technology Center, Tufts University, Medford, MA 02155 USA
| | - David L Kaplan
- Department of Biomedical Engineering,4 Colby Street, Science & Technology Center, Tufts University, Medford, MA 02155 USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering,4 Colby Street, Science & Technology Center, Tufts University, Medford, MA 02155 USA
| |
Collapse
|
45
|
|
46
|
Weiss MS, Peñalver Bernabé B, Bellis AD, Broadbelt LJ, Jeruss JS, Shea LD. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture. PLoS One 2010; 5:e14026. [PMID: 21103341 PMCID: PMC2984444 DOI: 10.1371/journal.pone.0014026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs) are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. Methodology/Principal Findings TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. Conclusions/Significance This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a platform for screening therapeutics.
Collapse
Affiliation(s)
- Michael S. Weiss
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Beatriz Peñalver Bernabé
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Abigail D. Bellis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jacqueline S. Jeruss
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (LDS); (JSJ)
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (LDS); (JSJ)
| |
Collapse
|
47
|
Gonzalez-Mejia ME, Voss OH, Murnan EJ, Doseff AI. Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially regulated residue-specific phosphorylation of heat-shock protein-27. Cell Death Dis 2010; 1:e64. [PMID: 21364669 PMCID: PMC3032520 DOI: 10.1038/cddis.2010.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apigenin, a natural plant flavonoid with antiproliferative activity, is emerging as a promising compound for cancer prevention and therapy, but its mechanism of action remains unclear. High expression of the small heat-shock protein-27 (Hsp27) in leukemia contributes to the resistance of these cells to cancer treatments. Changes in Hsp27 phosphorylation have been associated with heat and metabolic stress, but its role in flavonoid anticancer activity has not been investigated. In this study, we examined the effect of apigenin in the regulation of Hsp27 on leukemia. We showed that apigenin does not affect Hsp27 expression but induces a bimodal phosphorylation on Ser78 and Ser82. The phosphorylation at early times was regulated by p38. At later times, Hsp27 phosphorylation was dependent on p38 activity and for some residues on PKCδ. Silencing of p38 expression reduced apigenin-induced phosphorylation on Ser15, Ser78, and Ser82, whereas silencing of PKCδ expression reduced the phosphorylation on Ser15 and Ser82 without affecting Ser78. In addition, we found that apigenin-induced PKCδ activity is mediated by p38. We also showed that the phosphorylation of Hsp27 significantly increased the susceptibility of leukemia cells to apigenin-induced apoptosis. Together, these results identify a complex signaling network regulating the cytotoxic effect of apigenin through Hsp27 phosphorylation.
Collapse
Affiliation(s)
- M E Gonzalez-Mejia
- Department of Molecular Genetics, Division of Pulmonary and Critical Care, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
48
|
Notcovich C, Diez F, Tubio MR, Baldi A, Kazanietz MG, Davio C, Shayo C. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Exp Cell Res 2010; 316:401-11. [DOI: 10.1016/j.yexcr.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
|
49
|
Behren A, Mühlen S, Acuna Sanhueza GA, Schwager C, Plinkert PK, Huber PE, Abdollahi A, Simon C. Phenotype-assisted transcriptome analysis identifies FOXM1 downstream from Ras-MKK3-p38 to regulate in vitro cellular invasion. Oncogene 2009; 29:1519-30. [PMID: 20023695 DOI: 10.1038/onc.2009.436] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ras oncogene is known to activate three major MAPK pathways, ERK, JNK, p38 and exert distinct cellular phenotypes, that is, apoptosis and invasion through the Ras-MKK3-p38-signaling cascade. We attempted to identify the molecular targets of this pathway that selectively govern the invasive phenotype. Stable transfection of NIH3T3 fibroblasts with MKK3(act) cDNA construct revealed similar p38-dependent in vitro characteristics observed in Ha-Ras(EJ)-transformed NIH3T3 cells, including enhanced invasiveness and anchorage-independent growth correlating with p38 phosphorylation status. To identify the consensus downstream targets of the Ras-MKK3-p38 cascade involved in invasion, in vitro invasion assays were used to isolate highly invasive cells from both, MKK3 and Ha-Ras(EJ) transgenic cell lines. Subsequently a genome-wide transcriptome analysis was employed to investigate differentially regulated genes in invasive Ha-Ras(EJ)- and MKK3(act)-transfected NIH3T3 fibroblasts. Using this phenotype-assisted approach combined with system level protein-interaction network analysis, we identified FOXM1, PLK1 and CDK1 to be differentially regulated in invasive Ha-Ras(EJ)-NIH3T3 and MKK3(act)-NIH3T3 cells. Finally, a FOXM1 RNA-knockdown approach revealed its requirement for both invasion and anchorage-independent growth of Ha-Ras(EJ)- and MKK3(act)-NIH3T3 cells. Together, we identified FOXM1 as a key downstream target of Ras and MKK3-induced cellular in vitro invasion and anchorage-independent growth signaling.
Collapse
Affiliation(s)
- A Behren
- Cancer Vaccine, Ludwig Institute for Cancer Research Ltd, Melbourne Centre for Clinical Sciences, Heidelberg, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wackernagel W, Schneider M, Mayer C, Langmann G, Singh AD. Genetik des Aderhautmelanoms. SPEKTRUM DER AUGENHEILKUNDE 2009. [DOI: 10.1007/s00717-009-0360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|