1
|
Tibarewal P, Spinelli L, Maccario H, Leslie NR. Proteomic and yeast 2-hybrid screens to identify PTEN binding partners. Adv Biol Regul 2024; 91:100989. [PMID: 37839992 DOI: 10.1016/j.jbior.2023.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
PTEN is a phosphoinositide lipid phosphatase and an important tumour suppressor protein. PTEN function is reduced or lost in around a third of all human cancers through diverse mechanisms, from gene deletion to changes in the function of proteins which regulate PTEN through direct protein binding. Here we present data from SILAC (Stable Isotope Labelling by Amino acids in Cell culture) proteomic screens to identify proteins which bind to PTEN. These experiments using untransformed epithelial cells and glioma cells identified several novel candidate proteins in addition to many previously identified PTEN binding partners and many proteins which are recognised as common false positives using these methods. From subsequent co-expression pull-down experiments we provide further evidence supporting the physical interaction of PTEN with MMP1, Myosin 18A and SHROOM3. We also performed yeast two-hybrid screens which identify the previously recognised PTEN binding partner MSP58 in addition to the nuclear import export receptor TNPO3. These experiments identify several novel candidate binding partners of PTEN and provide further data addressing the set of proteins that interact with this important tumour suppressor.
Collapse
Affiliation(s)
- Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK; School of Life Sciences, University of Dundee, Dundee, UK; UCL Cancer Centre, University College London, London, UK
| | - Laura Spinelli
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK; School of Life Sciences, University of Dundee, Dundee, UK
| | - Helene Maccario
- School of Life Sciences, University of Dundee, Dundee, UK; Aix-Marseille University, Marseille, UK
| | - Nick R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK.
| |
Collapse
|
2
|
Conciatori F, Salvati E, Ciuffreda L, Shirasawa S, Falcone I, Cognetti F, Ferretti G, Zeuli M, Del Bufalo D, Bazzichetto C, Milella M. Fibroblast-Induced Paradoxical PI3K Pathway Activation in PTEN-Competent Colorectal Cancer: Implications for Therapeutic PI3K/mTOR Inhibition. Front Oncol 2022; 12:862806. [PMID: 35719951 PMCID: PMC9203999 DOI: 10.3389/fonc.2022.862806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Tumor-microenvironment interactions are important determinants of drug resistance in colorectal cancer (CRC). We, therefore, set out to understand how interactions between genetically characterized CRC cells and stromal fibroblasts might influence response to molecularly targeted inhibitors. Techniques Sensitivity to PI3K/AKT/mTOR pathway inhibitors of CRC cell lines, with known genetic background, was investigated under different culture conditions [serum-free medium, fibroblasts’ conditioned medium (CM), direct co-culture]. Molecular pathway activation was monitored using Western Blot analysis. Immunoprecipitation was used to detect specific mTOR complex activation. Immunofluorescence was used to analyze cellular PTEN distribution, while different mutant PTEN plasmids were used to map the observed function to specific PTEN protein domains. Results Exposure to fibroblast-CM resulted in increased growth-inhibitory response to double PI3K/mTOR inhibitors in PTEN-competent CRC cell lines harboring KRAS and PI3K mutations. Such functional effect was attributable to fibroblast-CM induced paradoxical PI3K/mTORC1 pathway activation, occurring in the presence of a functional PTEN protein. At a molecular level, fibroblast-CM induced C-tail phosphorylation and cytoplasmic redistribution of the PTEN protein, thereby impairing its lipid phosphatase function and favored the formation of active, RAPTOR-containing, mTORC1 complexes. However, PTEN’s lipid phosphatase function appeared to be dispensable, while complex protein-protein interactions, also involving PTEN/mTOR co-localization and subcellular distribution, were crucial for both mTORC1 activation and sensitivity to double PI3K/mTOR inhibitors. Data Interpretation Microenvironmental cues, in particular soluble factors produced by stromal fibroblasts, profoundly influence PI3K pathway signaling and functional response to specific inhibitors in CRC cells, depending on their mutational background and PTEN status.
Collapse
Affiliation(s)
- Fabiana Conciatori
- Medical Oncology 1, Regina Elena National Cancer Institute (IRCCS), Rome, Italy.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Erica Salvati
- Institute of Molecular Biology and Pathology -National Research Council (BPM-CNR), Rome, Italy
| | - Ludovica Ciuffreda
- Department of Research, Advanced Diagnostics, and Technological Innovation (SAFU), Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Senji Shirasawa
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Italia Falcone
- Department of Research, Advanced Diagnostics, and Technological Innovation (SAFU), Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Gianluigi Ferretti
- Medical Oncology 1, Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Massimo Zeuli
- Medical Oncology 1, Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Chiara Bazzichetto
- Medical Oncology 1, Regina Elena National Cancer Institute (IRCCS), Rome, Italy.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute (IRCCS), Rome, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
3
|
Activation of PAR2 by tissue factor induces the release of the PTEN from MAGI proteins and regulates PTEN and Akt activities. Sci Rep 2020; 10:20908. [PMID: 33262514 PMCID: PMC7708427 DOI: 10.1038/s41598-020-77963-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Tissue factor (TF) signalling has been associated with alterations in Akt activity influencing cellular survival and proliferation. TF is also shown to induce signalling through activation of the protease activated receptor (PAR)2. Seven cell lines were exposed to recombinant-TF (rec-TF), or activated using a PAR2-agonist peptide and the phosphorylation state of PTEN, and the activities of PTEN and Akt measured. Furthermore, by measuring the association of PTEN with MAGI proteins a mechanism for the induction of signalling by TF was proposed. Short term treatment of cells resulted in de-phosphorylation of PTEN, increased lipid-phosphatase activity and reduced Akt kinase activity in most of the cell lines examined. In contrast, continuous exposure to rec-TF up to 14 days, resulted in lower PTEN antigen levels, enhanced Akt activity and increased rate of cell proliferation. To explore the mechanism of activation of PTEN by TF, the association of "membrane-associated guanylate kinase-with inverted configuration" (MAGI)1–3 proteins with PTEN was assessed using the proximity ligation assay and by co-immunoprecipitation. The interaction of PTEN with all three MAGI proteins was transiently reduced following PAR2 activation and explains the changes in PTEN activity. Our data is first to show that PAR2 activation directly, or through exposure of cells to TF releases PTEN from MAGI proteins and is concurrent with increases in PTEN phosphatase activity. However, prolonged exposure to TF results in the reduction in PTEN antigen with concurrent increase in Akt activity which may explain the aberrant cell survival, proliferation and invasion associated with TF during chronic diseases.
Collapse
|
4
|
Kuttikrishnan S, Siveen KS, Prabhu KS, Khan AQ, Ahmed EI, Akhtar S, Ali TA, Merhi M, Dermime S, Steinhoff M, Uddin S. Curcumin Induces Apoptotic Cell Death via Inhibition of PI3-Kinase/AKT Pathway in B-Precursor Acute Lymphoblastic Leukemia. Front Oncol 2019; 9:484. [PMID: 31275848 PMCID: PMC6593070 DOI: 10.3389/fonc.2019.00484] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a significant cancer of children resulting from the clonal proliferation of lymphoid precursors with arrested maturation. Although chemotherapeutic approaches have been achieving successful remission for the majority of cases of childhood ALL, development of resistance to chemotherapy has been observed. Thus, new therapeutic approaches are required to improve patient's prognosis. Therefore, we investigated the anticancer potential of curcumin in ALL. We tested a panel of B-precursor ALL (B-Pre-ALL) cell lines with various translocations after treatment with different doses of curcumin. Curcumin suppresses the viability in a concentration-dependent manner in 697, REH, SupB15, and RS4;11 cells (doses from 0 to 80 μM). Curcumin induces apoptosis in B-Pre-ALL cell lines via activation of caspase-8 and truncation of BID. Curcumin treatment increased the ratio of Bax/Bcl-2 and resulted in a leaky mitochondrial membrane that led to the discharge of cytochrome c from the mitochondria to the cytoplasm, the activation of caspase 3 and the cleavage of PARP. Curcumin treatment of B-Pre-ALL cell lines induced a dephosphorylation of the constitutive phosphorylated AKT/PKB and a down-regulation of the expression of cIAP1, and XIAP. Moreover, curcumin mediates its anticancer activity by the generation of reactive oxygen species. Finally, the suboptimal doses of curcumin potentiated the anticancer activity of cisplatin. Altogether, these results suggest an important therapeutic role of curcumin, acting as a growth suppressor of B-Pre-ALL by apoptosis via inactivation of AKT/PKB and down-regulation of IAPs and activation of intrinsic apoptotic pathway via generation of Reactive Oxygen Species (ROS). Our interesting findings raise the possibility of considering curcumin as a potential therapeutic agent for the treatment of B-Pre-ALL.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Eiman I Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tayyiba A Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology Venereology, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell-Medicine, Doha, Qatar.,Department of Dermatology, Weill Cornell University, New York, NY, United States
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
5
|
Liu Y, Yang EJ, Zhang B, Miao Z, Wu C, Lyu J, Tan K, Poon TCW, Shim JS. PTEN deficiency confers colorectal cancer cell resistance to dual inhibitors of FLT3 and aurora kinase A. Cancer Lett 2018; 436:28-37. [PMID: 30118842 DOI: 10.1016/j.canlet.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
PTEN is a tumor suppressor found mutated in many cancers. From a synthetic lethality drug screen with PTEN-isogenic colorectal cancer cells, we found that mutant-PTEN cells were resistant to dual inhibitors of FLT3 and aurora kinase-A, including KW2449 and ENMD-2076. KW2449 significantly reduced the viability of wildtype-PTEN cells causing apoptosis, while little effect was observed in mutant-PTEN counterparts. Transcriptome profiling showed that members of PI3K-AKT signaling pathway were strongly changed in cells after KW2449 treatment, indicating a potential role of the pathway in drug resistance. We found that KW2449 caused a dose-dependent, biphasic induction of AKT phosphorylation at Ser473 in mutant-PTEN cells. Co-treatment with the inhibitors of its upstream signaling completely abolished the reactivation of AKT phosphorylation by KW2449 and reversed the drug resistant phenotype. These data suggest that reactivation of AKT phosphorylation at Ser473 is a key factor to confer drug resistant phenotype of mutant-PTEN cells to the dual inhibitors and that proper drug combinations that shut down AKT reactivation is necessary for the effective treatment of mutant-PTEN cancer with the dual inhibitors in clinical settings.
Collapse
Affiliation(s)
- Yifan Liu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Eun Ju Yang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Baoyuan Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Changjie Wu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Junfang Lyu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Terence Chuen Wai Poon
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
6
|
PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep 2017; 7:43013. [PMID: 28220839 PMCID: PMC5318947 DOI: 10.1038/srep43013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies.
Collapse
|
7
|
Stumpf M, den Hertog J. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development. PLoS One 2016; 11:e0148508. [PMID: 26848951 PMCID: PMC4743836 DOI: 10.1371/journal.pone.0148508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten.
Collapse
Affiliation(s)
- Miriam Stumpf
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
8
|
Tibarewal P, Zilidis G, Spinelli L, Schurch N, Maccario H, Gray A, Perera NM, Davidson L, Barton GJ, Leslie NR. PTEN Protein Phosphatase Activity Correlates with Control of Gene Expression and Invasion, a Tumor-Suppressing Phenotype, But Not with AKT Activity. Sci Signal 2012; 5:ra18. [DOI: 10.1126/scisignal.2002138] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Hamilton DL, Philp A, MacKenzie MG, Baar K. A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise. PLoS One 2010; 5:e11624. [PMID: 20661274 PMCID: PMC2905373 DOI: 10.1371/journal.pone.0011624] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/22/2010] [Indexed: 11/25/2022] Open
Abstract
Background Since activation of the PI3K/(protein kinase B; PKB/akt) pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF) I/phosphoinositide 3-kinase (PI3K) signalling and whether altering PI(3,4,5)P3 metabolism genetically would increase load induced muscle growth. Methodology/Principal Findings Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5)P3 regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN+/+ = 5.00±0.02 mg/g, PTEN−/− = 5.50±0.09 mg/g), and TA (PTEN+/+ = 1.74±0.04 mg/g, PTEN−/− = 1.89 ±0.03) muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN−/− and PTEN+/+ animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes. Conclusions/Significance These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5)P3 levels, play a significant role in adult skeletal muscle growth.
Collapse
Affiliation(s)
- D. Lee Hamilton
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Andrew Philp
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Matthew G. MacKenzie
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Keith Baar
- Division of Molecular Physiology, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Oinuma I, Ito Y, Katoh H, Negishi M. Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in hippocampal neurons. J Biol Chem 2010; 285:28200-9. [PMID: 20610402 DOI: 10.1074/jbc.m110.147546] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plexins are receptors for axonal guidance molecules semaphorins. We recently reported that the semaphorin 4D (Sema4D) receptor, Plexin-B1, suppresses PI3K signaling through the R-Ras GTPase-activating protein (GAP) activity, inducing growth cone collapse. Phosphatidylinositol 3-phosphate level is critically regulated by PI3K and PTEN (phosphatase and tensin homologue deleted chromosome ten). Here we examined the involvement of PTEN in the Plexin-B1-induced repulsive response. Phosphorylation of PTEN at Ser-380 is known to suppress its phosphatase activity. Sema4D induced the dephosphorylation of PTEN at Ser-380 and stimulated PTEN phosphatase activity in hippocampal neurons. Knockdown of endogenous PTEN suppressed the Sema4D-induced growth cone collapse. Phosphorylation mimic PTEN mutant suppressed the Sema4D-induced growth cone collapse, whereas phosphorylation-resistant PTEN mutant by itself induced growth cone collapse. Plexin-B1-induced PTEN dephosphorylation through R-Ras GAP activity and R-Ras GAP activity was by itself sufficient for PTEN dephosphorylation and activation. We also suggested that the Sema4D-induced PTEN dephosphorylation and growth cone collapse were mediated by the inhibition of casein kinase 2 alpha activity. Thus, we propose that Sema4D/Plexin-B1 promotes the dephosphorylation and activation of PTEN through the R-Ras GAP activity, inducing growth cone collapse.
Collapse
Affiliation(s)
- Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
11
|
Gorbenko O, Panayotou G, Zhyvoloup A, Volkova D, Gout I, Filonenko V. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4. Mol Cell Biochem 2010; 337:299-305. [PMID: 19911253 DOI: 10.1007/s11010-009-0312-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/29/2009] [Indexed: 02/06/2023]
Abstract
PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.
Collapse
Affiliation(s)
- O Gorbenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics NASU, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
12
|
Maccario H, Perera NM, Gray A, Downes CP, Leslie NR. Ubiquitination of PTEN (phosphatase and tensin homolog) inhibits phosphatase activity and is enhanced by membrane targeting and hyperosmotic stress. J Biol Chem 2010; 285:12620-8. [PMID: 20177066 DOI: 10.1074/jbc.m109.072280] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PTEN (phosphatase and tensin homolog) tumor suppressor is a phosphatase that inhibits phosphoinositide 3-kinase-dependent signaling by metabolizing the phosphoinositide lipid phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)) at the plasma membrane. PTEN can be mono- or polyubiquitinated, and this appears to control its nuclear localization and stability, respectively. Although PTEN phosphorylation at a cluster of C-terminal serine and threonine residues has been shown to stabilize the protein and inhibit polyubiquitination and plasma membrane localization, details of the regulation of ubiquitination are unclear. Here, we show that plasma membrane targeting of PTEN greatly enhances PTEN ubiquitination and that phosphorylation of PTEN in vitro does not affect subsequent ubiquitination. These data suggest that C-terminal phosphorylation indirectly regulates ubiquitination by controlling membrane localization. We also show that either mono- or polyubiquitination in vitro greatly reduces PTEN phosphatase activity. Finally, we show that hyperosmotic stress increases both PTEN ubiquitination and cellular PtdInsP(3) levels well before a reduction in PTEN protein levels is observed. Both PTEN ubiquitination and elevated PtdInsP(3) levels were reduced within 10 min after removal of the hyperosmotic stress. Our data indicate that ubiquitination may represent a regulated mechanism of direct reversible control over the PTEN enzyme.
Collapse
Affiliation(s)
- Helene Maccario
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Evidence of ultraviolet type mutations in xeroderma pigmentosum melanomas. Proc Natl Acad Sci U S A 2009; 106:6279-84. [PMID: 19329485 DOI: 10.1073/pnas.0812401106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To look for a direct role of ultraviolet radiation (UV) exposure in cutaneous melanoma induction, we studied xeroderma pigmentosum (XP) patients who have defective DNA repair resulting in a 1000-fold increase in melanoma risk. These XP melanomas have the same anatomic distribution as melanomas in the general population. We analyzed laser capture microdissection samples of skin melanomas from XP patients studied at the National Institutes of Health. The tumor suppressor gene PTEN was sequenced and analyzed for UV-induced mutations. Samples from 59 melanomas (47 melanomas in situ and 12 invasive melanomas) from 8 XP patients showed mutations in the PTEN tumor suppressor gene in 56% of the melanomas. Further, 91% of the melanomas with mutations had 1 to 4 UV type base substitution mutations (occurring at adjacent pyrimidines) (P < 0.0001 compared to random mutations). We found a high frequency of amino-acid-altering mutations in the melanomas and demonstrated that these mutations impaired PTEN function; UV damage plays a direct role in induction of mutations and in inactivation of the PTEN gene in XP melanomas including in situ, the earliest stage of melanoma. This gene is known to be a key regulator of carcinogenesis and therefore these data provide solid mechanistic support for UV protection for prevention of melanoma.
Collapse
|
14
|
Kim JW, Kang KH, Burrola P, Mak TW, Lemke G. Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev 2008; 22:3147-57. [PMID: 18997061 DOI: 10.1101/gad.1700108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Adhesion between epithelial cells mediates apical-basal polarization, cell proliferation, and survival, and defects in adhesion junctions are associated with abnormalities from degeneration to cancer. We found that the maintenance of specialized adhesions between cells of the retinal pigment epithelium (RPE) requires the phosphatase PTEN. RPE-specific deletion of the mouse pten gene results in RPE cells that fail to maintain basolateral adhesions, undergo an epithelial-to-mesenchymal transition (EMT), and subsequently migrate out of the retina entirely. These events in turn lead to the progressive death of photoreceptors. The C-terminal PSD-95/Dlg/ZO-1 (PDZ)-binding domain of PTEN is essential for the maintenance of RPE cell junctional integrity. Inactivation of PTEN, and loss of its interaction with junctional proteins, are also evident in RPE cells isolated from ccr2(-/-) mice and from mice subjected to oxidative damage, both of which display age-related macular degeneration (AMD). Together, these results highlight an essential role for PTEN in normal RPE cell function and in the response of these cells to oxidative stress.
Collapse
Affiliation(s)
- Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea.
| | | | | | | | | |
Collapse
|
15
|
Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12:1139-65. [PMID: 18694380 DOI: 10.1517/14728222.12.9.1139] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. OBJECTIVE This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. METHODS We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. RESULTS/CONCLUSIONS The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Collapse
Affiliation(s)
- Linda S Steelman
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 2008; 27:4086-95. [PMID: 18332865 DOI: 10.1038/onc.2008.49] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ectopic expression of mutant forms of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) lacking lipid (G129E) or lipid and protein (C124S) phosphatase activity decreased sensitivity of MCF-7 breast cancer cells, which have wild-type PTEN, to doxorubicin and increased sensitivity to the mammalian target of rapamycin (mTOR) inhibitor rapamycin. Cells transfected with a mutant PTEN gene lacking both lipid and protein phosphatase activities were more resistant to doxorubicin than cells transfected with the PTEN mutant lacking lipid phosphatase activity indicating that the protein phosphatase activity of PTEN was also important in controlling the sensitivity to doxorubicin, while no difference was observed between the lipid (G129E) and lipid and protein (C124S) phosphatase PTEN mutants in terms of sensitivity to rapamycin. A synergistic inhibitory interaction was observed when doxorubicin was combined with rapamycin in the phosphatase-deficient PTEN-transfected cells. Interference with the lipid phosphatase activity of PTEN was sufficient to activate Akt/mTOR/p70S6K signaling. These studies indicate that disruption of the normal activity of the PTEN phosphatase can have dramatic effects on the therapeutic sensitivity of breast cancer cells. Mutations in the key residues which control PTEN lipid and protein phosphatase may act as dominant-negative mutants to suppress endogenous PTEN and alter the sensitivity of breast cancer patients to chemo- and targeted therapies.
Collapse
|
17
|
Li J, Tian SL, Li W, Li FY. Down-regulated expression of PTEN in colorectal cancer and its clinical significance. Shijie Huaren Xiaohua Zazhi 2006; 14:2771-2775. [DOI: 10.11569/wcjd.v14.i28.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression of PTEN in colorectal carcinoma and its correlation with the clinicopathological features.
METHODS: Immunohistochemical SP technique was used to determine the expression of PTEN protein in 65 cases of colorectal carcinoma and their corresponding adjacent tissues, 13 cases of adenoma tissues, and 20 cases of normal colorectal tissues.
RESULTS: The expression of PTEN protein was mainly located in the nucleus and cytoplasm. The expression of PTEN protein was significantly lower in human colorectal cancer tissues than that in the corresponding adjacent tissues ones (56.92% vs 86.15%, P < 0.01), and it was also markedly lower in the lowly- and non-differentiated adenoma than that in the highly-and moderately-differentiated one (37.50% vs 75.76%, P < 0.01). The expression of PTEN protein in Dukes A and B stages were significantly higher than that in in Dukes C and D stages (73.33% vs 42.86%, P < 0.05). In addition, PTEN expression was correlated with lymph node metastasis (c2 = 7.448, P < 0.01), but not with the sex, tumor sizes of patients.
CONCLUSION: The expression of PTEN is down-regulated in colorectal carcinoma, and it may be one of the molecular and biological indicators in reflecting the progression and prognosis of colorectal cancer.
Collapse
|
18
|
Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, Al Kuraya K, Uddin S. Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell leukemias. Apoptosis 2006; 11:245-54. [PMID: 16502262 DOI: 10.1007/s10495-006-3392-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Curcumin has been shown to possess variety of biological functions including anti-tumor activity. The mechanism by which curcumin inhibit cell proliferation remains poorly understood. In the present report, we investigated the effect of curcumin on the activation of apoptotic pathway in T-cell acute lymphoblastic leukemia (T-ALL) malignant cells. Our data demonstrate that curcumin causes dose dependent suppression of proliferation in several T cell lines. Curcumin treatment causes the de-phosphorylation/inactivation of constitutively active AKT, FOXO transcription factor and GSK3. Curcumin also induces release of cytochrome c accompanied by activation of caspase-3 and PARP cleavage. In addition, zVAD-fmk, a universal inhibitor of caspases, prevents caspase-3 activation and abrogates cell death induced by curcumin treatment. Finally, treatment of T-ALL cells with curcumin down-regulated the expression of inhibitor of apoptosis protein (IAPs). Taken together, our finding suggest that curcumin suppresses constitutively activated targets of PI3'-kinase (AKT, FOXO and GSK3) in T cells leading to the inhibition of proliferation and induction of caspase-dependent apoptosis.
Collapse
Affiliation(s)
- A R Hussain
- King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
19
|
Ning K, Miller LC, Laidlaw HA, Burgess LA, Perera NM, Downes CP, Leslie NR, Ashford MLJ. A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells. EMBO J 2006; 25:2377-87. [PMID: 16675953 PMCID: PMC1478173 DOI: 10.1038/sj.emboj.7601118] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 04/05/2006] [Indexed: 11/08/2022] Open
Abstract
In obesity and diabetes, the ability of hypothalamic neurons to sense and transduce changes in leptin and insulin levels is compromised. The effects of both hormones require intracellular signalling via the PI3-kinase pathway, which is inhibited by the phosphatase PTEN. We show that leptin-stimulated F-actin depolymerization in mouse hypothalamic cells is inhibited by PTEN, a process involving independent effects of both its lipid and protein phosphatase activities. Potentially mediating this F-actin depolymerization, leptin, but not insulin, stimulated the phosphorylation of PTEN in a CK2 dependent manner, and inhibited its phosphatase activity. Similarly, hyperpolarization of mouse pancreatic beta-cells by leptin also requires coincident PtdIns(3,4,5)P3 generation and actin depolymerization, and could be inhibited by mechanisms requiring both the lipid and protein phosphatase activities of PTEN. These results demonstrate a critical role for PTEN in leptin signalling and indicate a mechanism by which leptin and insulin can produce PI3K dependent differential cellular outputs.
Collapse
Affiliation(s)
- Ke Ning
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Lisa C Miller
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Hilary A Laidlaw
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Laura A Burgess
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Nevin M Perera
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - C Peter Downes
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nick R Leslie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael LJ Ashford
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK. Tel.: +44 1382 632497; Fax: +44 1382 667120; E-mail:
| |
Collapse
|
20
|
Takahashi Y, Morales FC, Kreimann EL, Georgescu MM. PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 2006; 25:910-20. [PMID: 16456542 PMCID: PMC1383560 DOI: 10.1038/sj.emboj.7600979] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 01/09/2006] [Indexed: 11/09/2022] Open
Abstract
PTEN, a tumor suppressor frequently inactivated in many human cancers, directly antagonizes the activity of phosphatidylinositol-3-OH kinase (PI3K) by dephosphorylating phosphoinositides. We show here that PTEN interacts directly with the NHERF1 and NHERF2 (Na+/H+ exchanger regulatory factor) homologous adaptor proteins through the PDZ motif of PTEN and the PDZ1 domain of NHERF1 or both PDZ domains of NHERF2. NHERFs were shown to interact directly with platelet-derived growth factor receptor (PDGFR), and we demonstrate the assembly of a ternary complex between PTEN, NHERFs and PDGFR. The activation of the PI3K pathway after PDGFR stimulation was prolonged in NHERF1(-/-) mouse embryonic fibroblasts as compared to wild-type cells, consistent with defective PTEN recruitment to PDGFR in the absence of NHERF1. Depletion of NHERF2 by small interfering RNA similarly increased PI3K signaling. Phenotypically, the loss of NHERF1 enhanced the PDGF-induced cytoskeletal rearrangements and chemotactic migration of the cells. These data indicate that, in normal cells, NHERF proteins recruit PTEN to PDGFR to restrict the activation of the PI3K.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiana C Morales
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica L Kreimann
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria-Magdalena Georgescu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Basic Science Research Building, Room S5.8336A, 6767 Bertner Avenue, Houston, TX 77030, USA. Tel.: +1 713 834 6201; Fax: +1 713 834 6230; E-mail:
| |
Collapse
|
21
|
Goswami R, Singh D, Phillips G, Kilkus J, Dawson G. Ceramide regulation of the tumor suppressor phosphatase PTEN in rafts isolated from neurotumor cell lines. J Neurosci Res 2005; 81:541-50. [PMID: 15968641 DOI: 10.1002/jnr.20550] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neutral sphingolipid ceramide has been implicated in the apoptotic death of cells by a number of different mechanisms, including activation of protein kinase B (Akt) phosphatase. Here we present evidence that ceramide recruits the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) into membrane microdomains (rafts), where it could act to reduce the levels of polyphosphoinositides necessary for the activation of Akt. A PTEN construct with a red-fluorescent protein (RFP) tag was overexpressed in both a human cell line derived from oligodendroglioma (HOG) and a rat pheochromocytoma cell line (PC12) by means of an inducible promoter system (Tet-Off). Induction of PTEN by removal of doxycycline enhanced both capsase-3 and cell death with staurosporine, wortmannin, or C2-ceramide, whereas antisense PTEN had the reverse effect. Overexpression of PTEN also increased acid sphingomyelinase (ASMase) activity. PTEN normally has a generalized (cytosolic/membrane) distribution, but treatment with C2-ceramide translocated a fraction of the PTEN to the plasma membrane, showing a plasma membrane distribution similar to that observed for a prenylated green-fluorescent (GFP) construct. PTEN was then shown to translocate to the detergent-resistant membrane microdomain fraction (raft) of the plasma membrane. The colocalization of sphingomyelinases, ceramide, polyphosphoinositides, and PTEN in the raft fraction further suggests that the association of these lipids is critical for regulating cell death.
Collapse
Affiliation(s)
- R Goswami
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
22
|
Valiente M, Andrés-Pons A, Gomar B, Torres J, Gil A, Tapparel C, Antonarakis SE, Pulido R. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem 2005; 280:28936-43. [PMID: 15951562 DOI: 10.1074/jbc.m504761200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.
Collapse
Affiliation(s)
- Miguel Valiente
- Centro de Investigación Príncipe Felipe, Valencia 46013, Spain and Division of Medical Genetics, Centre Medical Universitaire, University of Geneva Medical School, 1 Rue Michel Servet, Geneva CH-1211, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 2005; 25:2558-72. [PMID: 15767663 PMCID: PMC1061630 DOI: 10.1128/mcb.25.7.2558-2572.2005] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling through the mammalian target of rapamycin (mTOR) controls cell size and growth as well as other functions, and it is a potential therapeutic target for graft rejection, certain cancers, and disorders characterized by inappropriate cell or tissue growth. mTOR signaling is positively regulated by hormones or growth factors and amino acids. mTOR signaling regulates the phosphorylation of several proteins, the best characterized being ones that control mRNA translation. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) undergoes phosphorylation at multiple sites. Here we show that amino acids regulate the N-terminal phosphorylation sites in 4E-BP1 through the RAIP motif in a rapamycin-insensitive manner. Several criteria indicate this reflects a rapamycin-insensitive output from mTOR. In contrast, the insulin-stimulated phosphorylation of the C-terminal site Ser64/65 is generally sensitive to rapamycin, as is phosphorylation of another well-characterized target for mTOR signaling, S6K1. Our data imply that it is unlikely that mTOR directly phosphorylates Thr69/70 in 4E-BP1. Although 4E-BP1 and S6K1 bind the mTOR partner, raptor, our data indicate that the outputs from mTOR to 4E-BP1 and S6K1 are distinct. In cells, efficient phosphorylation of 4E-BP1 requires it to be able to bind to eIF4E, whereas phosphorylation of 4E-BP1 by mTOR in vitro shows no such preference. These data have important implications for understanding signaling downstream of mTOR and the development of new strategies to impair mTOR signaling.
Collapse
Affiliation(s)
- Xuemin Wang
- Division of Molecular Physiology, Faculty of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Leslie N, Downes C. PTEN function: how normal cells control it and tumour cells lose it. Biochem J 2005; 382:1-11. [PMID: 15193142 PMCID: PMC1133909 DOI: 10.1042/bj20040825] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/10/2004] [Accepted: 06/11/2004] [Indexed: 01/26/2023]
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a PI (phosphoinositide) 3-phosphatase that can inhibit cellular proliferation, survival and growth by inactivating PI 3-kinase-dependent signalling. It also suppresses cellular motility through mechanisms that may be partially independent of phosphatase activity. PTEN is one of the most commonly lost tumour suppressors in human cancer, and its deregulation is also implicated in several other diseases. Here we discuss recent developments in our understanding of how the cellular activity of PTEN is regulated, and the closely related question of how this activity is lost in tumours. Cellular PTEN function appears to be regulated by controlling both the expression of the enzyme and also its activity through mechanisms including oxidation and phosphorylation-based control of non-substrate membrane binding. Therefore mutation of PTEN in tumours disrupts not only the catalytic function of PTEN, but also its regulatory aspects. However, although mutation of PTEN is uncommon in many human tumour types, loss of PTEN expression seems to be more frequent. It is currently unclear how these tumours lose PTEN expression in the absence of mutation, and while some data implicate other potential tumour suppressors and oncogenes in this process, this area seems likely to be a key focus of future research.
Collapse
Affiliation(s)
- Nick R. Leslie
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- email
| | - C. Peter Downes
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- email
| |
Collapse
|
25
|
von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 2005; 132:1675-86. [PMID: 15743877 DOI: 10.1242/dev.01720] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.
Collapse
Affiliation(s)
- Walter von Stein
- Abteilung Stammzellbiologie, CMPB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
26
|
Solari F, Bourbon-Piffaut A, Masse I, Payrastre B, Chan AML, Billaud M. The human tumour suppressor PTEN regulates longevity and dauer formation in Caenorhabditis elegans. Oncogene 2005; 24:20-7. [PMID: 15637588 DOI: 10.1038/sj.onc.1207978] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The PTEN tumour suppressor is a phosphatase that dephosphorylates phosphatidylinositol 3, 4, 5 triphosphate (PIP3) and protein substrates. PTEN function is modulated by its carboxy-terminal region, which contains several clustered phosphorylation sites and a PDZ-binding motif (PDZbm). Although PTEN growth suppression effect is well demonstrated, its additional biological roles are less well understood. DAF-18, a Caenorhabditis elegans homologue PTEN, is a component of the insulin/IGF-I signalling pathway that controls entry to the dauer larval stage and adult longevity. To further explore the role of PTEN in the insulin signalling cascade and its possible involvement in the mechanisms of ageing, we undertook a study of PTEN function in C. elegans. We now report that human PTEN can substitute for DAF-18 and restores the dauer and longevity phenotypes in worms devoid of DAF-18. Furthermore, we provide genetic and biochemical evidence that dauer and lifespan control depends on PTEN-mediated regulation of PIP3 levels. Finally, we established that phosphorylation sites in the C-terminus of PTEN and its PDZbm are necessary for PTEN control of the insulin/IGF-I pathway. These results demonstrate that PTEN negatively regulates the insulin/IGF pathway in a whole organism and raise the hypothesis that PTEN may be involved in mammalian ageing.
Collapse
Affiliation(s)
- Florence Solari
- Laboratoire Génétique et cancer, FRE 2692 CNRS, Université Claude Bernard Lyon 1, Domaine Rockefeller, 8 avenue Rockefeller, 69373 Cedex 08, Lyon, France
| | | | | | | | | | | |
Collapse
|
27
|
Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 2004; 280:3125-8. [PMID: 15590625 DOI: 10.1074/jbc.c400496200] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cysteine residues of certain peroxiredoxins (Prxs) undergo reversible oxidation to sulfinic acid (Cys-SO2H) and the reduction reaction is catalyzed by sulfiredoxin (Srx). Specific Cys residues of various other proteins are also oxidized to sulfinic acid, suggesting that formation of Cys-SO2H might be a novel posttranslational modification that contributes to regulation of protein function. To examine the susceptibility of sulfinic forms of proteins to reduction by Srx, we prepared such forms of all six mammalian Prx isoforms and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Purified sulfiredoxin reduced the sulfinic forms of the four 2-Cys members (Prx I to Prx IV) of the Prx family in vitro, but it did not affect those of Prx V, Prx VI, or GAPDH. Furthermore, Srx bound specifically to the four 2-Cys Prxs in vitro and in cells. Sulfinic forms of Prx I and Prx II, but not of Prx VI or GAPDH, present in H2O2-treated A549 cells were gradually reduced after removal of H2O2; overexpression of Srx increased the rate of the reduction of Prx I and Prx II but did not induce that of Prx VI or GAPDH. These results suggest that reduction of Cys-SO2H by Srx is specific to 2-Cys Prx isoforms. For proteins such as Prx VI and GAPDH, sulfinic acid formation might be an irreversible process that causes protein damage.
Collapse
Affiliation(s)
- Hyun Ae Woo
- Laboratory of Cell Signaling and Laboratory of Biophysical Chemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. Implication of the MAGI‐1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 2004; 19:115-7. [PMID: 15629897 DOI: 10.1096/fj.04-1942fje] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently established the critical role of the lipid phosphatase activity of the PTEN tumor suppressor in stabilizing cell-cell contacts and suppressing invasiveness. To delineate the effector systems involved, we investigated the interaction of PTEN with E-cadherin junctional complexes in kidney and colonic epithelial cell lines. PTEN and the p85 regulatory subunit of phosphatidylinositol 3-OH kinase (PI3K) co-immunoprecipitated with E-cadherin and catenins. By using a yeast two-hybrid assay, we demonstrated that PTEN interacted indirectly with beta-catenin by binding the scaffolding protein MAGI-1b. This model was corroborated in various ways in mammalian cells. Ectopic expression of MAGI-1b potentiated the interaction of PTEN with junctional complexes, promoted E-cadherin-dependent cell-cell aggregation, and reverted the Src-induced invasiveness of kidney MDCKts-src cells. In this model, MAGI-1b slightly decreased the activity of AKT, a downstream effector of PI3K. By using dominant-negative and constitutively active AKT expression vectors, we demonstrated that this kinase was included in the pathways involved in Src-induced destabilization of junctional complexes and was necessary and sufficient to trigger invasiveness. We propose that the recruitment of PTEN at adherens junctions by MAGI-1b and the local down-regulation of phosphatidylinositol-3,4,5-trisphosphate pools and downstream effector systems at the site of cell-cell contacts are focal points for restraining both disruption of junctional complexes and induction of tumor cell invasion.
Collapse
|
29
|
Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE. ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 2004; 23:3454-61. [PMID: 14990992 DOI: 10.1038/sj.onc.1207473] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ILKAP is a protein phosphatase 2C that selectively associates with integrin linked kinase, ILK, to modulate cell adhesion and growth factor signaling. We investigated the role of endogenous cellular ILKAP in antagonizing ILK signaling of two key targets, PKB and GSK3beta. Silencing of endogenous ILKAP by short interfering RNA (siRNA) stimulated GSK3beta phosphorylation at S9, with no effect on PKB S473 phosphorylation. In LNCaP prostate carcinoma cells, transient or stable expression of ILKAP suppressed ILK immune complex kinase activity, demonstrating an interaction between ILKAP and ILK. Consistent with the silencing data, ILKAP inhibition of ILK selectively inhibited S9 phosphorylation of GSK3beta without affecting S473 phosphorylation of PKB. The ILKAP-mediated inhibition of S9 phosphorylation was rescued by overexpression of ILK, but not by a dominant-negative ILK mutant. The expression level of cyclin D1, a target of ILK-GSK3beta signaling, was inversely correlated with ILKAP protein levels, suggesting that antagonism of ILK modulates cell cycle progression. ILKAP expression increased the proportion of LNCaP cells in G1, relative to vector control cells, and siRNA suppression of ILKAP increased entry of cells into the S phase, consistent with ILK antagonism. Anchorage-independent growth of LNCaP cells was inhibited by ILKAP, suggesting a critical role in the suppression of cellular transformation. Taken together, our results indicate that endogenous ILKAP activity inhibits the ILK-GSK3beta signaling axis, and suggest that ILKAP activity plays an important role in inhibiting oncogenic transformation.Oncogene (2004) 23, 3454-3461. doi:10.1038/sj.onc.1207473 Published online 1 March 2004
Collapse
Affiliation(s)
- Ashu S Kumar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18:189-218. [PMID: 14737178 DOI: 10.1038/sj.leu.2403241] [Citation(s) in RCA: 514] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.
Collapse
Affiliation(s)
- L S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | |
Collapse
|
31
|
Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of Cell Migration by the C2 Domain of the Tumor Suppressor PTEN. Science 2004; 303:1179-81. [PMID: 14976311 DOI: 10.1126/science.1092089] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PTEN is a tumor suppressor protein that dephosphorylates phosphatidylinositol 3,4,5 trisphosphate and antagonizes the phosphatidylinositol-3 kinase signaling pathway. We show here that PTEN can also inhibit cell migration through its C2 domain, independent of its lipid phosphatase activity. This activity depends on the protein phosphatase activity of PTEN and on dephosphorylation at a single residue, threonine(383). The ability of PTEN to control cell migration through its C2 domain is likely to be an important feature of its tumor suppressor activity.
Collapse
Affiliation(s)
- Myrto Raftopoulou
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
32
|
Orchiston EA, Bennett D, Leslie NR, Clarke RG, Winward L, Downes CP, Safrany ST. PTEN M-CBR3, a versatile and selective regulator of inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Evidence for Ins(1,3,4,5,6)P5 as a proliferative signal. J Biol Chem 2003; 279:1116-22. [PMID: 14561749 DOI: 10.1074/jbc.m310933200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor is a phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) 3-phosphatase that plays a crucial role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signaling pathway. Although able to metabolize soluble inositol phosphates in vitro, the question of their significance as physiological substrates is unresolved. We show that inositol phosphates are not regulated by wild type PTEN, but that a synthetic mutant, PTEN M-CBR3, previously thought to be inactive toward inositides, can selectively regulate inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Transfection of U87-MG cells with PTEN M-CBR3 lowered Ins(1,3,4,5,6)P5 levels by 60% without detectable effect on PtdInsP3. Although PTEN M-CBR3 is a 3-phosphatase, levels of myo-inositol 1,4,5,6-tetrakisphosphate were not increased, whereas myo-inositol 1,3,4,6-tetrakisphospate levels increased by 80%. We have used PTEN M-CBR3 to study the physiological function of Ins(1,3,4,5,6)P5 and have found that Ins(1,3,4,5,6)P5 does not modulate PKB phosphorylation, nor does it regulate clathrin-mediated epidermal growth factor receptor internalization. By contrast, PTEN M-CBR3 expression, and the subsequent lowering of Ins(1,3,4,5,6)P5, are associated with reduced anchorage-independent colony formation and anchorage-dependent proliferation in U87-MG cells. Our results, together with previously published data, suggest that Ins(1,3,4,5,6)P5 has a role in proliferation.
Collapse
Affiliation(s)
- Elaine A Orchiston
- Division of Cell Signalling, Faculty of Life Sciences, MSI/WTB Complex, Dow St., The University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Natarajan R, Fisher BJ, Fowler AA. Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS Lett 2003; 549:99-104. [PMID: 12914933 DOI: 10.1016/s0014-5793(03)00798-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hypoxia activates the transcription factor, hypoxia inducible factor-1 (HIF-1). Besides hypoxia, HIF-1 can be activated under normoxic conditions by nitric oxide. The signal transduction pathways involved in HIF-1alpha stabilization, HIF-1 DNA binding and transactivation by NO and hypoxia in microvascular endothelium remains unknown. We report that protein phosphorylation is involved in HIF-1 activation during hypoxia and NO. The phosphatidylinositol 3-kinase (PI-3K)/Akt pathway has differential effects on HIF-1 activation by hypoxia and NO. Our data indicate that the PI-3K/Akt pathway is insufficient for HIF-1alpha induction by hypoxia. The lipid and protein phosphatase activities of PTEN also appear to be involved in regulation of HIF-1alpha by NO.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Department of Internal Medicine, Virginia Commonwealth University, PO Box 980050, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
34
|
Deichmann M, Thome M, Benner A, Egner U, Hartschuh W, Näher H. PTEN/MMAC1 expression in melanoma resection specimens. Br J Cancer 2002; 87:1431-6. [PMID: 12454773 PMCID: PMC2376294 DOI: 10.1038/sj.bjc.6600653] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/16/2002] [Accepted: 09/19/2002] [Indexed: 12/03/2022] Open
Abstract
PTEN/MMAC1, a tumour suppressor gene located on chromosome 10q23.3, has been found to be deleted in several types of human malignancies. As the chromosomal region 10q22-qter commonly is affected by losses in melanomas, we addressed this gene as tumour suppressor candidate in melanomas. Investigating PTEN/MMAC1 expression at mRNA level by semi-quantitative reverse transcription-polymerase chain reaction, we did not find a statistically significant down-regulation in melanoma resection specimens in comparison to acquired melanocytic nevi from which melanomas quite often are known to arise. Upon immunohistochemistry, PTEN/MMAC1 protein expression in melanomas was not lost. Sequencing the PTEN/MMAC1 cDNAs in 26 melanoma resection specimens (21 primary melanomas, five metastases), we detected three point mutations and two nucleotide deletions which did not represent genetic polymorphisms. With respect to the predicted protein sequences, all three point mutations were silent whereas the two frame shifts at the extreme C-terminus resulted in a loss of the putative PDZ-targeting consensus sequence. As loss of this motif possibly impairs localization and function of PTEN/MMAC1 in the two corresponding primary tumours, alterations of this tumour suppressor protein may participate in some melanomas.
Collapse
Affiliation(s)
- M Deichmann
- Department of Dermatology, University Clinics of Heidelberg, Vossstrasse 2, 69115 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Yu Z, Fotouhi-Ardakani N, Wu L, Maoui M, Wang S, Banville D, Shen SH. PTEN associates with the vault particles in HeLa cells. J Biol Chem 2002; 277:40247-52. [PMID: 12177006 DOI: 10.1074/jbc.m207608200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTEN is a tumor suppressor that primarily dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to down-regulate the phosphoinositide 3-kinase/Akt signaling pathway. Although the cellular functions of PTEN as a tumor suppressor have been well characterized, the mechanism by which PTEN activity is modulated by other signal molecules in vivo remains poorly understood. In searching for potential PTEN modulators through protein-protein interaction, we identified the major vault protein (MVP) as a dominant PTEN-binding protein in a yeast two-hybrid screen. MVP is the major structural component of vault, the largest intracellular ribonucleoprotein particle. Co-immunoprecipitation confirmed the interaction between PTEN and MVP in transfected mammalian cells. More importantly, we found that a significant portion of endogenous PTEN associates with vault particles in human HeLa cells. Deletion mutation analysis demonstrated that MVP binds to the C2 domain of PTEN and that PTEN interacts with MVP through its EF hand-like motif. Furthermore, the in vitro binding experiments revealed that the interaction of PTEN with MVP is Ca(2+)-dependent.
Collapse
Affiliation(s)
- Zhenbao Yu
- Mammalian Cell Genetics, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L, Banks L. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002; 21:5088-96. [PMID: 12140759 DOI: 10.1038/sj.onc.1205668] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 05/01/2002] [Accepted: 05/10/2002] [Indexed: 01/11/2023]
Abstract
The E6 proteins from the high-risk human papillomavirus (HPV) types have previously been shown to target a number of PDZ domain-containing proteins for proteasome-mediated degradation. These include the hDlg tumour suppressor and the MAGI-1 protein. In this study we show that high-risk HPV E6 proteins also target the related MAGI-2 and MAGI-3 proteins for degradation. Moreover, we show that the interaction is specific to one PDZ domain, and that co-expression of this domain can protect each of the full-length MAGI proteins from E6-mediated degradation. These data provide clear indicators for the potential design of compounds that could specifically inhibit the interaction of oncogenic HPV E6 proteins with an important class of target proteins.
Collapse
Affiliation(s)
- Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Birle D, Bottini N, Williams S, Huynh H, deBelle I, Adamson E, Mustelin T. Negative feedback regulation of the tumor suppressor PTEN by phosphoinositide-induced serine phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:286-91. [PMID: 12077256 DOI: 10.4049/jimmunol.169.1.286] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PTEN tumor suppressor phosphatase directly counteracts the multiple functions of phosphatidylinositol 3-kinase by removing phosphate from the D3 position of inositol phospholipids. Like many lymphomas and leukemias, the Jurkat T cell line lacks PTEN protein due to frame-shift mutations in both PTEN alleles and therefore survives in long-term cell culture. We report that PTEN reintroduced into Jurkat was highly phosphorylated on serines 380 and 385 in its C terminus, particularly the former site. Phosphate was also detected at Ser(380) in PTEN in untransformed human T cells. Treatments that reduced the levels of D3-phospholipids in the cells resulted in reduced phosphorylation and accelerated degradation of PTEN. In contrast, expression of inactive PTEN-C124G or coexpression of a constitutively active protein kinase B led to increased phosphorylation and slower degradation of PTEN. These results suggest that PTEN normally is subjected to a feedback mechanism of regulation aimed at maintaining homeostatic levels of D3-phosphoinositides, which are crucial for T cell survival and activation.
Collapse
Affiliation(s)
- Diana Birle
- Program of Signal Transduction, Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 2002; 277:20336-42. [PMID: 11916965 DOI: 10.1074/jbc.m111899200] [Citation(s) in RCA: 789] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor PTEN regulates cell migration, growth, and survival by removing the 3'-phosphate of phosphoinositides. Exposure of purified PTEN or of cells to H(2)O(2) resulted in inactivation of PTEN in a time- and H(2)O(2) concentration-dependent manner. Analysis of various cysteine mutants, including mass spectrometry of tryptic peptides, indicated that the essential Cys(124) residue in the active site of PTEN specifically forms a disulfide with Cys(71) during oxidation by H(2)O(2). The reduction of H(2)O(2)-oxidized PTEN in cells appears to be mediated predominantly by thioredoxin. Thus, thioredoxin was more efficient than glutaredoxin, glutathione, or a 14-kDa thioredoxin-like protein with regard to the reduction of oxidized PTEN in vitro. Thioredoxin co-immunoprecipitated with PTEN from cell lysates; and incubation of cells with 2,4-dinitro-1-chlorobenzene (an inhibitor of thioredoxin reductase) delayed the reduction of oxidized PTEN, whereas incubation with buthioninesulfoximine (an inhibitor of glutathione biosynthesis) did not. These results suggest that the reversible inactivation of PTEN by H(2)O(2) might be important for the accumulation of 3'-phosphorylated phosphoinositides and that the uncontrolled generation of H(2)O(2) associated with certain pathological conditions might contribute to cell proliferation by inhibiting PTEN function.
Collapse
Affiliation(s)
- Seung-Rock Lee
- Laboratory of Cell Signaling, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Koul D, Jasser SA, Lu Y, Davies MA, Shen R, Shi Y, Mills GB, Yung WKA. Motif analysis of the tumor suppressor gene MMAC/PTEN identifies tyrosines critical for tumor suppression and lipid phosphatase activity. Oncogene 2002; 21:2357-64. [PMID: 11948419 DOI: 10.1038/sj.onc.1205296] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2001] [Revised: 01/02/2002] [Accepted: 02/08/2002] [Indexed: 12/14/2022]
Abstract
The tumor suppressor gene, MMAC/PTEN, has phosphatase, C2, and PDZ-binding domains as well as potential sites of regulation by phosphorylation, including tyrosine phosphorylation, which may contribute to its ability to modulate cell growth and viability. Several obvious and significant motifs were found in MMAC/PTEN, including most notably, a catalytic domain of tyrosine phosphatase (IHCxxGxxRS/T) and several potential tyrosine phosphorylation sites. To examine the functional significance of tyrosine phosphorylation of MMAC/PTEN, retroviral constructs were generated with mutations at two putative tyrosine phosphorylation sites (Y240A/Y240F and Y315A/Y315F). Stable expression of wild-type MMAC/PTEN in U251 human glioma cells (which do not normally produce a functional MMAC/PTEN gene product) resulted in a significant reduction of tumor growth in nude mice, decreased growth rate, saturation density, and colony formation in vitro, as well as dephosphorylation of D3-phosphorylated phosphatidylinositols (PtdIns) in vitro. Mutation of Y240 or Y315 to either alanine or phenylalanine abrogated the ability of MMAC/PTEN to alter growth rate, saturation density, and colony formation in vitro. The ability of MMAC/PTEN to limit tumor growth in nude mice was markedly decreased but not abrogated by mutation of Y240 or Y315 to alanine. Thus, Y240 and Y315 are required for MMAC/PTEN to decrease tumor growth in vitro and in vivo. In contrast to wild-type MMAC/PTEN, mutant MMAC/PTEN containing Y240A or Y315A was unable to dephosphorylate D3-phosphorylated PtdIns in vitro. Thus, Y240A and Y315A are involved in the ability of MMAC/PTEN to dephosphorylate PtdIns and regulate tumor cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Dimpy Koul
- Department of Neuro-Oncology, Box 100, The Brain Tumor Center, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The PTEN tumour suppressor protein is a phosphoinositide 3-phosphatase that, by metabolising phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), acts in direct antagonism to growth factor stimulated PI 3-kinases. A wealth of data has now illuminated pathways that can be controlled by PTEN through PtdIns(3,4,5)P(3), some of which, when deregulated, give a selective advantage to tumour cells. Early studies of PTEN showed that its activity was able to promote cell cycle arrest and apoptosis and inhibit cell motility, but more recent data have identified other functional consequences of PTEN action, such as effects on the regulation of angiogenesis. The structure of PTEN includes several features not seen in related protein phosphatases, which adapt the enzyme to act efficiently as a lipid phosphatase, including a C2 domain tightly associated with the phosphatase domain, and a broader and deeper active site pocket. Several pieces of data indicate that PTEN is a principal regulator of the cellular levels of PtdIns(3,4,5)P(3), but work is only just beginning to uncover mechanisms by which the cellular activity of PTEN can be controlled. There also remains the vexing question of whether any of PTEN's cellular functions reflect its evolutionary roots as a member of the protein tyrosine phosphatase superfamily.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling, School of Life Sciences, Medical Sciences Institute, University of Dundee, DD1 5EH Scotland, Dundee, UK.
| | | |
Collapse
|
41
|
Haier J, Nicolson GL. PTEN regulates tumor cell adhesion of colon carcinoma cells under dynamic conditions of fluid flow. Oncogene 2002; 21:1450-60. [PMID: 11857088 DOI: 10.1038/sj.onc.1205213] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Revised: 11/27/2001] [Accepted: 11/28/2001] [Indexed: 11/09/2022]
Abstract
The regulation of integrin-mediated cell adhesion and its stabilization involves different phosphorylation and dephosphorylation events. Focal adhesion kinase (FAK) has been recently found to be a substrate of the dual-specific phosphatase PTEN in glioma cells, where it appears to be involved in regulation of cell spreading and migration as part of focal adhesions. We have investigated the role of PTEN in cell adhesion of HT-29 human colon carcinoma cells under static and hydrodynamic conditions of fluid flow. PTEN coprecipitated with FAK and paxillin dependent on the formation of adhesions to collagens. This corresponded with an adhesion-dependent increase in Tyr-phosphatase activity of PTEN. Using preparations of native FAK and PTEN from HT-29 cells in a specific Tyr-phosphatase assay FAK was identified as substrate for this dephosphorylation. If expression of PTEN was reduced using antisense oligonucleotides cell adhesion under dynamic conditions of laminar flow, but not under static conditions was significantly increased. In addition, cell spreading was increased in cells with reduced PTEN expression. We conclude that PTEN appears to be involved in the regulation of integrin-mediated adhesion through dephosphorylation of FAK. This phosphatase might play a role as a negative regulator for the formation of stable HT-29 cell adhesion to extracellular matrix.
Collapse
Affiliation(s)
- Jörg Haier
- The Institute for Molecular Medicine 15162 Triton Lane, Huntington Beach, California, CA 92649, USA.
| | | |
Collapse
|
42
|
Segrelles C, Ruiz S, Perez P, Murga C, Santos M, Budunova IV, Martínez J, Larcher F, Slaga TJ, Gutkind JS, Jorcano JL, Paramio JM. Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene 2002; 21:53-64. [PMID: 11791176 DOI: 10.1038/sj.onc.1205032] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 09/27/2001] [Accepted: 10/09/2001] [Indexed: 12/28/2022]
Abstract
The mouse skin carcinogenesis protocol is a unique model for understanding the molecular events leading to oncogenic transformation. Mutations in the Ha-ras gene, and the presence of functional cyclin D1 and the EGF receptor, have proven to be important in this system. However, the signal transduction pathways connecting these elements during mouse skin carcinogenesis are poorly understood. This paper studies the relevance of the Akt and ERK pathways in the different stages of chemically induced mouse skin tumors. Akt activity increases throughout the entire process, and its early activation is detected prior to increased cyclin D1 expression. ERK activity rises only during the later stages of malignant conversion. The observed early increase in Akt activity appears to be due to raised PI-3K activity. Other factors acting on Akt such as ILK activation and decreased PTEN phosphatase activity appear to be involved at the conversion stage. To further confirm the involvement of Akt in this process, PB keratinocytes were transfected with Akt and subsequently injected into nude mice. The expression of Akt accelerates tumorigenesis and contributes to increased malignancy of these keratinocytes as demonstrated by the rate of appearance, the growth and the histological characteristics of the tumors. Collectively, these data provide evidence that Akt activation is one of the key elements during the different steps of mouse skin tumorigenesis.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Carcinogens
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Cell Line, Transformed/enzymology
- Cell Line, Transformed/transplantation
- Cell Nucleus/enzymology
- Cell Transformation, Neoplastic/metabolism
- Cyclin D1/metabolism
- Cytoplasm/enzymology
- Enzyme Activation
- ErbB Receptors/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Keratinocytes/enzymology
- Keratinocytes/pathology
- Keratinocytes/transplantation
- MAP Kinase Signaling System
- Mice
- Mice, Inbred SENCAR
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasm Proteins/physiology
- PTEN Phosphohydrolase
- Papilloma/chemically induced
- Papilloma/enzymology
- Papilloma/genetics
- Phosphatidylinositol 3-Kinases/biosynthesis
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoric Monoester Hydrolases/biosynthesis
- Phosphoric Monoester Hydrolases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-akt
- Skin Neoplasms/chemically induced
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Carmen Segrelles
- Project on Cell and Molecular Biology and Gene Therapy, CIEMAT, Av. Complutense 22, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Transplantation experiments have shown that developing metazoan organs carry intrinsic information about their size and shape. Organ and body size are also sensitive to extrinsic cues provided by the environment, such as the availability of nutrients. The genetic and molecular pathways that contribute to animal size and shape are numerous, yet how they cooperate to control growth is mysterious. The recent identification and characterization of several mutations affecting growth in Drosophila melanogaster promises to provide insights. Many of these mutations affect the extrinsic control of animal size; others affect the organ-intrinsic control of pattern and size. In this review, we summarize the characteristics of some of these mutations and their roles in growth and size control. In addition, we speculate about possible connections between the extrinsic and intrinsic pathways controlling growth and pattern.
Collapse
Affiliation(s)
- Laura A Johnston
- Columbia University, Department of Genetics & Development, 701 West 168th Street, New York, NY, USA.
| | | |
Collapse
|
44
|
Leslie NR, Biondi RM, Alessi DR. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev 2001; 101:2365-80. [PMID: 11749378 DOI: 10.1021/cr000091i] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- N R Leslie
- MRC Protein Phosphorylation Unit and Division of Signal Transduction Therapy, Department of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | | | | |
Collapse
|
45
|
Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114:2375-82. [PMID: 11559746 DOI: 10.1242/jcs.114.13.2375] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PTEN (also known as MMAC-1 or TEP-1) is one of the most frequently mutated tumor suppressors in human cancer. It is also essential for embryonic development. PTEN functions primarily as a lipid phosphatase to regulate crucial signal transduction pathways; a key target is phosphatidylinositol 3,4,5-trisphosphate. In addition, it displays weak tyrosine phosphatase activity, which may downmodulate signaling pathways that involve focal adhesion kinase (FAK) or Shc. Levels of PTEN are regulated in embryos and adult organisms, and gene-targeting studies demonstrate that it has a crucial role in normal development. Functions for PTEN have been identified in the regulation of many normal cell processes, including growth, adhesion, migration, invasion and apoptosis. PTEN appears to play particularly important roles in regulating anoikis (apoptosis of cells after loss of contact with extracellular matrix) and cell migration. Gene targeting and transient expression studies have provided insight into the specific signaling pathways that regulate these processes. Characterization of the diverse signaling networks modulated by PTEN, as well as the regulation of PTEN concentration, enzymatic activity, and coordination with other phosphatases, should provide intriguing new insight into the biology of normal and malignant cells.
Collapse
Affiliation(s)
- K M Yamada
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | |
Collapse
|
46
|
Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK, Durden DL. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci U S A 2001; 98:4622-7. [PMID: 11274365 PMCID: PMC31884 DOI: 10.1073/pnas.081063798] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations of the tumor suppressor PTEN, a phosphatase with specificity for 3-phosphorylated inositol phospholipids, accompany progression of brain tumors from benign to the most malignant forms. Tumor progression, particularly in aggressive and malignant tumors, is associated with the induction of angiogenesis, a process termed the angiogenic switch. Therefore, we tested whether PTEN regulates tumor progression by modulating angiogenesis. U87MG glioma cells stably reconstituted with PTEN cDNA were tested for growth in a nude mouse orthotopic brain tumor model. We observed that the reconstitution of wild-type PTEN had no effect on in vitro proliferation but dramatically decreased tumor growth in vivo and prolonged survival in mice implanted intracranially with these tumor cells. PTEN reconstitution diminished phosphorylation of AKT within the PTEN-reconstituted tumor, induced thrombospondin 1 expression, and suppressed angiogenic activity. These effects were not observed in tumors reconstituted with a lipid phosphatase inactive G129E mutant of PTEN, a result that provides evidence that the lipid phosphatase activity of PTEN regulates the angiogenic response in vivo. These data provide evidence that PTEN regulates tumor-induced angiogenesis and the progression of gliomas to a malignant phenotype via the regulation of phosphoinositide-dependent signals.
Collapse
Affiliation(s)
- S Wen
- Section of Hematology/Oncology, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 2001; 276:993-8. [PMID: 11035045 DOI: 10.1074/jbc.m009134200] [Citation(s) in RCA: 513] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor phosphatase PTEN regulates cell migration, growth, and survival by dephosphorylating phosphatidylinositol second messengers and signaling phosphoproteins. PTEN possesses a C-terminal noncatalytic regulatory domain that contains multiple putative phosphorylation sites, which could play an important role in the control of its biological activity. The protein kinase CK2 phosphorylated, in a constitutive manner, a cluster of Ser/Thr residues located at the PTEN C terminus. PTEN-phosphorylated defective mutants showed decreased stability in comparison with wild type PTEN and were more rapidly degraded by the proteasome. Inhibition of PTEN phosphorylation by the CK2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole also diminished the PTEN protein content. Our results support the notion that proper phosphorylation of PTEN by CK2 is important for PTEN protein stability to proteasome-mediated degradation.
Collapse
Affiliation(s)
- J Torres
- Instituto de Investigaciones Citológicas, 46010 Valencia, Spain
| | | |
Collapse
|