1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Tran P, Crawford T, Ragnarsson L, Deuis JR, Mobli M, Sharpe SJ, Schroeder CI, Vetter I. Structural Conformation and Activity of Spider-Derived Inhibitory Cystine Knot Peptide Pn3a Are Modulated by pH. ACS OMEGA 2023; 8:26276-26286. [PMID: 37521635 PMCID: PMC10373202 DOI: 10.1021/acsomega.3c02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline cis/trans isomerization but has also been observed in peptides that do not contain a proline residue. Pn3a is one such peptide forming two chromatographically distinguishable peaks that readily interconvert following the purification of either conformer. The nature of this exchange was previously uncharacterized due to the fast rate of conversion in solution, making isolation of the conformers impossible. In the present study, an N-terminal modification of Pn3a enabled the isolation of the individual conformers, allowing activity assays to be conducted on the individual conformers using electrophysiology. The conformers were analyzed separately by nuclear magnetic resonance spectroscopy (NMR) to study their structural differences. RP-HPLC and NMR were used to study the mechanism of exchange. The later-eluting conformer was the active conformer with a rigid structure that corresponds to the published structure of Pn3a, while NMR analysis revealed the earlier-eluting conformer to be inactive and disordered. The exchange was found to be pH-dependent, arising in acidic solutions, possibly due to reversible disruption and formation of intramolecular salt bridges. This study reveals the nature of non-proline conformational exchange observed in Pn3a and possibly other disulfide-rich peptides, highlighting that the structure and activity of some disulfide-stabilized peptides can be dramatically susceptible to disruption.
Collapse
Affiliation(s)
- Poanna Tran
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Theo Crawford
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R. Deuis
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Mehdi Mobli
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Sharpe
- Molecular
Medicine Program, Research Institute, The
Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christina I. Schroeder
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Irina Vetter
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
3
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense-Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022; 61:e202116217. [PMID: 35129861 PMCID: PMC9306628 DOI: 10.1002/anie.202116217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 01/09/2023]
Abstract
We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
4
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense‐Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
5
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
6
|
Pratt EP, Anson KJ, Tapper JK, Simpson DM, Palmer AE. Systematic Comparison of Vesicular Targeting Signals Leads to the Development of Genetically Encoded Vesicular Fluorescent Zn 2+ and pH Sensors. ACS Sens 2020; 5:3879-3891. [PMID: 33305939 DOI: 10.1021/acssensors.0c01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically encoded fluorescent sensors have been widely used to illuminate secretory vesicle dynamics and the vesicular lumen, including Zn2+ and pH, in living cells. However, vesicular sensors have a tendency to mislocalize and are susceptible to the acidic intraluminal pH. In this study, we performed a systematic comparison of five different vesicular proteins to target the fluorescent protein mCherry and a Zn2+ Förster resonance energy transfer (FRET) sensor to secretory vesicles. We found that motifs derived from vesicular cargo proteins, including chromogranin A (CgA), target vesicular puncta with greater efficacy than transmembrane proteins. To characterize vesicular Zn2+ levels, we developed CgA-Zn2+ FRET sensor fusions with existing sensors ZapCY1 and eCALWY-4 and characterized subcellular localization and the influence of pH on sensor performance. We simultaneously monitored Zn2+ and pH in individual secretory vesicles by leveraging the acceptor fluorescent protein as a pH sensor and found that pH influenced FRET measurements in situ. While unable to characterize vesicular Zn2+ at the single-vesicle level, we were able to monitor Zn2+ dynamics in populations of vesicles and detected high vesicular Zn2+ in MIN6 cells compared to lower levels in the prostate cancer cell line LnCaP. The combination of CgA-ZapCY1 and CgA-eCALWY-4 allows for measurement of Zn2+ from pM to nM ranges.
Collapse
Affiliation(s)
- Evan P.S. Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Kelsie J. Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Justin K. Tapper
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - David M. Simpson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Amy E. Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| |
Collapse
|
7
|
Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, Zhang Y, Ding L, Moresco JJ, Diedrich JK, Yates JR, Tillman HS, Leibel RL, Talkowski ME, Billadeau DD, Reiter LT, Potts PR. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020; 5:138576. [PMID: 32879135 PMCID: PMC7526459 DOI: 10.1172/jci.insight.138576] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Helen Chen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Kaitlyn Victor
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek Jc Tai
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Celine de Esch
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Alexander Nuttle
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa C Burnett
- Levo Therapeutics, Inc., Skokie, Illinois, USA.,Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Li Ding
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Heather S Tillman
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence T Reiter
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Zhang XW, Hatamie A, Ewing AG. Simultaneous Quantification of Vesicle Size and Catecholamine Content by Resistive Pulses in Nanopores and Vesicle Impact Electrochemical Cytometry. J Am Chem Soc 2020; 142:4093-4097. [PMID: 32069039 PMCID: PMC7108759 DOI: 10.1021/jacs.9b13221] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We have developed the means to simultaneously
measure the physical
size and count catecholamine molecules in individual nanometer transmitter
vesicles. This is done by combining resistive pulse (RP) measurements
in a nanopore pipet and vesicle impact electrochemical cytometry (VIEC)
at an electrode as the vesicle exits the nanopore. Analysis of freshly
isolated bovine adrenal vesicles shows that the size and internal
catecholamine concentration of vesicles varies with the occurrence
of a dense core inside the vesicles. These results might benefit the
understanding about the vesicles maturation, especially involving
the “sorting by retention” process and concentration
increase of intravesicular catecholamine. The methodology is applicable
to understanding soft nanoparticle collisions on electrodes, vesicles
in exocytosis and phagocytosis, intracellular vesicle transport, and
analysis of electroactive drugs in exosomes.
Collapse
Affiliation(s)
- Xin-Wei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
9
|
Ji S, Samara NL, Revoredo L, Zhang L, Tran DT, Muirhead K, Tabak LA, Ten Hagen KG. A molecular switch orchestrates enzyme specificity and secretory granule morphology. Nat Commun 2018; 9:3508. [PMID: 30158631 PMCID: PMC6115407 DOI: 10.1038/s41467-018-05978-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary gland. Loss of pgant9, which encodes an O-glycosyltransferase, results in secretory granules with an irregular, shard-like morphology, and altered glycosylation of cargo. Interestingly, pgant9 undergoes a splicing event that acts as a molecular switch to alter the charge of a loop controlling access to the active site of the enzyme. The splice variant with the negatively charged loop glycosylates the positively charged secretory cargo and rescues secretory granule morphology. Our study highlights a mechanism for dictating substrate specificity within the O-glycosyltransferase enzyme family. Moreover, our in vitro and in vivo studies suggest that the glycosylation status of secretory cargo influences the morphology of maturing secretory granules.
Collapse
Affiliation(s)
- Suena Ji
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Nadine L Samara
- Section on Biological Chemistry, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Leslie Revoredo
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Duy T Tran
- Section on Biological Chemistry, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Kayla Muirhead
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Lawrence A Tabak
- Section on Biological Chemistry, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892-4370, USA.
| |
Collapse
|
10
|
Mogi C, Nakakura T, Okajima F. Role of extracellular proton-sensing OGR1 in regulation of insulin secretion and pancreatic β-cell functions. Endocr J 2014; 61:101-10. [PMID: 24088601 DOI: 10.1507/endocrj.ej13-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insulin secretion with respect to pH environments has been investigated for a long time but its mechanism remains largely unknown. Extracellular pH is usually maintained at around 7.4 and, its change has been thought to occur in non-physiological situations. Acidification takes place under ischemic and inflammatory microenvironments, where stimulation of anaerobic glycolysis results in the production of lactic acid. In addition to ionotropic ion channels, such as transient receptor potential V1 (TRPV1) and acid-sensing ion channels (ASICs), metabotropic proton-sensing G protein-coupled receptors (GPCRs) have also been identified recently as proton-sensing machineries. While ionotropic ion channels usually sense strong acidic pH, proton-sensing GPCRs sense pH of 7.6 to 6.0 and have been shown to mediate a variety of biological actions in neutral and mildly acidic pH environments. Studies with receptor knockout mice have revealed that proton-sensing receptors, including ovarian cancer G protein-coupled receptor 1 (OGR1), a proton-sensing GPCRs, play a role in the regulation of insulin secretion and glucose metabolism under physiological conditions. Small molecule 3,5-disubstituted isoxazoles have recently been identified as OGR1 agonists working at neutral pH and have been shown to stimulate pancreatic β-cell differentiation and insulin synthesis. Thus, proton-sensing OGR1 may be an important player for insulin secretion and a potential target for improving β-cell function.
Collapse
Affiliation(s)
- Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | |
Collapse
|
11
|
Kögel T, Rudolf R, Hodneland E, Copier J, Regazzi R, Tooze SA, Gerdes HH. Rab3D is critical for secretory granule maturation in PC12 cells. PLoS One 2013; 8:e57321. [PMID: 23526941 PMCID: PMC3602456 DOI: 10.1371/journal.pone.0057321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.
Collapse
Affiliation(s)
- Tanja Kögel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rüdiger Rudolf
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | | | - John Copier
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sharon A. Tooze
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Hans-Hermann Gerdes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
13
|
|
14
|
Kögel T, Gerdes HH. Roles of myosin Va and Rab3D in membrane remodeling of immature secretory granules. Cell Mol Neurobiol 2010; 30:1303-8. [PMID: 21080055 PMCID: PMC3008937 DOI: 10.1007/s10571-010-9597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/02/2010] [Indexed: 01/24/2023]
Abstract
Neuroendocrine secretory granules (SGs) are formed at the trans-Golgi network (TGN) as immature intermediates. In PC12 cells, these immature SGs (ISGs) are transported within seconds to the cell cortex, where they move along actin filaments and complete maturation. This maturation process comprises acidification-dependent processing of cargo proteins, condensation of the SG matrix, and removal of membrane and proteins not destined to mature SGs (MSGs) into ISG-derived vesicles (IDVs). We investigated the roles of myosin Va and Rab3 isoforms in the maturation of ISGs in neuroendocrine PC12 cells. The expression of dominant-negative mutants of myosin Va or Rab3D blocked the removal of the endoprotease furin from ISGs. Furthermore, expression of mutant Rab3D, but not of mutant myosin Va, impaired cargo processing of SGs. In conclusion, our data suggest an implication of myosin Va and Rab3D in the maturation of SGs where they participate in overlapping but not identical tasks.
Collapse
Affiliation(s)
- Tanja Kögel
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | |
Collapse
|
15
|
Versatile roles for myosin Va in dense core vesicle biogenesis and function. Biochem Soc Trans 2010; 38:199-204. [PMID: 20074059 DOI: 10.1042/bst0380199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The motor protein myosin Va is involved in multiple successive steps in the development of dense-core vesicles, such as in the membrane remodelling during their maturation, their transport along actin filaments and the regulation of their exocytosis. In the present paper, we summarize the current knowledge on the roles of myosin Va in the different steps of dense-core vesicle biogenesis and exocytosis, and compare findings obtained from different cell types and experimental systems.
Collapse
|
16
|
Kögel T, Rudolf R, Hodneland E, Hellwig A, Kuznetsov SA, Seiler F, Söllner TH, Barroso J, Gerdes HH. Distinct Roles of Myosin Va in Membrane Remodeling and Exocytosis of Secretory Granules. Traffic 2010; 11:637-50. [DOI: 10.1111/j.1600-0854.2010.01048.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
18
|
Arnaoutova I, Cawley NX, Patel N, Kim T, Rathod T, Loh YP. Aquaporin 1 is important for maintaining secretory granule biogenesis in endocrine cells. Mol Endocrinol 2008; 22:1924-34. [PMID: 18511498 DOI: 10.1210/me.2007-0434] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aquaporins (AQPs), a family of water channels expressed in epithelial cells, function to transport water in a bidirectional manner to facilitate transepithelial fluid absorption and secretion. Additionally, AQP1 and AQP5 are found in pancreatic zymogen granules and synaptic vesicles and are involved in vesicle swelling and exocytosis in exocrine cells and neurons. Here, we show AQP1 is in dense-core secretory granule (DCSG) membranes of endocrine tissue: pituitary and adrenal medulla. The need for AQP1 in endocrine cell function was examined by stable transfection of AQP1 antisense RNA into AtT20 cells, a pituitary cell line, to down-regulate AQP1 expression. These AQP1-deficient cells showed more than 60% depletion of DCSGs and significantly decreased DCSG protein levels, including proopiomelanocotin/pro-ATCH and prohormone convertase 1/3, but not non-DCSG proteins. Pulse-chase studies revealed that whereas DCSG protein synthesis was unaffected, approximately 50% of the newly synthesized proopiomelanocortin was degraded within 1 h. Low levels of ACTH were released upon stimulation, indicating that the small number of DCSGs that were made in the presence of the residual AQP1 were functionally competent for exocytosis. Analysis of anterior pituitaries from AQP1 knockout mice showed reduced prohormone convertase 1/3, carboxypeptidase E, and ACTH levels compared to wild-type mice demonstrating that our results observed in AtT20 cells can be extended to the animal model. Thus, AQP1 is important for maintaining DCSG biogenesis and normal levels of hormone secretion in pituitary endocrine cells.
Collapse
Affiliation(s)
- Irina Arnaoutova
- National Institutes of Health, Building 49, Room 5A22, 49 Convent Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
19
|
Courel M, Vasquez MS, Hook VY, Mahata SK, Taupenot L. Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains. J Biol Chem 2008; 283:11807-22. [PMID: 18299326 DOI: 10.1074/jbc.m709832200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.
Collapse
Affiliation(s)
- Maïté Courel
- Department of Medicine, University of California at San Diego, La Jolla, California 92093-0838, USA
| | | | | | | | | |
Collapse
|
20
|
Morvan J, Tooze SA. Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 2008; 129:243-52. [PMID: 18197413 PMCID: PMC2248607 DOI: 10.1007/s00418-008-0377-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo.
Collapse
Affiliation(s)
- Joëlle Morvan
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
21
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
22
|
Zhao CM, Furnes MW, Stenström B, Kulseng B, Chen D. Characterization of obestatin- and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: an immunohistochemical and electron-microscopic study. Cell Tissue Res 2007; 331:575-87. [PMID: 18071756 DOI: 10.1007/s00441-007-0514-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 09/12/2007] [Indexed: 01/15/2023]
Abstract
Both ghrelin and obestatin are derived from preproghrelin by post-translational processing. We have morphologically characterized the cells that produce obestatin and ghrelin in new-born and adult Sprague-Dawley rats that were freely fed, fasted, or subjected to gastric bypass surgery or reserpine treatment. Tissue samples collected from the gastrointestinal tract and pancreas were examined by double-immunofluorescence staining, immunoelectron microscopy, and conventional electron microscopy. Obestatin was present in the stomach, duodenum, jejunum, colon, and pancreas. In the stomach, differences were noted in the development of obestatin- and preproghrelin-immunreactive (IR) cells on the one hand and ghrelin-IR cells on the other, particularly 2 weeks after birth. Preproghrelin- and obestatin-IR cells were more numerous than ghrelin-IR cells in the stomach, suggesting the lack of ghrelin in some A-like cells. Most obestatin-producing cells in the stomach were distributed in the basal part of the oxyntic mucosa; these cells co-localized with chromogranin A (pancreastatin) and vesicle monoamine transporters type 1 and 2, but not with serotonin or histidine decarboxylase. Immunoelectron microscopy revealed the obestatin- and ghrelin-producing cells to be A-like cells, characterized by numerous highly electron-dense granules containing ghrelin and obestatin. Some granules exhibited an even electron density with thin electron-lucent halos, suggestive of monoamines. Feeding status, gastric bypass surgery, and reserpine treatment had no obvious effect on the A-like cells. In the pancreas, obestatin was present in the peripheral part of the islets, with a distribution distinct from that of glucagon-producing A cells, insulin-producing beta cells, and cells producing pancreatic polypeptide Y. Thus, obestatin and ghrelin co-localize with an anticipated monoamine in A-like cells in the stomach, and obestatin is found in pancreatic islets.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
23
|
Sun-Wada GH, Tabata H, Kawamura N, Futai M, Wada Y. Differential expression of a subunit isoforms of the vacuolar-type proton pump ATPase in mouse endocrine tissues. Cell Tissue Res 2007; 329:239-48. [PMID: 17497178 DOI: 10.1007/s00441-007-0421-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/31/2007] [Indexed: 11/26/2022]
Abstract
Vacuolar-type proton ATPase (V-ATPase) is a multi-subunit enzyme that couples ATP hydrolysis to the translocation of protons across membranes. Mammalian cells express four isoforms of the a subunit of V-ATPase. Previously, we have shown that V-ATPase with the a3 isoform is highly expressed in pancreatic islets and is located in the membranes of insulin-containing granules in the beta cells. The a3 isoform functions in the regulation of hormone secretion. In this study, we have examined the distribution of a subunit isoforms in endocrine tissues, including the adrenal, parathyroid, thyroid, and pituitary glands, with isoform-specific antibodies. We have found that the a3 isoform is strongly expressed in all these endocrine tissues. Our results suggest that functions of the a3 isoform are commonly involved in the process of exocytosis in regulated secretion.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, 610-0395, Japan.
| | | | | | | | | |
Collapse
|
24
|
Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 2006; 119:4531-40. [PMID: 17046993 DOI: 10.1242/jcs.03234] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase) is a multi-subunit enzyme that has important roles in the acidification of a variety of intracellular compartments and some extracellular milieus. Four isoforms for the membrane-intrinsic subunit (subunit a) of the V-ATPase have been identified in mammals, and they confer distinct cellular localizations and activities on the proton pump. We found that V-ATPase with the a3 isoform is highly expressed in pancreatic islets, and is localized to membranes of insulin-containing secretory granules in beta-cells. oc/oc mice, which have a null mutation at the a3 locus, exhibited a reduced level of insulin in the blood, even with high glucose administration. However, islet lysates contained mature insulin, and the ratio of the amount of insulin to proinsulin in oc/oc islets was similar to that of wild-type islets, indicating that processing of insulin was normal even in the absence of the a3 function. The insulin contents of oc/oc islets were reduced slightly, but this was not significant enough to explain the reduced levels of the blood insulin. The secretion of insulin from isolated islets in response to glucose or depolarizing stimulation was impaired. These results suggest that the a3 isoform of V-ATPase has a regulatory function in the exocytosis of insulin secretion.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe 610-0395, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology (Bethesda) 2006; 21:124-33. [PMID: 16565478 DOI: 10.1152/physiol.00043.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dense-core secretory granule is a key organelle for secretion of hormones and neuropeptides in endocrine cells and neurons, in response to stimulation. Cholesterol and granins are critical for the assembly of these organelles at the trans-Golgi network, and their biogenesis is regulated quantitatively by posttranscriptional and posttranslational mechanisms.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
26
|
Tomiya N, Narang S, Park J, Abdul-Rahman B, Choi O, Singh S, Hiratake J, Sakata K, Betenbaugh MJ, Palter KB, Lee YC. Purification, Characterization, and Cloning of a Spodoptera frugiperda Sf9 β-N-Acetylhexosaminidase That Hydrolyzes Terminal N-Acetylglucosamine on the N-Glycan Core. J Biol Chem 2006; 281:19545-60. [PMID: 16684772 DOI: 10.1074/jbc.m603312200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahras M, Otto GP, Tooze SA. Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells. ACTA ACUST UNITED AC 2006; 173:241-51. [PMID: 16618809 PMCID: PMC2063815 DOI: 10.1083/jcb.200506163] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.
Collapse
Affiliation(s)
- Malika Ahras
- Cancer Research UK, London Research Institute, London WC2A 3PX, England, UK
| | | | | |
Collapse
|
28
|
Kakhlon O, Sakya P, Larijani B, Watson R, Tooze SA. GGA function is required for maturation of neuroendocrine secretory granules. EMBO J 2006; 25:1590-602. [PMID: 16601685 PMCID: PMC1440831 DOI: 10.1038/sj.emboj.7601067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 03/08/2006] [Indexed: 11/08/2022] Open
Abstract
Secretory granule (SG) maturation has been proposed to involve formation of clathrin-coated vesicles (CCVs) from immature SGs (ISGs). We tested the effect of inhibiting CCV budding by using the clathrin adaptor GGA (Golgi-associated, gamma-ear-containing, ADP-ribosylation factor-binding protein) on SG maturation in neuroendocrine cells. Overexpression of a truncated, GFP-tagged GGA, VHS (Vps27, Hrs, Stam)-GAT (GGA and target of myb (TOM))-GFP led to retention of MPR, VAMP4, and syntaxin 6 in mature SGs (MSGs), suggesting that CCV budding from ISGs is inhibited by the SG-localizing VHS-GAT-GFP. Furthermore, VHS-GAT-GFP-overexpression disrupts prohormone convertase 2 (PC2) autocatalytic cleavage, processing of secretogranin II to its product p18, and the correlation between PC2 and p18 levels. All these effects were not observed if full-length GGA1-GFP was overexpressed. Neither GGA1-GFP nor VHS-GAT-GFP perturbed SG protein budding from the TGN, or homotypic fusion of ISGs. Reducing GGA3 levels by using short interfering (si)RNA also led to VAMP4 retention in SGs, and inhibition of PC2 activity. Our results suggest that inhibition of CCV budding from ISGs downregulates the sorting from the ISGs and perturbs the intragranular activity of PC2.
Collapse
Affiliation(s)
- Or Kakhlon
- Secretory Pathway Laboratories, Cancer Research UK, London Research Institute, London, UK
| | - Prabhat Sakya
- Cell Biophysics, Cancer Research UK, London Research Institute, London, UK
| | - Banafshe Larijani
- Cell Biophysics, Cancer Research UK, London Research Institute, London, UK
| | - Rose Watson
- Electron Microscopy Laboratories, Cancer Research UK, London Research Institute, London, UK
| | - Sharon A Tooze
- Secretory Pathway Laboratories, Cancer Research UK, London Research Institute, London, UK
- Secretory Pathway Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK. Tel.: +44 207 269 3122; Fax: +44 207 269 3417; E-mail:
| |
Collapse
|
29
|
Ivanova JL, Leonova OG, Popenko VI, Ierusalimsky VN, Korshunova TA, Boguslavsky DV, Malyshev AY, Balaban PM, Belyavsky AV. Intracellular localization of the HCS2 gene products in identified snail neurons in vivo and in vitro. Cell Mol Neurobiol 2006; 26:127-44. [PMID: 16763780 DOI: 10.1007/s10571-006-9025-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 01/20/2006] [Indexed: 11/29/2022]
Abstract
1. The HCS2 (Helix command specific 2) gene expressed in giant command neurons for withdrawal behavior of the terrestrial snail Helix lucorum encodes a unique hybrid precursor protein that contains a Ca-binding (EF-hand motif) protein and four small peptides (CNP1-CNP4) with similar Tyr-Pro-Arg-X aminoacid sequence at the C terminus. Previous studies suggest that under conditions of increased intracellular Ca(2+) concentration the HCS2 peptide precursor may be cleaved, and small physiologically active peptides transported to the release sites. In the present paper, intracellular localization of putative peptide products of the HCS2-encoded precursor was studied immunocytochemically by means of light and electron microscopy. 2. Polyclonal antibodies against the CNP3 neuropeptide and a Ca-binding domain of the precursor protein were used for gold labeling of ultrathin sections of identified isolated neurons maintained in culture for several days, and in same identified neurons freshly isolated from the central nervous system. 3. In freshly isolated neurons, the gold particles were mainly localized over the cytoplasmic secretory granules, with the density of labeling for the CNP3 neuropeptide being two-fold higher than for the calcium-binding domain. In cultured neurons, both antibodies mostly labeled clusters of secretory granules in growth cones and neurites of the neuron. The density of labeling for cultured neurons was the same for both antibodies, and was two-fold higher than for the freshly isolated from the central nervous system neurons. 4. The immunogold particles were practically absent in the bodies of cultured neurons. 5. The data obtained conform to the suggestion that the HCS2 gene products are transported from the cell body to the regions of growth or release sites.
Collapse
Affiliation(s)
- J L Ivanova
- Engelhardt Institute of Molecular Biology, 32 Vavilov Str., Moscow, 119991, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun-Wada GH, Wada Y, Futai M. Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:106-14. [PMID: 15282181 DOI: 10.1016/j.bbabio.2004.04.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/19/2004] [Accepted: 04/20/2004] [Indexed: 11/19/2022]
Abstract
The vacuolar-type H(+)-ATPases (V-ATPase) are a family of multi-subunit ATP-dependent proton pumps involved in a wide variety of physiological processes. They are present in endomembrane organelles such as vacuoles, lysosomes, endosomes, the Golgi apparatus, chromaffin granules and coated vesicles, and acidify the luminal pH of these intracellular compartments. They also pump protons across the plasma membranes of specialized cells including osteoclasts and epithelial cells in kidneys and male genital tracts. Here, we briefly summarize our recent studies on the diverse and essential roles of mammalian V-ATPase.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences and Nanoscience, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
31
|
Paroutis P, Touret N, Grinstein S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 2004; 19:207-15. [PMID: 15304635 DOI: 10.1152/physiol.00005.2004] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The luminal pH of the secretory pathway plays a critical role in the posttranslational modification and sorting of proteins and lipids. The pH of each one of the organelles that constitute the pathway is unique, becoming more acidic as the biosynthetic cargo approaches its destination. The methods used for measurement of pH in the secretory pathway, its determinants, and its regulation are the subjects of this review.
Collapse
Affiliation(s)
- Paul Paroutis
- Cell Biology Program, Hospital for Sick Children, Toronto M5G 1X8 Ontario, Canada
| | | | | |
Collapse
|
32
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
33
|
Montuenga LM, Guembe L, Burrell MA, Bodegas ME, Calvo A, Sola JJ, Sesma P, Villaro AC. The diffuse endocrine system: from embryogenesis to carcinogenesis. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 38:155-272. [PMID: 12756892 DOI: 10.1016/s0079-6336(03)80004-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present review we will summarise the current knowledge about the cells comprising the Diffuse Endocrine System (DES) in mammalian organs. We will describe the morphological, histochemical and functional traits of these cells in three major systems gastrointestinal, respiratory and prostatic. We will also focus on some aspects of their ontogeny and differentiation, as well as to their relevance in carcinogenesis, especially in neuroendocrine tumors. The first chapter describes the characteristics of DES cells and some of their specific biological and biochemical traits. The second chapter deals with DES in the gastrointestinal organs, with special reference to the new data on the differentiation mechanisms that leads to the appearance of endocrine cells from an undifferentiated stem cell. The third chapter is devoted to DES of the respiratory system and some aspects of its biological role, both, during development and adulthood. Neuroendocrine hyperplasia and neuroendocrine lung tumors are also addressed. Finally, the last chapter deals with the prostatic DES, discussing its probable functional role and its relevance in hormone-resistant prostatic carcinomas.
Collapse
Affiliation(s)
- Luis M Montuenga
- Department of Histology and Pathology, Schools of Science and Medicine, University of Navarra, 31080 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schoonderwoert VTG, Jansen EJR, Martens GJM. The fate of newly synthesized V-ATPase accessory subunit Ac45 in the secretory pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1844-53. [PMID: 11952786 DOI: 10.1046/j.1432-1033.2002.02831.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multimeric enzyme complex that acidifies organelles of the vacuolar system in eukaryotic cells. Proteins that interact with the V-ATPase may play an important role in controlling the intracellular localization and activity of the proton pump. The neuroendocrine-enriched V-ATPase accessory subunit Ac45 may represent such a protein as it has been shown to interact with the membrane sector of the V-ATPase in only a subset of organelles. Here, we examined the fate of newly synthesized Ac45 in the secretory pathway of a neuroendocrine cell. A major portion of intact approximately 46-kDa Ac45 was found to be N-linked glycosylated to approximately 62 kDa and a minor fraction to approximately 64 kDa. Trimming of the N-linked glycans gave rise to glycosylated Ac45-forms of approximately 61 and approximately 63 kDa that are cleaved to a C-terminal fragment of 42-44 kDa (the deglycosylated form is approximately 23 kDa), and a previously not detected approximately 22-kDa N-terminal cleavage fragment (the deglycosylated form is approximately 20 kDa). Degradation of the N-terminal fragment is rapid, does not occur in lysosomes and is inhibited by brefeldin A. Both the N- and C-terminal fragment pass the medial Golgi, as they become partially endoglycosidase H resistant. The Ac45 cleavage event is a relatively slow process (half-life of intact Ac45 is 4-6 h) and takes place in the early secretory pathway, as it is not affected by brefeldin A and monensin. Tunicamycin inhibited N-linked glycosylation of Ac45 and interfered with the cleavage process, suggesting that Ac45 needs proper folding for the cleavage to occur. Together, our results indicate that Ac45 folding and cleavage occur slowly and early in the secretory pathway, and that the cleavage event may be linked to V-ATPase activation.
Collapse
Affiliation(s)
- Vincent Th G Schoonderwoert
- Department of Animal Physiology, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Andresen JM, Moore HP. Biogenesis of processing-competent secretory organelles in vitro. Biochemistry 2001; 40:13020-30. [PMID: 11669640 DOI: 10.1021/bi0112762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Propeptide processing occurs in specific compartments of the secretory pathway, but how these processing-competent organelles are generated from their processing-incompetent precursor compartments is unknown. To dissect the process biochemically, we have developed a novel cell-free system reconstituting the production of processing-competent secretory granules in AtT-20 cells. Using donor membranes containing [(35)S]sulfate labeled pro-opiomelanocortin (POMC)(5) in the trans-Golgi, we can reconstitute cytosol- and ATP-dependent prohormone processing as well as incorporation of processed ACTH into immature secretory granules (ISGs). Under limiting cytosol conditions, both reactions are greatly stimulated by ADP-ribosylation factor 1 (ARF1) but not by the GDP-bound ARF1 T31N mutant. pH studies show that lumenal acidification, most likely due to ARF-mediated sorting of proton pumps and leaks during budding, confers processing competency to the resulting organelle. Surprisingly, comparison of onset of processing and ISG release reveals that they are distinct biochemical processes with different kinetics and separate cytosolic requirements. Moreover, ARF regulates the onset of prohormone processing but not ISG release. Our data suggest a two-step mechanism (onset of processing followed by ISG release) for the production of processing-competent organelles from the trans-Golgi and provide the first system with which these two steps may be individually dissected.
Collapse
Affiliation(s)
- J M Andresen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
36
|
Wu MM, Grabe M, Adams S, Tsien RY, Moore HP, Machen TE. Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem 2001; 276:33027-35. [PMID: 11402049 DOI: 10.1074/jbc.m103917200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.
Collapse
Affiliation(s)
- M M Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wendler F, Page L, Urbé S, Tooze SA. Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 2001; 12:1699-709. [PMID: 11408578 PMCID: PMC37334 DOI: 10.1091/mbc.12.6.1699] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homotypic fusion of immature secretory granules (ISGs) gives rise to mature secretory granules (MSGs), the storage compartment in endocrine and neuroendocrine cells for hormones and neuropeptides. With the use of a cell-free fusion assay, we investigated which soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) molecules are involved in the homotypic fusion of ISGs. Interestingly, the SNARE molecules mediating the exocytosis of MSGs in neuroendocrine cells, syntaxin 1, SNAP-25, and VAMP2, were not involved in homotypic ISG fusion. Instead, we have identified syntaxin 6 as a component of the core machinery responsible for homotypic ISG fusion. Subcellular fractionation studies and indirect immunofluorescence microscopy show that syntaxin 6 is sorted away during the maturation of ISGs to MSGs. Although, syntaxin 6 on ISG membranes is associated with SNAP-25 and SNAP-29/GS32, we could not find evidence that these target (t)-SNARE molecules are involved in homotypic ISG fusion. Nor could we find any involvement for the vesicle (v)-SNARE VAMP4, which is known to be associated with syntaxin 6. Importantly, we have shown that homotypic fusion requires the function of syntaxin 6 on both donor as well as acceptor membranes, which suggests that t-t-SNARE interactions, either direct or indirect, may be required during fusion of ISG membranes.
Collapse
Affiliation(s)
- F Wendler
- Secretory Pathway Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
38
|
Blackmore CG, Varro A, Dimaline R, Bishop L, Gallacher DV, Dockray GJ. Measurement of secretory vesicle pH reveals intravesicular alkalinization by vesicular monoamine transporter type 2 resulting in inhibition of prohormone cleavage. J Physiol 2001; 531:605-17. [PMID: 11251044 PMCID: PMC2278512 DOI: 10.1111/j.1469-7793.2001.0605h.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The acidic interior of neuroendocrine secretory vesicles provides both an energy gradient for amine-proton exchangers (VMATs) to concentrate small transmitter molecules, for example catecholamines, and an optimal pH for the prohormone convertases which cleave hormone precursors. There is evidence that VMAT activity modulates prohormone cleavage, but in the absence of measurements of pH in secretory vesicles in intact cells, it has not been possible to establish whether these effects are attributable to raised intravesicular pH due to proton transport through VMATs. 2. Clones were generated of the hamster insulinoma cell line HIT-T15 expressing a pH-sensitive form of green fluorescent protein (GFP-F64L/S65T) targeted to secretory vesicles, with and without co-expression of VMAT2. In order to study prohormone cleavage, further clones were generated that expressed preprogastrin with and without co-expression of VMAT2. 3. Confocal microscopy of GFP fluorescence indicated that the pH in the secretory vesicles was 5.6 in control cells, compared with 6.6 in cells expressing VMAT2; the latter was reduced to 5.8 by the VMAT inhibitor reserpine. 4. Using a pulse-chase labelling protocol, cleavage of 34-residue gastrin (G34) was found to be inhibited by co-expression with VMAT2, and this was reversed by reserpine. Similar effects on vesicle pH and G34 cleavage were produced by ammonium chloride. 5. We conclude that VMAT expression confers the linked abilities to store biogenic amines and modulate secretory vesicle pH over a range influencing prohormone cleavage and therefore determining the identity of regulatory peptide secretory products.
Collapse
Affiliation(s)
- C G Blackmore
- Physiological Laboratory, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
39
|
Schoonderwoert VT, Holthuis JC, Tanaka S, Tooze SA, Martens GJ. Inhibition of the vacuolar H+-ATPase perturbs the transport, sorting, processing and release of regulated secretory proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5646-54. [PMID: 10951226 DOI: 10.1046/j.1432-1327.2000.01648.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.
Collapse
Affiliation(s)
- V T Schoonderwoert
- Department of Animal Physiology, University of Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
40
|
Kuliawat R, Prabakaran D, Arvan P. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell 2000; 11:1959-72. [PMID: 10848622 PMCID: PMC14896 DOI: 10.1091/mbc.11.6.1959] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, two different prohormone-processing enzymes, prohormone convertase 1 (PC1) and carboxypeptidase E, have been implicated in enhancing the storage of peptide hormones in endocrine secretory granules. It is important to know the extent to which such molecules may act as "sorting receptors" to allow the selective trafficking of cargo proteins from the trans-Golgi network into forming granules, versus acting as enzymes that may indirectly facilitate intraluminal storage of processed hormones within maturing granules. GH4C1 cells primarily store prolactin in granules; they lack PC1 and are defective for intragranular storage of transfected proinsulin. However, proinsulin readily enters the immature granules of these cells. Interestingly, GH4C1 clones that stably express modest levels of PC1 store more proinsulin-derived protein in granules. Even in the presence of PC1, a sizable portion of the proinsulin that enters granules goes unprocessed, and this portion largely escapes granule storage. Indeed, all of the increased granule storage can be accounted for by the modest portion converted to insulin. These results are not unique to GH4C1 cells; similar results are obtained upon PC1 expression in PC12 cells as well as in AtT20 cells (in which PC1 is expressed endogenously at higher levels). An in vitro assay of protein solubility indicates a difference in the biophysical behavior of proinsulin and insulin in the PC1 transfectants. We conclude that processing to insulin, facilitated by the catalytic activities of granule proteolytic enzymes, assists in the targeting (storage) of the hormone.
Collapse
Affiliation(s)
- R Kuliawat
- Division of Endocrinology, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
41
|
Gorr SU, Huang XF, Cowley DJ, Kuliawat R, Arvan P. Disruption of disulfide bonds exhibits differential effects on trafficking of regulated secretory proteins. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C121-31. [PMID: 10409115 DOI: 10.1152/ajpcell.1999.277.1.c121] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For several secretory proteins, it has been hypothesized that disulfide-bonded loop structures are required for sorting to secretory granules. To explore this hypothesis, we employed dithiothreitol (DTT) treatment in live pancreatic islets, as well as in PC-12 and GH(4)C(1) cells. In islets, disulfide reduction in the distal secretory pathway did not increase constitutive or constitutive-like secretion of proinsulin (or insulin). In PC-12 cells, DTT treatment caused a dramatic increase in unstimulated secretion of newly synthesized chromogranin B (CgB), presumably as a consequence of reducing the single conserved chromogranin disulfide bond (E. Chanat, U. Weiss, W. B. Huttner, and S. A. Tooze. EMBO J. 12: 2159-2168, 1993). However, in GH(4)C(1) cells that also synthesize CgB endogenously, DTT treatment reduced newly synthesized prolactin and blocked its export, whereas newly synthesized CgB was routed normally to secretory granules. Moreover, on transient expression in GH(4)C(1) cells, CgA and a CgA mutant lacking the conserved disulfide bond showed comparable multimeric aggregation properties and targeting to secretory granules, as measured by stimulated secretion assays. Thus the conformational perturbation of regulated secretory proteins caused by disulfide disruption leads to consequences in protein trafficking that are both protein and cell type dependent.
Collapse
Affiliation(s)
- S U Gorr
- Department of Biological and Biophysical Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
42
|
Fishelson Z, Kozer E, Sirhan S, Katz Y. Distinction between processing of normal and mutant complement C3 within human skin fibroblasts. Eur J Immunol 1999; 29:845-55. [PMID: 10092087 DOI: 10.1002/(sici)1521-4141(199903)29:03<845::aid-immu845>3.0.co;2-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inherited C3 deficiency may result from mutations in the C3 gene affecting transcription or translation (type I deficiency). We described a type II C3 deficiency caused by a mutation yielding an abnormal non-secreted C3. The post-translational processing of mutant and normal C3 was analyzed in fibroblasts grown from skin biopsies. Mutant C3 is located mainly in the endoplasmic reticulum (ER), whereas normal C3 is seen evenly distributed throughout the cytoplasm. Most of the mutant C3 is degraded within the cell, and only a small fraction (around 8%) is secreted after 20 h chase. Processing of C3 at 19 degrees C was reduced in normal fibroblasts but completely blocked in mutant fibroblasts. ATP depletion blocked processing of normal proC3 to C3. In contrast, the mutant proC3 was partly degraded in ATP-depleted cells, yet its complete degradation and secretion were blocked. Intracellular degradation of the mutant C3 was not inhibited by NH4Cl, thus excluding cleavage within lysosomes. These results demonstrate that the type II mutant C3 studied here is retained in the ER probably by a quality contol machinery that identifies abnormal protein folding. Consequently, it is destined to undergo a two-step intracellular degradation; an initial ATP-independent step followed by an ATP-dependent step.
Collapse
Affiliation(s)
- Z Fishelson
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel.
| | | | | | | |
Collapse
|
43
|
Lamango NS, Apletalina E, Liu J, Lindberg I. The proteolytic maturation of prohormone convertase 2 (PC2) is a pH-driven process. Arch Biochem Biophys 1999; 362:275-82. [PMID: 9989936 DOI: 10.1006/abbi.1998.1033] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant proPC2 purified from the medium of CHO cells overexpressing both the prohormone convertase (PC) precursor proPC2 and the 21-kDa amino terminal portion of the neuroendocrine protein 7B2 can spontaneously convert to an active species. In the present report, we have characterized the proPC2 zymogen conversion process. Sequencing of the mature 66 kDa enzyme revealed a single site of cleavage at the paired basic site amino terminal to the GYRDI sequence. In contrast to mature PC2 activity, proPC2 conversion was inhibited neither by the eukaryotic subtilisin inhibitor pCMS nor by the specific PC2 inhibitor, 7B2 CT peptide, suggesting significant differences between the proPC2 conversion reaction and the hydrolysis of synthetic substrates by mature PC2. In support of this idea, proPC2 conversion was not calcium dependent and was unaffected by 5 mM EDTA. The rate of conversion of proPC2 remained similar with a 10-fold difference in zymogen concentration, implicating an intramolecular rather than intermolecular mechanism of activation. Interestingly, the rate of proPC2 conversion was extremely pH dependent, occurring most extensively between pHs 4.0 and 4.9. Taken together, our results suggest that cellular proPC2 maturation occurs via an autocatalytic, intramolecular process controlled not by 7B2 inhibition nor by calcium levels, but by the decreasing pH gradient along the secretory pathway.
Collapse
Affiliation(s)
- N S Lamango
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana, 70112, USA
| | | | | | | |
Collapse
|
44
|
Urbé S, Page LJ, Tooze SA. Homotypic fusion of immature secretory granules during maturation in a cell-free assay. J Biophys Biochem Cytol 1998; 143:1831-44. [PMID: 9864358 PMCID: PMC2175232 DOI: 10.1083/jcb.143.7.1831] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biogenesis of secretory granules embodies several morphological and biochemical changes. In particular, in neuroendocrine cells maturation of secretory granules is characterized by an increase in size which has been proposed to reflect homotypic fusion of immature secretory granules (ISGs). Here we describe an assay that provides the first biochemical evidence for such a fusion event and allows us to analyze its regulation. The assay reconstitutes homotypic fusion between one population of ISGs containing a [35S]sulfate-labeled substrate, secretogranin II (SgII), and a second population containing the prohormone convertase PC2. Both substrate and enzyme are targeted exclusively to ISGs. Fusion is measured by quantification of a cleavage product of SgII produced by PC2. With this assay we show that fusion only occurs between ISGs and not between ISGs and MSGs, is temperature dependent, and requires ATP and GTP and cytosolic proteins. NSF (N-ethylmaleimide-sensitive fusion protein) is amongst the cytosolic proteins required, whereas we could not detect a requirement for p97. The ability to reconstitute ISG fusion in a cell-free assay is an important advance towards the identification of molecules involved in the maturation of secretory granules and will increase our understanding of this process.
Collapse
Affiliation(s)
- S Urbé
- Secretory Pathways Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
45
|
Scougall K, Taylor NA, Jermany JL, Docherty K, Shennan KI. Differences in the autocatalytic cleavage of pro-PC2 and pro-PC3 can be attributed to sequences within the propeptide and Asp310 of pro-PC2. Biochem J 1998; 334 ( Pt 3):531-7. [PMID: 9729458 PMCID: PMC1219719 DOI: 10.1042/bj3340531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PC2 and PC3 are subtilisin-like proteases involved in the maturation of prohormones and proneuropeptides within neuroendocrine cells. They are synthesized as zymogens that undergo autocatalytic maturation within the secretory pathway. Maturation of pro-PC2 is slow (t12 >8 h), exhibits a pH optimum of 5.5 and is dependent on calcium (K0.5 2 mM), while pro-PC3 maturation is relatively rapid (t12 15 min), exhibits a neutral pH optimum and is not calcium dependent. These differences in the rates and optimal conditions for activation of the proteases may contribute to the diversity of products generated by these proteases in different cell types. Although highly similar, there are two major differences between pro-PC2 and pro-PC3: the presence of an aspartate at position 310 in pro-PC2 compared with asparagine at the equivalent position in pro-PC3 (and all other members of the subtilisin family), and the N-terminal propeptides, which exhibit low sequence identity (30%). With a view to establishing the structural features that might be responsible for these differences in the maturation of pro-PC2 and pro-PC3, Asp310 in pro-PC2 was mutated to Asn, and Asn309 in pro-PC3 was mutated to Asp. Chimaeric proteins were also made consisting of the pro-region of PC2 fused to the mature portion of PC3 and the pro-region of PC3 fused to the mature region of PC2. The wild-type and mutant DNA constructs were then transcribed and translated in an in vitro system capable of supporting maturation of pro-PC2 and pro-PC3. The results demonstrated that Asp310 of pro-PC2 is responsible for the acidic pH optimum for maturation. Thus changing Asp310 to Asn shifted the pH optimum for maturation to pH 7.0. However, changing Asn309 of pro-PC3 to Asp had no effect on the optimum pH for maturation of pro-PC3. A chimaeric construct containing the propeptide of pro-PC2 attached to PC3 shifted the pH optimum for maturation from pH 7.0 to 6.0 and slowed down the rate of maturation (t12 >8 h). When attached to PC2, the pro-region of pro-PC3 had no effect on the optimum pH for maturation (pH 5.5-6.0), but it did accelerate the rate of maturation (t12 2 h). These results demonstrate that Asp310 and the pro-region of pro-PC2 contribute to the acidic pH optimum and low rate of maturation of this zymogen relative to its closely related homologue PC3.
Collapse
Affiliation(s)
- K Scougall
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, U.K
| | | | | | | | | |
Collapse
|
46
|
Tooze SA. Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:231-44. [PMID: 9714820 PMCID: PMC7126647 DOI: 10.1016/s0167-4889(98)00059-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretory granule formation requires selection of soluble and membrane proteins into nascent secretory granules, and exclusion of proteins not required for the function of secretory granules. Both selection and exclusion presumably can occur in the compartment where assembly of the secretory granule begins, the trans most cisternae of the Golgi complex. Current research focused on the initial stages of secretory granule formation includes a search for the 'signals' which may mediate active sorting of components into secretory granules, and the role of aggregation of regulated secretory proteins in sorting. In addition, the temporal sequence of the sorting events in the Golgi, and post-Golgi compartments has gained much attention, as summarized by the alternative but not mutually exclusive 'sorting for entry' vs. 'sorting by retention' models. 'Sorting for entry' which encompasses the most popular models requires selection of cargo and membrane and exclusion of non-secretory granule proteins in the TGN prior to secretory granule formation. 'Sorting by retention' stipulates that protein selection or exclusion may occur after secretory granule formation: secretory granule specific components are retained during maturation of the granule while non-secretory granule molecules are removed in vesicles which bud from maturing secretory granules. Finally, some progress has been made in the identification of cytosolic components involved in the budding of nascent secretory granules from the TGN. This review will focus on the recent data concerning the events in secretory granule formation which occur, in the trans-Golgi network.
Collapse
Key Words
- secretion
- regulated secretion
- trans-golgi network
- vesicle formation
- immature secretory granule
- tgn, trans-golgi network
- isg, immature secretory granule
- msg, mature secretory granule
- csv, constitutive secretory vesicle
- ccv, clathrin-coated vesicle
- cgb, chromogranin b
- sgii, secretogranin ii
- hspg, heparan sulphate proteoglycan
- pcs, prohormone converting enzymes
- ldcv, large dense core vesicles
- dtt, dithiothreitol
- arf, adp-ribosylation factor
- ap-1, adaptor protein-1
- pld, phospholipase d
- gh, growth hormone
- prl, prolactin
- mpr, mannose-6-phosphate receptor
- pip2 (phosphatidylinositol 4,5-bisphosphate)
- pitp, phosphatidylinositol transfer protein
- pi, phosphatidylinositol
Collapse
Affiliation(s)
- S A Tooze
- Secretory Pathways Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|
47
|
Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 1998; 332 ( Pt 3):593-610. [PMID: 9620860 PMCID: PMC1219518 DOI: 10.1042/bj3320593] [Citation(s) in RCA: 412] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Thiele C, Huttner WB. The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J Biol Chem 1998; 273:1223-31. [PMID: 9422790 DOI: 10.1074/jbc.273.2.1223] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chromogranins A and B, two widespread neuroendocrine secretory proteins, contain a homologous N-terminal disulfide-bonded loop that is required for sorting to secretory granules. Here we have investigated the role of this loop in the oligomerization of chromogranin A. Reduction of the disulfide bond or the addition of an excess of an N-terminal chromogranin A fragment containing the loop (CgA1-60) resulted in the dissociation into monomers of the chromogranin A dimer found at pH 7.4 and 6.4 and of the chromogranin tetramer found at pH 5.4. The addition of an excess of a synthetic peptide corresponding to the conserved C-terminal domain of chromogranin A (CgA406-431) had no effect on the chromogranin dimers at pH 7.4 and 6.4 and resulted in the dissociation of the chromogranin A tetramers at pH 5.4 into dimers. Fluorescence energy transfer experiments using fluorescently labeled CgA1-60 showed that the N-terminal disulfide-bonded loop has a high affinity for homodimerization (KD = 20 nM at pH 6.4), which was sufficient to mediate dimerization of full-length chromogranin A. Association and dissociation of loop-mediated chromogranin A dimerization approached completion within a few seconds. Our results imply that chromogranin A homodimerizes shortly after synthesis in the endoplasmic reticulum and that the loop-mediated homodimeric state is an essential prerequisite for its sorting, in the trans-Golgi-network, to secretory granules.
Collapse
Affiliation(s)
- C Thiele
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | |
Collapse
|
49
|
Urbé S, Tooze SA, Barr FA. Formation of secretory vesicles in the biosynthetic pathway. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1358:6-22. [PMID: 9296516 DOI: 10.1016/s0167-4889(97)00050-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S Urbé
- Imperial Cancer Research Fund, London, UK
| | | | | |
Collapse
|
50
|
Dittié AS, Thomas L, Thomas G, Tooze SA. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J 1997; 16:4859-70. [PMID: 9305628 PMCID: PMC1170121 DOI: 10.1093/emboj/16.16.4859] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The composition of secretory granules in neuroendocrine and endocrine cells is determined by two sorting events; the first in the trans-Golgi complex (TGN), the second in the immature secretory granule (ISG). Sorting from the ISG, which may be mediated by the AP-1 type adaptor complex and clathrin-coated vesicles, occurs during ISG maturation. Here we show that furin, a ubiquitously expressed, TGN/endosomal membrane endoprotease, is present in the regulated pathway of neuroendocrine cells where it is found in ISGs. By contrast, TGN38, a membrane protein that is also routed through the TGN/endosomal system does not enter ISGs. Furin, however, is excluded from mature secretory granules, suggesting that the endoprotease is retrieved from the clathrin-coated ISGs. Consistent with this, we show that the furin cytoplasmic domain interacts with AP-1, a component of the TGN/ISG-localized clathrin sorting machinery. Interaction between AP-1 and furin is dependent on phosphorylation of the enzyme's cytoplasmic domain by casein kinase II. Finally, in support of a requirement for the phosphorylation-dependent association of furin with AP-1, expression of furin mutants that mimic either the phosphorylated or unphosphorylated forms of the endoprotease in AtT-20 cells demonstrates that the integrity of the CKII sites is necessary for removal of furin from the regulated pathway.
Collapse
Affiliation(s)
- A S Dittié
- Secretory Pathways Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | |
Collapse
|