1
|
Zheng Q, Lin R, Wang D, Chen R, Xu W. The association of lipids and novel non-statin lipid-lowering drug target with osteoporosis: evidence from genetic correlations and Mendelian randomization. BMC Musculoskelet Disord 2025; 26:107. [PMID: 39893413 DOI: 10.1186/s12891-024-08160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND It remains controversial whether lipids affect osteoporosis (OP) or bone mineral density (BMD), and causality has not been established. This study aimed to investigate the genetic associations between lipids, novel non-statin lipid-lowering drug target genes, and OP and BMD. METHODS Mendelian randomization (MR) method was used to explore the genetic associations between 179 lipid species and OP, BMD. Drug-target MR analysis was used to explore the causal associations between angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C3 (APOC3) inhibitors on BMD. RESULTS The IVW results with Bonferroni correction indicated that triglyceride (TG) (51:3) (OR = 1.0029; 95% CI: 1.0014-1.0045; P = 0.0002) and TG (56:6) (OR = 1.0021; 95% CI: 1.0008-1.0033; P = 0.0011) were associated with an increased risk of OP; TG (51:2) (OR = 0.9543; 95% CI: 0.9148-0.9954; P = 0.0298) was associated with decreased BMD; and ANGPTL3 inhibitor (OR = 1.1342; 95% CI: 1.0393-1.2290; P = 0.0093) and APOC3 inhibitor (OR = 1.0506; 95% CI: 1.0155-1.0857; P = 0.0058) was associated with increased BMD. CONCLUSIONS MR analysis indicated causal associations between genetically predicted TGs and OP and BMD. Drug-target MR analysis showed that ANGPTL3 and APOC3 have the potential to serve as novel non-statin lipid-lowering drug targets to treat or prevent OP.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Orthopedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rongsheng Chen
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Orthopedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Orthopedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
2
|
Jeong JS, Noh Y, Cho SW, Hsieh CY, Cho Y, Shin JY, Kim H. Association of higher potency statin use with risk of osteoporosis and fractures in patients with stroke in a Korean nationwide cohort study. Sci Rep 2024; 14:30825. [PMID: 39730536 DOI: 10.1038/s41598-024-81628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
This population-based cohort study aimed to evaluate the risk of osteoporosis and fractures associated with higher-potency statin use compared to lower-potency statin use in patients with stroke, using data from the Health Insurance and Review Assessment database of South Korea (2010-2019). Patients who received statin within 30 days after hospitalization for a new-onset stroke (n = 276,911) were divided into higher-potency (n = 212,215, 76.6%) or lower-potency (n = 64,696, 23.4%) statin initiation groups. The primary outcome was a composite of osteoporosis and osteoporotic fractures. Secondary outcomes were individual components of the primary outcome, including osteoporosis, vertebral fracture, hip fracture, and non-hip non-vertebral fracture. Cox proportional hazard models weighted by standardized morbidity ratios were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). The risk of the composite outcome (HR 0.95, 95% CI 0.93-0.97), osteoporosis (0.93, 0.90-0.96), vertebral fracture (0.95, 0.91-0.99), and hip fracture (0.89, 0.84-0.95) were significantly lower in higher-potency statin users, while the risk for non-hip non-vertebral fracture was not significant (0.98, 0.95-1.02). The use of higher-potency statins compared to lower-potency statins was associated with a lower risk of osteoporosis, vertebral fracture, and hip fracture in patients with stroke.
Collapse
Affiliation(s)
- Jin Sook Jeong
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Yunha Noh
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yongtai Cho
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| | - Hoon Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Száraz D, Peřina V, Treglerová J, Macháček C, Zendulka O, Bořilová Linhartová P. Case Report: single low-dose of denosumab as a trigger of MRONJ development in a patient with osteoporosis after bisphosphonate therapy. FRONTIERS IN ORAL HEALTH 2024; 5:1473049. [PMID: 39697786 PMCID: PMC11652535 DOI: 10.3389/froh.2024.1473049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Both denosumab (DMB) and bisphosphonates (BPs), antiresorptive drugs (ARDs) used for the treatment of osteoporosis and oncological disorders, are known for their potential to cause medication-related osteonecrosis of the jaws (MRONJ). Besides ARDs, statins were recently associated with MRONJ development, especially in patients taking higher doses of statins for a longer period of time. Here, we report a case of a female patient with osteoporosis using statins and treated with alendronate for 3 years who rapidly developed MRONJ stage III after only a single low dose of DMB. After partial maxillectomy complete healing was observed without any recurrence. We performed a literature review of cases with MRONJ triggered by a single low dose of DMB, with or without previous application of other ARDs. Only six similar cases of patients who developed MRONJ after a single low dose of DMB following previous BP therapy have been reported so far. Besides these, literature reports one patient who developed MRONJ after a single dose of DMB following romosozumab treatment and five cases developing MRONJ after a single dose of DMB even without any previous ARD treatment. We suggest that before DMB therapy is initiated, all factors predisposing to MRONJ development should be considered.
Collapse
Affiliation(s)
- Dávid Száraz
- Clinic of Maxillofacial Surgery, University Hospital Brno, Brno, Czechia
- Clinic of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vojtěch Peřina
- Clinic of Maxillofacial Surgery, University Hospital Brno, Brno, Czechia
- Clinic of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Treglerová
- Clinic of Maxillofacial Surgery, University Hospital Brno, Brno, Czechia
- Clinic of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ctirad Macháček
- Department of Pathology, University Hospital Brno, Brno, Czechia
- Department of Pathology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ondřej Zendulka
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Bořilová Linhartová
- Clinic of Maxillofacial Surgery, University Hospital Brno, Brno, Czechia
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Shang J, Li Z, Ma A, Zhu T, Ma G, Gui H, Ren H, Sun B, Wang W, Wang X, Liu C, Li C, Wang Z, Lan J. Hyperlipidemia impairs bone repair and regeneration via miR-193a-3p/STMN1/PI3K/Akt axis. Biochem Pharmacol 2024; 232:116693. [PMID: 39638070 DOI: 10.1016/j.bcp.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Hyperlipidemia, a metabolic disease characterized by excessive blood lipid, disturbs bone metabolism by shifting cell fate of bone marrow stromal cells (BMSCs) towards adipogenic differentiation, thus resulting in poor bone regeneration and osseointegration of implants. Among numerous factors affecting hyperlipidemic bone metabolism, non-coding RNAs play an essential role in post-transcriptional regulation. Our previous study has shown that miR-193a-3p levels were elevated in hyperlipidemia, which hindered implant osseointegration and BMSCs function. However, the downstream targets and pathways of miR-193a-3p warrant further investigation. In this study, we identified STMN1 as the target of miR-193a-3p by miRNA databases and validated their interaction through dual luciferase reporter assays. Models of hyperlipidemia were established in vitro using a high-fat medium and in vivo with a high-fat diet to study these molecular interactions. Besides, miRNA array and PCR analyses confirmed the level of miR-193a and STMN1 in both rats with hyperlipidemia and high-fat-cultured BMSCs. Calvarial defects were used to evaluate STMN1's impact on bone repair and regeneration. As a result, miR-193a-3p levels were highly elevated in hyperlipidemic conditions, whereas the STMN1 levels were reduced sharply. The elevated miR-193a targeted STMN1 and disabled it from activating the PI3K/Akt pathway, thus resulting in delayed bone repair and poor bone regeneration. Additionally, common lipid-lowering drug simvastatin blunted hyperlipidemia's adverse effect on this axis. Our findings underscore the miR-193a-3p/STMN1/PI3K/Akt axis as a novel and promising therapeutic target for hyperlipidemic osteopenia, offering insights into the molecular mechanisms underlying bone metabolism disorders in hyperlipidemia and paving the way for innovative treatments.
Collapse
Affiliation(s)
- Jiaming Shang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zechuan Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China; National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Health Commission Key Laboratory of Digital Technology of Stomatology, 100081 Beijing, China; Institute of Advanced Clinical Medicine, Peking University, 100191 Beijing, China
| | - Anquan Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Tiantian Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Gaoqiang Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Houda Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Huiping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Baiyu Sun
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Wenhao Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xi Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chenghang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chuanhua Li
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhifeng Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| |
Collapse
|
5
|
Arabi SM, Chambari M, Bahrami LS, Jafari A, Bahari H, Reiner Ž, Sahebkar A. The Effect of Statin Therapy on Bone Metabolism Markers and Mineral Density: Aa GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Adv Pharm Bull 2024; 14:591-603. [PMID: 39494267 PMCID: PMC11530883 DOI: 10.34172/apb.2024.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Statin therapy is widely used for the management of dyslipidemia and the prevention of cardiovascular diseases (CVDs). However, there is a growing concern about its potential effects on bone metabolism markers and mineral density. The aim of this systematic review and meta-analysis was to investigate the effect of statin therapy on these parameters. Methods PubMed/MEDLINE, Scopus, and Clarivate Analytics Web of Science databases were searched from inception to August 2023, using MESH terms and keywords. Results After screening 2450 articles, 16 studies that met the inclusion criteria were included, of which 12 randomized controlled trials (RCTs) were used for meta-analysis. The findings showed that statin therapy significantly reduced bone-specific alkaline phosphatase (B-ALP) levels (WMD=-1.1 U/L; 95% CI -2.2 to -0.07; P=0.03; I2=0%,), and bone mineral density (BMD) at different sites (WMD=-0.06 g/cm2; 95% CI -0.08 to -0.04; P<0.001; I2=97.7%, P<0.001). However, this treatment did not have a significant effect on osteocalcin, serum C-terminal peptide of type I collagen (S-CTx), serum N-telopeptides of type I collagen (NTx) concentration, or overall fracture risk. Conclusion This systematic review and meta-analysis provide evidence that statin therapy is associated with a significant reduction in B-ALP levels and BMD at different sites of the skeleton. Further studies are needed to investigate the long-term effects of statin therapy on bone health and to identify the potential underlying mechanisms.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahla Chambari
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI university, 56000 Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jafari
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Bahari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Xie C, Ren Y, He Q, Wang C, Luo H. Association between arteriosclerosis index and lumbar bone mineral density in U.S adults: a cross-sectional study from the NHANES 2011-2018. Front Cardiovasc Med 2024; 11:1459062. [PMID: 39149583 PMCID: PMC11324549 DOI: 10.3389/fcvm.2024.1459062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Background The arteriosclerosis index, defined as the ratio of non-high density lipoprotein cholesterol to high density lipoprotein cholesterol (NHHR), has emerged as a novel biomarker for various diseases. The relationship between NHHR and lumbar bone mineral density (BMD) has not been previously examined. Methods This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. NHHR was calculated as (total cholesterol-high-density lipoprotein cholesterol)/high-density lipoprotein cholesterol. Lumbar BMD was calculated to Z scores. Weighted multivariate linear regression, subgroup analysis, interaction analysis, generalized additive model, and two-piecewise linear regression were used. Results A total of 8,602 participants were included. The negative association between NHHR and lumbar BMD was consistent and significant (Model 1: β = -0.039, 95% CI: -0.055, -0.023, p < 0.001; Model 2: β = -0.045, 95% CI: -0.062, -0.027, p < 0.001; Model 3: β = -0.042, 95% CI: -0.061, -0.023, p < 0.001). The linear relationship between NHHR and lumbar BMD was significantly influenced by body mass index (p for interaction = 0.012) and hypertension (p for interaction = 0.047). Non-linear associations between NHHR and lumbar BMD Z scores were observed in specific populations, including U-shaped, reverse U-shaped, L-shaped, reverse L-shaped, and U-shaped relationships among menopausal females, underweight participants, those with impaired glucose tolerance, those with diabetes mellitus and those taking anti-hyperlipidemic drugs, respectively. Conclusions NHHR exhibited a negative association with lumbar BMD, but varying across specific populations. These findings suggest that NHHR should be tailored to individual levels to mitigate bone loss through a personalized approach. Individuals at heightened risk of cardiovascular disease should focus on their bone health.
Collapse
Affiliation(s)
- Chengxin Xie
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Ren
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Qiang He
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Chenglong Wang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
8
|
Braszak-Cymerman A, Walczak MK, Oduah MT, Ludziejewska A, Bryl W. Comparison of the pleiotropic effect of atorvastatin and rosuvastatin on postmenopausal changes in bone turnover: A randomized comparative study. Medicine (Baltimore) 2024; 103:e38122. [PMID: 38728464 PMCID: PMC11081583 DOI: 10.1097/md.0000000000038122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Statins are the first-line treatment for dyslipidemia, which is a major modifiable risk factor for atherosclerotic cardiovascular disease. Studies have shown that in addition to the beneficial lipid-lowering effect, statins also exhibit a number of pleiotropic effects that may find application in other diseases, including osteoporosis. This study aimed to assess the effect of statins on bone turnover, as measured by the concentration of bone turnover markers, and to compare the effect of atorvastatin as a lipophilic statin and rosuvastatin as a hydrophilic statin. METHODS This study included 34 postmenopausal women aged < 65 years with newly diagnosed dyslipidemia requiring statin therapy. Patients were randomly assigned to receive a statin drug. Statins were initiated at standard doses of 5 to 10 mg of rosuvastatin and 20 mg of atorvastatin. The levels of C-terminal telopeptide of type I collagen as a bone resorption marker and N-terminal propeptide of procollagen type I as a marker of bone formation, lipid concentrations and other biochemical parameters were assessed at baseline and after 6 and twelve months of treatment. RESULTS There were no statistically significant differences between the levels of bone turnover markers before and 6 months after statin implementation (P > .05) - for all patients or subgroups according to statin use. Analysis of the results showed that after 12 months, there was a statistically significant decrease in N-terminal propeptide of procollagen type I concentration in all subjects (P = .004). By statin subgroup, a statistically significant decrease in N-terminal propeptide of procollagen type I was observed only in patients receiving rosuvastatin (P = .012) and not in those receiving atorvastatin (P = .25). Moreover, changes in bone turnover markers did not correlate with changes in lipid concentrations. CONCLUSIONS These results may indicate the superiority of atorvastatin over rosuvastatin in inhibiting adverse changes in bone turnover in postmenopausal women. Confirmed by studies involving a larger population, the observed differences might find particular applications in clinical practice, and the choice of atorvastatin over rosuvastatin for women could be considered in the early postmenopausal period to reduce the risk of osteoporosis and subsequent osteoporotic fractures.
Collapse
Affiliation(s)
- Anna Braszak-Cymerman
- Department of Internal Diseases, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
| | - Marta K. Walczak
- Department of Internal Diseases, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
| | - Mary-Tiffany Oduah
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, Minnesota, USA
| | | | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Zhang L, Lin Y, Lu AX, Liu JX, Li J, Yan CH. Metabolomics insights into the effects of pre-pregnancy lead exposure on bone metabolism in pregnant rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122468. [PMID: 37652228 DOI: 10.1016/j.envpol.2023.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Today's women of childbearing age with a history of high lead (Pb) exposure in childhood have large Pb body burdens, which increases Pb release during pregnancy by promoting bone Pb mobilisation. The purpose of this study was to investigate the metabolic mechanisms underlying bone Pb mobilisation and explore the bone metabolism-related pathways during pregnancy. Drinking water containing 0.05% sodium acetate or Pb acetate was provided to weaned female rats for 4 weeks followed by a 4-week washout period, and then rats were co-caged with healthy males of the same age until pregnancy. Blood and bone tissues of the female rats were collected at gestational day (GD) 3 (early pregnancy), GD 10 (middle pregnancy), and GD 17 (late pregnancy), respectively. Pb and calcium concentrations, biomarkers for bone turnover, bone microstructure, serum metabolomics, and metabolic indicators were intensively analyzed. The results demonstrated that pre-pregnancy Pb exposure elevated blood lead levels (BLLs) at GD17, accompanied by a negative correlation between BLLs and trabecular bone Pb levels. Meanwhile, Pb-exposed rats had low bone mass and aberrant bone architecture with a larger number of mature osteoclasts (OCs) compared to the control group. Moreover, the metabolomics uncovered that Pb exposure caused mitochondrial dysfunction, such as enhanced oxidative stress and inflammatory response, and suppressed energy metabolism. Additionally, the levels of ROS, MDA, IL-1β, and IL-18 involved in redox and inflammatory pathways of bone tissues were significantly increased in the Pb-exposed group, while antioxidant SOD and energy metabolism-related indicators including ATP levels, Na+-K+-ATPase, and Ca2+-Mg2+-ATPase activities were significantly decreased. In conclusion, pre-pregnancy Pb exposure promotes bone Pb mobilisation and affects bone microstructure in the third trimester of pregnancy, which may be attributed to OC activation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lin Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - An-Xin Lu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun-Xia Liu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
12
|
Zheng Y, Wang X, Pan Y, Shi X, Yang L, Lou Y. Orientin suppresses osteoclastogenesis and ameliorates ovariectomy-induced osteoporosis via suppressing ROS production. Food Sci Nutr 2023; 11:5582-5595. [PMID: 37701239 PMCID: PMC10494641 DOI: 10.1002/fsn3.3516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
The aberrant differentiation of osteoclasts is a key feature of the pathogenesis of osteoporosis, which has a devastating impact on human health. While the effects of Orientin (Ori) on osteoporosis, particularly on RANKL-stimulated osteoclast production and activation, remain still unclear, Ori has been found to display several biological activities, including antioxidant and anti-inflammatory. In this work, we investigated the possible pathways through which Ori suppressed RANKL-induced osteoclast development and showed for the first time that it does so. The macrophages from the bone marrow (BMMs) were cultivated and then treated with Ori after being stimulated with RANKL. Then, TRAP-positive multinucleated cells were counted, and F-actin ring analysis was used to assess Ori's impact on mature osteoclast development. In addition, dihydroethidium (DHE) staining was used to evaluate the impact of Ori on RANKL-induced reactive oxygen species (ROS). In addition, we performed western blotting and quantitative RT-PCR analysis to investigate probable causes of these downregulation effects. We discovered that Ori inhibits the creation of osteoclasts, the gene and protein expressions unique to osteoclasts, and the ROS production. By activating Nrf2 and other ROS-scavenging enzymes, Ori reduces intracellular ROS levels. The expression of the main transcription factor of osteoclast development, c-Fos, was downregulated together with NFATc1, CTSK, and NFATc2, thanks to Ori's inhibition of RANKL-induced NF-κB. Consistent with its in vitro antiosteoclastogenic action, Ori therapy in the ovariectomized (OVX) rat model was also able to restore bone mass and improve microarchitecture in the distal femurs. Together, our results demonstrate that Ori is a flavonoid molecule with therapeutic promise for bone illnesses associated with osteoclasts, such as osteoporosis.
Collapse
Affiliation(s)
- Yan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
- Department of EndocrinologyAffiliated Yueqing HospitalWenzhouChina
| | - Xing Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Ya‐Jing Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiao‐Feng Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Lei Yang
- Department of OrthopedicThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yong‐Liang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
13
|
Kabra S, Thosar NR, Malviya NS. Exploring the Synergistic Effect of Simvastatin in Oral Health Applications: A Literature Review. Cureus 2023; 15:e44411. [PMID: 37791218 PMCID: PMC10543113 DOI: 10.7759/cureus.44411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Statins are the first line of treatment for hyperlipidaemia. Along with lowering lipids, it also lowers mortality and cardiovascular risk. Statins play a major role in maintaining the homeostasis of the oral cavity via a number of different mechanisms. It includes regeneration of dentin and pulp by differentiation and increased development of mineralized tissue via the bone morphogenetic proteins (BMP)-2 Pathway. It shows effective bone health by leading to osteogenic differentiation mesenchymal stem cells, by facilitating epithelization process in wound healing, anti-inflammatory, antioxidant, antimicrobial, antiviral, and fungicidal properties. To the finest of the information we have, there have been very few comprehensive studies that have investigated the effects of statin drugs on various aspects of dental and oral health. As a result, the main objective of this review was to examine the effect of statins on oral health applications. According to the findings of our extensive review, statins have noteworthy and promising effects on several aspects of oral health, including dental pulp cells, chronic periodontitis, alveolar bone loss, orthodontic tooth movement, and so on. Nevertheless, it is concluded that local or even systemic administration of simvastatin should be regarded as an innovative, easily accessible, and safe therapeutic agent that has a significant impact on enhancing the oral health.
Collapse
Affiliation(s)
- Sakshi Kabra
- Pediatric and Preventive Dentistry, Sharard Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Nilima R Thosar
- Pediatric and Preventive Dentistry, Sharard Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Nishi S Malviya
- Pediatric and Preventive Dentistry, Sharard Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| |
Collapse
|
14
|
Jambhekar S, Soman M, Shrivastava R, Ventrapragada R, Sarate S, Kodem T. Comparative Evaluation of Tetracycline Hydrochloride Fiber and Simvastatin Gel as an Adjunct to Scaling and Root Planing in Periodontitis Patients. Cureus 2023; 15:e42314. [PMID: 37621803 PMCID: PMC10445047 DOI: 10.7759/cureus.42314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Inflammation of oral soft tissues, caused by periodontal disease, results in the loss of attachment to supporting therapy and is a severe threat to dental health. Although there are a number of therapeutic options available, mechanical debridement continues to be the gold standard. Scaling and root planing is the gold standard therapy for periodontitis, but this research aims to examine the efficacy of tetracycline fibers and simvastatin gel as local drug delivery methods. We evaluated 60 sites, splitting them into three groups: 20 sites received just scaling and root planing; 20 sites received scaling and root planing plus simvastatin gel; and 20 sites received scaling and root planing plus tetracycline fibers. Clinical indicators such as the gingival index, the modified sulcular bleeding index, and the probing depth were measured at the start of the study, after one week, after one month, after three months, and after six months. After six months, the simvastatin group reduced the gingival index and modified sulcular bleeding index more than the tetracycline group, whereas the tetracycline group reduced probing depth more than the simvastatin group.
Collapse
Affiliation(s)
- Samidha Jambhekar
- Department of Periodontics, Dr. DY Patil Dental College and Hospital, Mumbai, IND
| | - Mrunmayee Soman
- Department of Dentistry, Dr. DY Patil Dental College and Hospital, Pimpri, IND
| | - Ratika Shrivastava
- Department of Periodontology, Rishiraj College of Dental Science & Research Center, Bhopal, IND
| | - Roja Ventrapragada
- Department of Periodontology, Partha Dental Skin Hair Clinic, Mangalagiri, IND
| | - Shweta Sarate
- Department of Periodontology, People's College of Dental Sciences, Bhopal, IND
| | - Tejaswi Kodem
- Department of Periodontology, Gitam Dental College and Hospital, Visakhapatnam, IND
| |
Collapse
|
15
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
16
|
Akhmetshina A, Kratky D, Rendina-Ruedy E. Influence of Cholesterol on the Regulation of Osteoblast Function. Metabolites 2023; 13:metabo13040578. [PMID: 37110236 PMCID: PMC10143138 DOI: 10.3390/metabo13040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Bone is a dynamic tissue composed of cells, an extracellular matrix, and mineralized portion. Osteoblasts are responsible for proper bone formation and remodeling, and function. These processes are endergonic and require cellular energy in the form of adenosine triphosphate (ATP), which is derived from various sources such as glucose, fatty acids, and amino acids. However, other lipids such as cholesterol have also been found to play a critical role in bone homeostasis and can also contribute to the overall bioenergetic capacity of osteoblasts. In addition, several epidemiological studies have found a link between elevated cholesterol, cardiovascular disease, an enhanced risk of osteoporosis, and increased bone metastasis in cancer patients. This review focuses on how cholesterol, its derivatives, and cholesterol-lowering medications (statins) regulate osteoblast function and bone formation. It also highlights the molecular mechanisms underlying the cholesterol-osteoblast crosstalk.
Collapse
Affiliation(s)
- Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Elizabeth Rendina-Ruedy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
17
|
Sun H, Meng S, Chen J, Wan Q. Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies. J Funct Biomater 2023; 14:jfb14040194. [PMID: 37103284 PMCID: PMC10145040 DOI: 10.3390/jfb14040194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.
Collapse
|
18
|
Li TL, Liu HD, Ren MX, Zhou Z, Jiang WK, Yang M. Daytime administration of melatonin has better protective effects on bone loss in ovariectomized rats. J Orthop Surg Res 2023; 18:234. [PMID: 36949499 PMCID: PMC10035168 DOI: 10.1186/s13018-023-03695-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVE To explore the difference in the protective effects of intraperitoneal injection of exogenous melatonin of daytime or nighttime on bone loss in ovariectomized (OVX) rats. METHODS After bilateral ovariectomy and sham surgery, 40 rats were randomly divided into four groups: sham operation group (Sham), ovariectomy (OVX), and daytime melatonin injection group (OVX + DMLT, 9:00, 30 mg/kg/d) and nighttime injection of melatonin (OVX + NMLT, 22:00, 30 mg/kg/d). After 12 weeks of treatment, the rats were sacrificed. The distal femur, blood and femoral marrow cavity contents were saved. The rest of the samples were tested by Micro-CT, histology, biomechanics and molecular biology. Blood was used for bone metabolism marker measurements. CCK-8, ROS, and Cell apoptosis are performed using MC3E3-T1 cells. RESULTS Compared with treatment at night, the bone mass of the OVX rats was significantly increased after the daytime administration. All microscopic parameters of trabecular bone increased, only Tb.Sp decreased. Histologically, the bone microarchitecture of the OVX + DMLT was also more dense than the bone microarchitecture of the OVX + LMLT. In the biomechanical experiment, the femur samples of the day treatment group were able to withstand greater loads and deformation. In molecular biology experiments, bone formation-related molecules increased, while bone resorption-related molecules decreased. After treatment with melatonin administration at night, the expression of MT-1β was significantly decreased. In cell experiments, the MC3E3-T1 cells treated with low-dose MLT had higher cell viability and greater efficiency in inhibiting ROS production than the MC3E3-T1 cells treated with high-dose MLT, which in turn more effectively inhibited apoptosis. CONCLUSION Daytime administration of melatonin acquires better protective effects on bone loss than night in OVX rats.
Collapse
Affiliation(s)
- Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - He-Dong Liu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Mao-Xian Ren
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhi Zhou
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Wen-Kai Jiang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| |
Collapse
|
19
|
Shakeri H, Haghbin Nazarpak M, Imani R, Tayebi L. Poly (l-lactic acid)-based modified nanofibrous membrane with dual drug release capability for GBR application. Int J Biol Macromol 2023; 231:123201. [PMID: 36642362 PMCID: PMC10603761 DOI: 10.1016/j.ijbiomac.2023.123201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Electrospun multilayer nanofibers guided bone regeneration (GBR) with a new design were developed in this study. The synthesized multilayer GBR was composed of two distinct layers. Poly l-lactic acid (PLA) incorporated with simvastatin (SIM) was designed as PLA/SIM layer to contact with a bone defect. In addition, the hydrophilic gelatin (GT) containing thymol (THY) was fabricated as GT/THY layer to contact connective tissue, potentially for bacterial gathering. Due to the different chemical nature and weak cohesion of the hydrophilic and hydrophobic layers, hybrid fibers made of PLA/SIM and GT/THY were electrospun as cohesion promoters between these layers. The microstructure and characteristics of the synthesized multilayer substrate, named GT/PLA, were evaluated, and different fibrous monolayers were fabricated to determine the optimal concentrations of drugs. Scanning electron microscopy (SEM) images showed continuous, smooth, randomly aligned, and bead-free fibers. In addition, there were no drug particles on the fiber surfaces which displayed the good placement of those inside the fibers. The mats exhibited satisfactory tensile strength (4.60 ± 0.14 MPa) and favorable physicochemical properties, including proper porosity percentage (<50 %) and appropriate pore size. Suitable swelling behavior (293 ± 0.05 %) and adequate degradation rates were also approved by characterizing swelling and degradability in vitro. The GT/PLA membrane exhibited a prolonged and sustained SIM release and controlled THY release with high antibacterial efficiency. Cell viability, cell attachment assay, and nuclear staining using 4',6-diamidino-2-phenylindole (DAPI) showed that the designed GT/PLA substrate had good biocompatibility and cell attachment. Cell infiltration testing also showed that the cells were finely prevented by the outer layer (GT/THY). Overall, the obtained results in this study indicated the great potential of the prepared GT/PLA for use as a GBR which can develop osteogenic and antibacterial biomimetic periosteum optimizing the clinical application of GBR strategies.
Collapse
Affiliation(s)
- Haniyeh Shakeri
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Lobat Tayebi
- School of Dentistry, Marquette University, WI, United States
| |
Collapse
|
20
|
Cheng HM, Xing M, Zhou YP, Zhang W, Liu Z, Li L, Zheng Z, Ma Y, Li P, Liu X, Li P, Xu X. HSP90β promotes osteoclastogenesis by dual-activation of cholesterol synthesis and NF-κB signaling. Cell Death Differ 2023; 30:673-686. [PMID: 36198833 PMCID: PMC9984383 DOI: 10.1038/s41418-022-01071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90β (Hsp90β, encoded by Hsp90ab1 gene) is the most abundant proteins in the cells and contributes to variety of biological processes including metabolism, cell growth and neural functions. However, genetic evidences showing Hsp90β in vivo functions using tissue specific knockout mice are still lacking. Here, we showed that Hsp90β exerted paralogue-specific role in osteoclastogenesis. Using myeloid-specific Hsp90ab1 knockout mice, we provided the first genetic evidence showing the in vivo function of Hsp90β. Hsp90β binds to Ikkβ and reduces its ubiquitylation and proteasomal degradation, thus leading to activated NF-κB signaling. Meanwhile, Hsp90β increases cholesterol biosynthesis by activating Srebp2. Both pathways promote osteoclastogenic genes expression. Genetic deletion of Hsp90ab1 in osteoclast or pharmacological inhibition of Hsp90β alleviates bone loss in ovariectomy-induced mice. Therefore, Hsp90β is a promising druggable target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Mingming Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zeyu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China.
| |
Collapse
|
21
|
Leutner M, Butylina M, Matzhold C, Klimek P, Cuhaj C, Bellach L, Baumgartner-Parzer S, Reiter B, Preindl K, Kautzky A, Stimpfl T, Thurner S, Pietschmann P, Fürnsinn C, Kautzky-Willer A. Simvastatin therapy in higher dosages deteriorates bone quality: Consistent evidence from population-wide patient data and interventional mouse studies. Biomed Pharmacother 2023; 158:114089. [PMID: 36538862 DOI: 10.1016/j.biopha.2022.114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Combining mouse experiments with big data analysis of the Austrian population, we investigated the association between high-dose statin treatment and bone quality. METHODS The bone microarchitecture of the femur and vertebral body L4 was measured in male and ovariectomized female mice on a high-fat diet containing simvastatin (1.2 g/kg). A sex-specific matched big data analysis of Austrian health insurance claims using multiple logistic regression models was conducted (simvastatin 60-80 mg/day vs. controls; males: n = 138,666; females: n = 155,055). RESULTS High-dose simvastatin impaired bone quality in male and ovariectomized mice. In the trabecular femur, simvastatin reduced bone volume (µm3: ♂, 213 ± 15 vs. 131 ± 7, p < 0.0001; ♀, 66 ± 7 vs. 44 ± 5, p = 0.02) and trabecular number (1/mm: ♂, 1.88 ± 0.09 vs. 1.27 ± 0.06, p < 0.0001; ♀, 0.60 ± 0.05 vs. 0.43 ± 0.04, p = 0.01). In the cortical femur, bone volume (mm3: ♂, 1.44 ± 0.03 vs. 1.34 ± 0.03, p = 0.009; ♀, 1.33 ± 0.03 vs. 1.12 ± 0.03, p = 0.0002) and cortical thickness were impaired (µm: ♂, 211 ± 4 vs. 189 ± 4, p = 0.0004; ♀, 193 ± 3 vs. 169 ± 3, p < 0.0001). Similar impairments were found in vertebral body L4. Simvastatin-induced changes in weight or glucose metabolism were excluded as mediators of deteriorations in bone quality. Results from mice were supported by a matched cohort analysis showing an association between high-dose simvastatin and increased risk of osteoporosis in patients (♂, OR: 5.91, CI: 3.17-10.99, p < 0.001; ♀, OR: 4.16, CI: 2.92-5.92, p < 0.001). CONCLUSION High-dose simvastatin dramatically reduces bone quality in obese male and ovariectomized female mice, suggesting that direct drug action accounts for the association between high dosage and increased risk of osteoporosis as observed in comparable human cohorts. The underlying pathophysiological mechanisms behind this relationship are presently unknown and require further investigation.
Collapse
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria
| | - Carina Cuhaj
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Birgit Reiter
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Karin Preindl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Thomas Stimpfl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria; Santa Fe Institute, Santa Fe, NM 85701, USA
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Clemens Fürnsinn
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Gender Institute, A-3571 Gars am Kamp, Austria.
| |
Collapse
|
22
|
Rosyida NF, Ana ID, Alhasyimi AA. The Use of Polymers to Enhance Post-Orthodontic Tooth Stability. Polymers (Basel) 2022; 15:polym15010103. [PMID: 36616453 PMCID: PMC9824751 DOI: 10.3390/polym15010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Relapse after orthodontic treatment occurs at a rate of about 70 to 90%, and this phenomenon is an orthodontic issue that has not yet been resolved. Retention devices are one attempt at prevention, but they require a considerable amount of time. Most orthodontists continue to find it challenging to manage orthodontic relapse; therefore, additional research is required. In line with existing knowledge regarding the biological basis of relapse, biomedical engineering approaches to relapse regulation show promise. With so many possible uses in biomedical engineering, polymeric materials have long been at the forefront of the materials world. Orthodontics is an emerging field, and scientists are paying a great deal of attention to polymers because of their potential applications in this area. In recent years, the controlled release of bisphosphonate risedronate using a topically applied gelatin hydrogel has been demonstrated to be effective in reducing relapse. Simvastatin encapsulation in exosomes generated from periodontal ligament stem cells can promote simvastatin solubility and increase the inhibitory action of orthodontic relapse. Moreover, the local injection of epigallocatechin gallate-modified gelatin suppresses osteoclastogenesis and could be developed as a novel treatment method to modify tooth movement and inhibit orthodontic relapse. Furthermore, the intrasulcular administration of hydrogel carbonated hydroxyapatite-incorporated advanced platelet-rich fibrin has been shown to minimize orthodontic relapse. The objective of this review was to provide an overview of the use of polymer materials to reduce post-orthodontic relapse. We assume that bone remodeling is a crucial factor even though the exact process by which orthodontic correction is lost after retention is not fully known. Delivery of a polymer containing elements that altered osteoclast activity inhibited osteoclastogenesis and blocking orthodontic relapse. The most promising polymeric materials and their potential orthodontic uses for the prevention of orthodontic relapse are also discussed.
Collapse
Affiliation(s)
- Niswati Fathmah Rosyida
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Correspondence: ; Tel.: +62-82136708250
| |
Collapse
|
23
|
The Twofold Role of Osteogenic Small Molecules in Parkinson's Disease Therapeutics: Crosstalk of Osteogenesis and Neurogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3813541. [PMID: 36545269 PMCID: PMC9763015 DOI: 10.1155/2022/3813541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Deemed one of the most problematic neurodegenerative diseases in the elderly population, Parkinson's disease remains incurable to date. Ongoing diagnostic studies, however, have revealed that a large number of small molecule drugs that trigger the BMP2-Smad signaling pathway with an osteogenic nature may be effective in Parkinson's disease treatment. Although BMP2 and Smad1, 3, and 5 biomolecules promote neurite outgrowth and neuroprotection in dopaminergic cells as well, small molecules are quicker at crossing the BBB and reaching the damaged dopaminergic neurons located in the substantia nigra due to a molecular weight less than 500 Da. It is worth noting that osteogenic small molecules that inhibit Smurf1 phosphorylation do not offer therapeutic opportunities for Parkinson's disease; whereas, osteogenic small molecules that trigger Smad1, 3, and 5 phosphorylation may have strong therapeutic implications in Parkinson's disease by increasing the survival rate of dopaminergic cells and neuritogenesis. Notably, from a different perspective, it might be said that osteogenic small molecules can possibly put forth therapeutic options for Parkinson's disease by improving neuritogenesis and cell survival.
Collapse
|
24
|
Effects of Simvastatin on Cartilage Homeostasis in Steroid-Induced Osteonecrosis of Femoral Head by Inhibiting Glucocorticoid Receptor. Cells 2022; 11:cells11243945. [PMID: 36552711 PMCID: PMC9777187 DOI: 10.3390/cells11243945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Steroid-induced osteonecrosis of femoral head (SONFH) is one of the most common bone disorders in humans. Statin treatment is beneficial in preventing the development of SONFH through anti-inflammation effects and inhibition of the glucocorticoid receptor (GR). However, potential mechanisms of statin action remain to be determined. In this study, pulse methylprednisolone (MP) treatment was used to induce SONFH in broilers, and then MP-treated birds were administrated with simvastatin simultaneously to investigate the changes in cartilage homeostasis. Meanwhile, chondrocytes were isolated, cultured, and treated with MP, simvastatin, or GR inhibitor in vitro. The changes in serum homeostasis factors, cell viability, and expression of GR were analyzed. The results showed that the morbidity of SONFH in the MP-treated group increased significantly compared with the simvastatin-treated and control group. Furthermore, MP treatment induced apoptosis and high-level catabolism and low-level anabolism in vitro and vivo, while simvastatin significantly decreased catabolism and slightly recovered anabolism via inhibiting GR and the hypoxia-inducible factor (HIF) pathway. The GR inhibitor or its siRNA mainly affected the catabolism of cartilage homeostasis in vitro. In conclusion, the occurrence of SONFH in broilers was related to the activation of GR and HIF pathway, and imbalance of cartilage homeostasis. Simvastatin and GR inhibitor maintained cartilage homeostasis via GR and the HIF pathway.
Collapse
|
25
|
Xie R, Huang X, Zhang Y, Liu Q, Liu M. High Low-Density Lipoprotein Cholesterol Levels are Associated with Osteoporosis Among Adults 20–59 Years of Age. Int J Gen Med 2022; 15:2261-2270. [PMID: 35250302 PMCID: PMC8896571 DOI: 10.2147/ijgm.s353531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 12/31/2022] Open
Abstract
Background Serum lipids are highly inheritable and play a major role in bone health. However, the relationship between low-density lipoprotein cholesterol (LDL-C) and bone mineral density (BMD) remains uncertain. The goal of this study was to see if there was a link between LDL-C levels and BMD in persons aged 20 to 59. Methods Using data from the National Health and Nutrition Examination Survey (NHANES) 2011–2018, multivariate logistic regression models were utilized to investigate the association between LDL-C and lumbar BMD. Fitted smoothing curves and generalized additive models were also used. Results The analysis included a total of 4909 adults. After controlling for various variables, we discovered that LDL-C was negatively linked with lumbar BMD. The favorable connection of LDL-C with lumbar BMD was maintained in subgroup analyses stratified by gender and race in both males and females, Whites and Mexican Americans, but not in Blacks and other races. The relationship between LDL-C and lumbar BMD in other races was an inverted U-shaped curve with the inflection point: 2.327 (mmol/L). Conclusion In people aged 20 to 59, our research discovered a negative relationship among LDL-C and lumbar BMD. Among races other than Whites, Blacks, Mexican Americans, this relationship followed an inverted U-shaped curve (inflection point: 2.327mmol/L). LDL-C measurement might be used as a responsive biomarker for detecting osteoporosis early and guiding therapy.
Collapse
Affiliation(s)
- Ruijie Xie
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, People’s Republic of China
| | - Xiongjie Huang
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, People’s Republic of China
| | - Ya Zhang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533099, People’s Republic of China
| | - Qianlong Liu
- The Affiliated Changsha Central Hospital, Hengyang Medical school, University of South China, Changsha, 410004, People’s Republic of China
| | - Mingjiang Liu
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, People’s Republic of China
- Correspondence: Mingjiang Liu, Email
| |
Collapse
|
26
|
Soni A, Raj S, Kashyap L, Upadhyay A, Agrahari V, Sharma A. Comparative effect of 1.2% atorvastatin gel and 1.2% rosuvastatin as a local drug delivery in treatment of intra-bony defects in chronic periodontitis. Indian J Dent Res 2022; 33:180-183. [DOI: 10.4103/ijdr.ijdr_25_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Ma X, Gao Y, Zhao D, Zhang W, Zhao W, Wu M, Cui Y, Li Q, Zhang Z, Ma C. Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:47. [PMID: 35009997 PMCID: PMC8746425 DOI: 10.3390/nano12010047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to the patients having to undergo a painful second operation, along with increased economic burden, but the use of drugs is actively solving these problems. The use of systemic drug delivery systems through oral, intravenous, and intramuscular injection of various drugs with different pharmacological properties has effectively reduced the levels of inflammation, lowered the risk of endophytic bacterial infection, and regulated the progress of bone tumor cells, processing and regulating the balance of bone metabolism around the titanium implants. However, due to the limitations of systemic drug delivery systems-such as pharmacokinetics, and the characteristics of bone tissue in the event of different forms of trauma or disease-sometimes the expected effect cannot be achieved. Meanwhile, titanium implants loaded with drugs for local administration have gradually attracted the attention of many researchers. This article reviews the latest developments in local drug delivery systems in recent years, detailing how various types of drugs cooperate with titanium implants to enhance antibacterial, antitumor, and osseointegration effects. Additionally, we summarize the improved technology of titanium implants for drug loading and the control of drug release, along with molecular mechanisms of bone regeneration and vascularization. Finally, we lay out some future prospects in this field.
Collapse
|
28
|
Chen W, Xie G, Lu Y, Wang J, Feng B, Wang Q, Xu K, Bao J. An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials 2021; 280:121260. [PMID: 34823885 DOI: 10.1016/j.biomaterials.2021.121260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
An increasing number of works have highlighted the importance of metal implants surface modification in enhancing bone defect healing through the synergistic osteogenesis-angiogenesis regulation. Studies have shown that pitavastatin has the effect of promoting osteogenesis and angiogenesis. However, how to prepare pitavastatin functionalized implants and how pitavastatin regulates the synergies of osteogenesis and angiogenesis around implants as well as the related mechanisms remain unclear. In the present study, multilayer films with osteogenic and angiogenic properties were constructed on pure titanium substrates via the layer-by-layer assembly of pitavastatin-loaded β-cyclodextrin grafted chitosan and gelatin. In vitro experiments demonstrated that locally applied pitavastatin could dramatically enhance osteogenic potential of mesenchymal stem cells (MSCs) and angiogenic potential of endothelial cells (ECs). Moreover, pitavastatin loaded multilayer films could regulate the paracrine signaling mediated crosstalk between MSCs and ECs, and indirectly increase the angiogenic potential of MSCs and osteogenic potential of ECs via multiple paracrine signaling. The results of subcutaneous and femur implantation confirmed that locally released pitavastatin had potentially triggered a chain of biological events: mobilizing endogenous stem cells and ECs to the implant-bone interface, in turn facilitating coupled osteogenesis and angiogenesis, and eventually enhancing peri-implant osseointegration. This study enlarges the application scope of pitavastatin and provides an optional choice for developing a multifunctional bioactive coating on the surfaces of mental implants.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China.
| | - Guoliang Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yang Lu
- Department of Orthopedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China
| | - Jiayuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Baihuan Feng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Qi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Kui Xu
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China; The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, PR China.
| | - Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| |
Collapse
|
29
|
Sun T, Xing HL, Chen ZZ, Tao ZS, Li J. Simvastatin reverses the harmful effects of high fat diet on titanium rod osseointegration in ovariectomized rats. J Bone Miner Metab 2021; 39:944-951. [PMID: 34189660 DOI: 10.1007/s00774-021-01243-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The objectives of the present study were to determine whether simvastatin (SIM) could reverse the harmful effects on titanium rod osseointegration in ovariectomized rats fed high-fat diet (HFD). MATERIALS AND METHODS Ovariectomized female Sprague-Dawley rats were randomly allocated to three groups and received SIM treatment plus HFD for 12 weeks. We then evaluated the microstructure parameters, histological parameters, biomechanical parameters, bone turnover, and blood lipid level. RESULTS After 12 weeks of treatment, SIM can significantly improve bone formation around the titanium rod and osseointegration including higher values of maximum push-out force, bone area ratio (BAR), bone-to-implant contact (BIC), bone mineral density (BMD), bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), mean connective density (Conn.D) when compared with the HFD group. In addition, system administration of SIM showed positive effects on collagen type 1 cross-linked C-telopeptide (CTX-1), procollagen I N-terminal propeptide (PINP), total cholesterol (TC), triglycerides (TGL), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol. Compared with the HFD group, lower values of CTX-1, P1NP, TC, TGL and LDL were observed in the SIM+HFD group (P < 0.05). CONCLUSION Our findings revealed that HFD may have an adverse effect on osseointegration in osteoporotic conditions, and the harmful effect of HFD on osseointegration could be reversed by SIM.
Collapse
Affiliation(s)
- Tao Sun
- Department of Orthopedics, The Fifth Affiliated Hospital Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, Zhejiang, People's Republic of China
| | - Hai-Lin Xing
- Department of Orthopedics, The Fifth Affiliated Hospital Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, Zhejiang, People's Republic of China
| | - Zhen-Zhong Chen
- Department of Orthopedics, The Fifth Affiliated Hospital Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, Zhejiang, People's Republic of China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, People's Republic of China
| | - Jian Li
- Department of Orthopedics, The Fifth Affiliated Hospital Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Jun JH, Oh KC, Park KH, Jung N, Li J, Moon HS. Improvement of Osseointegration by Ultraviolet and/or Simvastatin Treatment on Titanium Implants with or without Bone Graft Materials. MATERIALS 2021; 14:ma14133707. [PMID: 34279277 PMCID: PMC8269879 DOI: 10.3390/ma14133707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022]
Abstract
We evaluated and compared ultraviolet (UV) treatment and simvastatin (SIM) immersion effects on the osseointegration of sandblasted, large-grit, acid-etched (SLA) titanium dental implants at two different time points in rabbit tibias, with or without xenogenic bone graft materials. The surface alteration on simvastatin treatment titanium discs was analyzed using an infrared spectrometer. Implants were categorized into four groups according to the surface treatment type. Twelve rabbits received two implants per tibia. A tibial defect model was created using a trephine bur, with implants in contact with the bone surface and bovine bone graft materials for gap filling. The rabbits were sacrificed after 2 or 4 weeks. UV treatment or SIM immersion increased the bone-to-implant contact (BIC) on nongrafted sides, and both increased the BIC and bone area (BA) on grafted sides. The application of both treatments did not result in higher BIC or BA than a single treatment. At two different time points, BIC in the nongrafted sides did not differ significantly among the UV and/or SIM treated groups, whereas BA differed significantly. UV or SIM treatment of SLA titanium implants accelerates osseointegration in tibias with or without xenogenic bone graft materials. The combination of both treatments did not show synergy.
Collapse
Affiliation(s)
- Ji Hoon Jun
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.H.J.); (K.C.O.); (J.L.)
- Aeromedical Squadron, Republic of Korea Air Force 8th Fighter Wing, Wonju 26304, Korea
| | - Kyung Chul Oh
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.H.J.); (K.C.O.); (J.L.)
| | - Kyu-Hyung Park
- Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.-H.P.); (N.J.)
| | - Narae Jung
- Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.-H.P.); (N.J.)
| | - Jiayi Li
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.H.J.); (K.C.O.); (J.L.)
| | - Hong Seok Moon
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.H.J.); (K.C.O.); (J.L.)
- Correspondence: ; Tel.: +82-2-2228-3155; Fax: +82-2-312-3598
| |
Collapse
|
31
|
Chamani S, Liberale L, Mobasheri L, Montecucco F, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of statins in the differentiation and function of bone cells. Eur J Clin Invest 2021; 51:e13534. [PMID: 33656763 DOI: 10.1111/eci.13534] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Statins are 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors blocking cholesterol biosynthesis in hepatic cells, thereby causing an increase in low-density lipoprotein (LDL) receptors resulting in enhanced uptake and clearance of atherogenic LDL-cholesterol (LDL-C) from the blood. Accordingly, statins decrease the risk of developing atherosclerosis and its acute complications, such as acute myocardial infarction and ischaemic stroke. Besides the LDL-C-lowering impact, statins also have other so-called pleiotropic effects. Among them, the ability to modulate differentiation and function of bone cells and exert direct effects on osteosynthesis factors. Specifically, earlier studies have shown that statins cause in vitro and in vivo osteogenic differentiation. DESIGN The most relevant papers on the bone-related 'pleiotropic' effects of statins were selected following literature search in databases and were reveiwed. RESULTS Statins increase the expression of many mediators involved in bone metabolism including bone morphogenetic protein-2 (BMP-2), glucocorticoids, transforming growth factor-beta (TGF-β), alkaline phosphatase (ALP), type I collagen and collagenase-1. As a result, they enhance bone formation and improve bone mineral density by modulating osteoblast and osteoclast differentiation. CONCLUSION This review summarizes the literature exploring bone-related 'pleiotropic' effects of statins and suggests an anabolic role in the bone tissue for this drug class. Accordingly, current knowledge encourages further clinical trials to assess the therapeutic potential of statins in the treatment of bone disorders, such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Sajad Chamani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Leila Mobasheri
- Department of Pharmacology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Li GHY, Cheung CL, Au PCM, Tan KCB, Wong ICK, Sham PC. Positive effects of low LDL-C and statins on bone mineral density: an integrated epidemiological observation analysis and Mendelian randomization study. Int J Epidemiol 2021; 49:1221-1235. [PMID: 31302685 DOI: 10.1093/ije/dyz145] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) is suggested to play a role in osteoporosis but its association with bone metabolism remains unclear. Effects of LDL-C-lowering drugs on bone are also controversial. We aim to determine whether LDL-C is linked causally to bone mineral density (BMD) and assess the effects of LDL-C-lowering drugs on BMD. METHODS Association between blood lipid levels and BMD was examined by epidemiological observation analyses in a US representative cohort NHANES III (n = 3638) and the Hong Kong Osteoporosis Study (HKOS; n = 1128). Two-sample Mendelian randomization (MR), employing genetic data from a large-scale genome-wide association study (GWAS) of blood lipids (n = 188 577), total body BMD (TB-BMD) (n = 66 628) and estimated BMD (eBMD) (n= 142 487), was performed to infer causality between LDL-C and BMD. Genetic proxies for LDL-C-lowering drugs were used to examine the drugs' effects on BMD. RESULTS In the NHANES III cohort, each standard deviation (SD) decrease in LDL-C was associated with a 0.045 SD increase in femoral neck BMD (95% CI: 0.009 - 0.081; P = 0.015). A similar increase in BMD was observed in the HKOS at femoral neck and lumbar spine. In MR analysis, a decrease in genetically predicted LDL-C was associated with an increase in TB-BMD {estimate per SD decrease, 0.038 [95% confidence interval (CI): 0.002 - 0.074]; P = 0.038} and eBMD [0.076 (0.042 - 0.111); P = 1.20x10-5]. Reduction in TB-BMD was causally associated with increased LDL-C [0.035 (0.033 - 0.066); P = 0.034]. Statins' LDL-C-lowering proxies were associated with increased TB-BMD [0.18 (0.044 - 0.316); P = 9.600x10-3] and eBMD [0.143 (0.062 - 0.223); P = 5.165x10-4]. CONCLUSIONS Negative causal association exists between LDL-C level and BMD. Statins' LDL-C-lowering effect increases BMD, suggesting their protective effect on bone.
Collapse
Affiliation(s)
- Gloria Hoi-Yee Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam, Hong Kong
| | - Philip Chun-Ming Au
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kathryn Choon-Beng Tan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam, Hong Kong
| | - Ian Chi-Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Pak-Chung Sham
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
33
|
Rezaei H, Shahrezaee M, Jalali Monfared M, Fathi Karkan S, Ghafelehbashi R. Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Here, the role of simvastatin-loaded graphene oxide embedded in polyurethane-polycaprolactone nanofibers for bone tissue engineering has been investigated. The scaffolds were physicochemically and mechanically characterized, and obtained polymeric composites were used as MG-63 cell culture scaffolds. The addition of graphene oxide-simvastatin to nanofibers generates a homogeneous and uniform microstructure as well as a reduction in fiber diameter. Results of water-scaffolds interaction indicated higher hydrophilicity and absorption capacity as a function of graphene oxide addition. Scaffolds’ mechanical properties and physical stability improved after the addition of graphene oxide. Inducing bioactivity after the addition of simvastatin-loaded graphene oxide terminated its capability for hard tissue engineering application, evidenced by microscopy images and phase characterization. Nanofibrous scaffolds could act as a sustained drug carrier. Using the optimal concentration of graphene oxide-simvastatin is necessary to avoid toxic effects on tissue. Results show that the scaffolds are biocompatible to the MG-63 cell and support alkaline phosphatase activity, illustrating their potential use in bone tissue engineering. Briefly, graphene-simvastatin-incorporated in polymeric nanofibers was developed to increase bioactive components’ synergistic effect to induce more bioactivity and improve physical and mechanical properties as well as in vitro interactions for better results in bone repair.
Collapse
Affiliation(s)
- Hessam Rezaei
- Department of Orthopedic Surgery , School of Medicine, AJA University of Medical Sciences , Tehran , Iran
- Department of Biomedical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Mostafa Shahrezaee
- Department of Orthopedic Surgery , School of Medicine, AJA University of Medical Sciences , Tehran , Iran
| | - Marziyeh Jalali Monfared
- Department of Biomaterials and Medicinal Chemistry Research Center, AJA University of Medical Sciences , Tehran , Iran
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Robabehbeygom Ghafelehbashi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
34
|
Koç O, Tüz HH, Ocak M, Bilecenoğlu B, Fırat A, Kaymaz FF. Can the Combination of Simvastatin and Melatonin Create a Synergistic Effect on Bone Regeneration? J Oral Maxillofac Surg 2021; 79:1672-1682. [PMID: 33524327 DOI: 10.1016/j.joms.2020.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The present study evaluated the potential bone regeneration capacity of combining melatonin and simvastatin, with a goal of producing more osteogenic bone substitutes. MATERIALS AND METHODS A total of 48 male Wistar rats were randomly divided into 4 groups. The following were administered into critical-sized calvarial defects of the rats: Group I-human allograft; Group II-human allograft + 10 mg melatonin; Group III-human allograft + 0.1 mg simvastatin; and Group IV-human allograft + 10 mg melatonin + 0.1 mg simvastatin. Histopathologic, histomorphometric, and microcomputed tomographic evaluations were performed postprocedurally at 4 and 8 weeks. A P value < .05 was considered significant for all evaluations. RESULTS Groups II and III had significantly superior regeneration compared to Group I at weeks 4 and 8. Group III had significantly superior regeneration compared to Group II, particularly in week 4. Group IV had significantly superior regeneration compared to all groups at week 8. CONCLUSIONS The local administration of melatonin and simvastatin resulted in increased new bone mass and quality of bone microstructure than was seen in the control group. Simvastatin shortened the defect regeneration time more effectively than melatonin did. The combined use of melatonin and simvastatin provided a synergic effect on bone regeneration, particularly in the late phase of healing.
Collapse
Affiliation(s)
- Onur Koç
- Doctor, Department of Oral and Maxillofacial Surgery, Hacettepe University, Faculty of Dentistry, Ankara, Turkey.
| | - Hıfzı Hakan Tüz
- Professor, Department of Oral and Maxillofacial Surgery, Hacettepe University, Faculty of Dentistry, Ankara, Turkey
| | - Mert Ocak
- Assistant Professor, Department of Anatomy, Ankara University, Faculty of Dentistry, Ankara, Turkey
| | - Burak Bilecenoğlu
- Professor of Anatomy, Department of Anatomy, Ankara Medipol University, Faculty of Medicine, Ankara, Turkey
| | - Ayşegül Fırat
- Associate Professor, Department of Anatomy, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Figen Fevziye Kaymaz
- Professor, Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
35
|
Gupta S, Verma P, Tikku AP, Chandra A, Yadav RK, Bharti R, Bains R. “Effect of local application of simvastatin in bone regeneration of peri-apical defects-a clinico-radiographic study. J Oral Biol Craniofac Res 2020; 10:583-591. [DOI: 10.1016/j.jobcr.2020.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
|
36
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
37
|
Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P, Xu X. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 2020; 27:2048-2065. [PMID: 31907393 PMCID: PMC7308277 DOI: 10.1038/s41418-019-0484-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Si-Tong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Kose E, Wakabayashi H. Rehabilitation pharmacotherapy: A scoping review. Geriatr Gerontol Int 2020; 20:655-663. [PMID: 32691925 DOI: 10.1111/ggi.13975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Many patients in rehabilitation facilities are affected by polypharmacy. Polypharmacy is associated with rehabilitation outcomes and functional recovery. Consequently, a combination of rehabilitation and pharmacotherapy may improve the outcomes of older people undergoing rehabilitation. A recent report described the concept of rehabilitation pharmacotherapy. The concept envisages helping frail older people and people with disabilities to achieve the highest possible body function, activity level and quality of life. There are two key tenets of rehabilitation pharmacotherapy: "pharmacotherapy in consideration of rehabilitation" and "rehabilitation in consideration of pharmacotherapy." "Pharmacotherapy in consideration of rehabilitation" includes use of drugs to treat impairment, activity limitation and participation restriction based on the International Classification of Functioning, Disability, and Health. "Rehabilitation in consideration of pharmacotherapy" refers to tailoring of rehabilitation considering the content of pharmacotherapy. With respect to drugs and motor dysfunction, anticholinergic drugs are associated with dysphagia and fractures. Increased use of potentially inappropriate medications may adversely affect the nutritional status. With respect to activities of daily living, polypharmacy and use of potentially inappropriate medications negatively affect the improvement in motor function during rehabilitation. Potent anticholinergic drugs are more likely to impede the improvement in cognitive function. In this review, we address the concept of rehabilitation pharmacotherapy and discuss its importance from the perspective of polypharmacy, the effect of drugs on disability and disease, nutritional status and activities of daily living. Geriatr Gerontol Int 2020; 20: -.
Collapse
Affiliation(s)
- Eiji Kose
- Department of Pharmacy, Teikyo University School of Medicine University Hospital, Tokyo, Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111102. [PMID: 32600706 DOI: 10.1016/j.msec.2020.111102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Recently, drug-eluting nanofibrous scaffolds have attracted a great attention to enhance the cell differentiation through biomimicking the extracellular matrix (ECM) in regenerative medicine. In this study, electrospun nanocomposite polycaprolactone (PCL)-based scaffolds containing synthesized graphene oxide (GO) nanosheets and osteogenic drugs, i.e. dexamethasone and simvastatin were fabricated. The physicochemical and surface properties of the scaffolds were investigated through FTIR, wettability, pH, and drug release studies. The cell viability, differentiation, and biomineralization were studied on mesenchymal stem cells (MSCs) by Alamar Blue, alkaline phosphatase (ALP) activity, and Alizarin Red-S staining, respectively. Uniformly distributed GO (thickness < 1 nm) in PCL nanofibers was observed by electron microscopy. It was revealed that the addition of GO and the drugs improved the hydrophilicity, cell viability, and osteogenic differentiation, in addition to pH changes, in comparison with PCL scaffolds. Despite the notable reduction in the cell viability, significant differentiation was revealed by ALP assay on PCL/GO-Dex scaffolds. Noteworthy, a twofold increase in the osteogenic differentiation was observed in comparison with the cells cultured in osteogenic differentiation medium, while a significant biomineralization was observed. The results of this study indicate the synergistic effect of GO and dexamethasone on improving osteogenic differentiation of drug-eluting nanocomposite scaffolds in bone tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Rostami
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrdad Behmanesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups. Proc Natl Acad Sci U S A 2020; 117:12029-12040. [PMID: 32404427 DOI: 10.1073/pnas.1906713117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.
Collapse
|
41
|
Tahamtan S, Shirban F, Bagherniya M, Johnston TP, Sahebkar A. The effects of statins on dental and oral health: a review of preclinical and clinical studies. J Transl Med 2020; 18:155. [PMID: 32252793 PMCID: PMC7132955 DOI: 10.1186/s12967-020-02326-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The statin family of drugs are safe and effective therapeutic agents for the treatment of arteriosclerotic cardiovascular disease (CVD). Due to a wide range of health benefits in addition to their cholesterol lowering properties, statins have recently attracted significant attention as a new treatment strategy for several conditions, which are not directly related to normalizing a lipid profile and preventing CVD. Statins exert a variety of beneficial effects on different aspects of oral health, which includes their positive effects on bone metabolism, their anti-inflammatory and antioxidant properties, and their potential effects on epithelization and wound healing. Additionally, they possess antimicrobial, antiviral, and fungicidal properties, which makes this class of drugs attractive to the field of periodontal diseases and oral and dental health. However, to the best of our knowledge, there has been no comprehensive study to date, which has investigated the effects of statin drugs on different aspects of dental and oral health. Therefore, the primary objective of this paper was to review the effect of statins on dental and oral health. Results of our extensive review have indicated that statins possess remarkable and promising effects on several aspects of dental and oral health including chronic periodontitis, alveolar bone loss due to either extraction or chronic periodontitis, osseointegration of implants, dental pulp cells, orthodontic tooth movement, and orthodontic relapse, tissue healing (wound/bone healing), salivary gland function, and finally, anti-cancer effects. Hence, statins can be considered as novel, safe, inexpensive, and widely-accessible therapeutic agents to improve different aspects of dental and oral health.
Collapse
Affiliation(s)
- Shabnam Tahamtan
- Dental Research Center, Department of Orthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Dental Research Center, Department of Orthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
42
|
Hsieh CY, Sung SF, Huang HK. Drug treatment strategies for osteoporosis in stroke patients. Expert Opin Pharmacother 2020; 21:811-821. [PMID: 32151211 DOI: 10.1080/14656566.2020.1736556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Osteoporosis and subsequent fractures are well-recognized complications of stroke. However, drug treatment strategies for osteoporosis after stroke have been rarely discussed in the current guidelines for the management of stroke or osteoporosis. AREAS COVERED The authors review the epidemiology, characteristics, pathophysiology, and risk prediction of post-stroke osteoporosis and fractures. Then they provide an overview of existing evidence regarding drug treatment strategies for osteoporosis in stroke patients. They also review the effects on bone mineral density (BMD) and fractures for those drugs commonly used in stroke patients. EXPERT OPINION Currently, there is scarce evidence. A small randomized control trial suggested that a single use of 4 mg of intravenous zoledronate within 5 weeks of stroke onset was beneficial for preserving BMD, while simultaneous use of calcium and vitamin D supplements may be effective in preventing hypocalcemia. Further studies are needed to address several important issues of post-stroke osteoporosis, including who (the eligibility for treatment), when (the best timing of treatment), what (which drug), and how long (the best duration of treatment). On the other hand, physicians should bear in mind that drugs commonly used for stroke, such as statins or warfarin, may have beneficial or adverse effects on BMD and fracture risks.
Collapse
Affiliation(s)
- Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital , Tainan, Taiwan.,School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital , Chiayi City, Taiwan.,Department of Information Management and Institute of Healthcare Information Management, National Chung Cheng University , Chiayi County, Taiwan
| | - Huei-Kai Huang
- Departments of Family Medicine and Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Hualien, Taiwan.,School of Medicine, Tzu Chi University , Hualien, Taiwan
| |
Collapse
|
43
|
Abstract
The aim of the study was to explore the effect of atorvastatin on improvement of the function of the spinal cord in rats with chronic fluorosis. Sixty 3-month-old Wistar rats were separated randomly into three groups: normal group (N group), control group (C group) and atorvastatin group (A group). The Basso Beattie and Bresnahan scale and oblique board test showed that the rats in A group got higher score and better hind-limb motor function than C group. Immunohistochemistry and western blotting revealed that compared with N group, matrix metalloproteinase 9 (MMP-9) and p53 were highly expressed and myelin basic protein (MBP) was low expressed in spinal cord of C group. Meanwhile, MMP-9 and p53 expression were decreased and MBP was upregulated by atorvastatin compared with C group. In conclusion, the improvement of the function of the spinal cord in rats can be found when they were treated with atorvastatin.
Collapse
|
44
|
Shi R, Mei Z, Zhang Z, Zhu Z. Effects of Statins on Relative Risk of Fractures for Older Adults: An Updated Systematic Review With Meta-Analysis. J Am Med Dir Assoc 2019; 20:1566-1578.e3. [PMID: 31395495 DOI: 10.1016/j.jamda.2019.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
|
45
|
Abstract
STUDY DESIGN Basic Science. OBJECTIVE To determine if locally delivered simvastatin can enhance bone formation in a rat spinal fusion model. SUMMARY OF BACKGROUND DATA The bone-anabolic properties of statins in fracture healing are well established, however, few studies have evaluated the impact of locally delivered statins in spinal fusion. METHODS We formulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles by adapting previously published techniques. Two types of nanoparticles were created: simvastatin nanoparticles (SimNP) and nanoparticles without simvastatin (BlankNP). Drug elution from SimNP was characterized. Osteoblastic differentiation was analyzed using MC3T3-E1 cells cultured in differentiation medium containing SimNP or BlankNP. Forty male 12 week old outbred Wistar rats underwent uninstrumented posterolateral fusion using iliac crest bone graft and BlankNP, SimNP or simvastatin drug. X-rays to assess bone formation were obtained at 4 weeks and 9 weeks post-operatively. Spines were explanted at 9 weeks for micro-CT analysis, and a blinded manual assessment of fusion (MAF). RESULTS SimNP achieved a release efficiency of 74.1% with ∼50% release occurring in the first day. Simvastatin and SimNP treated cells showed significantly greater expression of osteopontin (OPN) and osteocalcin (OCN). On micro-CT analysis, SimNP animals had higher bone volume and percent bone volume (bone volume/total volume) than control animals. SimNP rats had higher X-ray scores at 4 weeks (p=0.010) and 9 weeks (p<0.001) relative to BlankNP. MAF showed that SimNP had a higher fusion rate than BlankNP (42.9% vs. 0%, p=0.006). CONCLUSION We were able to validate that sustained release of simvastatin via a PLGA nanoparticle. SimNP was able to induce an increase in mineralization as well as an increase in markers of bone formation. X-ray analysis, micro-CT quantification, and MAF assessment of SimNP treated rats showed significantly greater bone formation and fusion mass strength relative to vehicle treated animals. Simvastatin may be a safe, cost-effective bone anabolic agent for use in spinal fusion. LEVEL OF EVIDENCE N/A.
Collapse
|
46
|
Venkatesan N, Liyanage AT, Castro-Núñez J, Asafo-Adjei T, Cunningham LL, Dziubla TD, Puleo DA. Biodegradable polymerized simvastatin stimulates bone formation. Acta Biomater 2019; 93:192-199. [PMID: 31055123 DOI: 10.1016/j.actbio.2019.04.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Abstract
Previous research from our labs demonstrated the synthesis of polymerized simvastatin by ring-opening polymerization and slow degradation with controlled release of simvastatin in vitro. The objective of the present study was to evaluate the degradation and intramembranous bone-forming potential of simvastatin-containing polyprodrugs in vivo using a rat calvarial onlay model. Poly(ethylene glycol)-block-poly(simvastatin) and poly(ethylene glycol)-block-poly(simvastatin)-ran-poly(glycolide) were compared with simvastatin conventionally encapsulated in poly(lactic-co-glycolic acid) (PLGA) and pure PLGA. The rate of degradation was higher for PLGA with and without simvastatin relative to the simvastatin polyprodrugs. Significant new bone growth at the circumference of poly(ethylene glycol)-block-poly(simvastatin) disks was observed beginning at 4 weeks, whereas severe bone resorption (4 weeks) and bone loss (8 weeks) were observed for PLGA loaded with simvastatin. No significant systemic effects were observed for serum total cholesterol and body weight. Increased expression of osteogenic (BMP-2, Runx2, and ALP), angiogenic (VEGF), and inflammatory cytokines (IL-6 and NF-ĸB) genes was seen with all polymers at the end of 8 weeks. Poly(ethylene glycol)-block-poly(simvastatin), with slow degradation and drug release, controlled inflammation, and significant osteogenic effect, is a candidate for use in bone regeneration applications. STATEMENT OF SIGNIFICANCE: Traditional drug delivery systems, e.g., drug encapsulated in poly(lactic-co-glycolic acid) (PLGA), are typically passive and have limited drug payload. As an alternative, we polymerized the drug simvastatin, which has multiple physiological effects, into macromolecules ("polysimvastatin") via ring-opening polymerization. We previously demonstrated that the rate of degradation and drug (simvastatin) release can be adjusted by copolymerizing it with other monomers. The present results demonstrate significant new bone growth around polysimvastatin, whereas severe bone loss occurred for PLGA loaded with simvastatin. This degradable biomaterial with biofunctionality integrated into the polymeric backbone is a useful candidate for bone regeneration applications.
Collapse
|
47
|
Beneficial effects of δ-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action. Eur J Nutr 2019; 59:1975-1987. [PMID: 31280345 PMCID: PMC7351870 DOI: 10.1007/s00394-019-02047-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Purpose Natural antioxidants are considered as promising compounds in the prevention/treatment of osteoporosis. We studied the ability of purified δ-tocotrienol (δ-TT) isolated from a commercial palm oil (Elaeis guineensis) fraction to protect osteoblast MC3T3-E1 and osteocyte MLO-Y4 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage and the mechanisms involved in its protective action in MC3T3-E1. Methods MC3T3-E1 and MLO-Y4 cells were treated with δ-TT (1.25–20 µg/ml for 2 h) followed by t-BHP at 250 µM or 125 µM for 3 h, respectively. MTT test was used to measure cell viability. Apoptotic cells were stained with Hoechst-33258 dye. Intracellular ROS levels were measured by dichlorofluorescein CM-DCFA. The OPT fluorimetric assay was used to detect the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents. Results δ-TT significantly prevented the effects of t-BHP on cell viability and apoptosis reaching a maximum protective activity at 10 and 5 µg/ml in MC3T3-E1 and MLO-Y4 cells, respectively. This protective effect was due to a reduction of intracellular ROS levels and an increase in the defense systems shown by the increase in the GSH/GSSG. GSH loss induced by an inhibitor of GSH synthesis significantly reduced the δ-TT-positive effect on ROS levels. δ-TT prevention of oxidative damage was completely removed by combined treatment with the specific inhibitors of PI3K/AKT (LY294002) and Nrf2 (ML385). Conclusions The δ-TT protective effect against oxidative damage in MC3T3-E1 cells is due to a reduction of intracellular ROS levels and an increase of the GSH/GSSG ratio, and involves an interaction between the PI3K/Akt–Nrf2 signaling pathways.
Collapse
|
48
|
Suthanthiran T, Annamalai S, Chellapandi S, Puthenveetil S, Dhasthaheer S, Narasimhan S. Gingival Crevicular Fluid Levels of RANKL and OPG After Placement of Collagen Membrane With Simvastatin in the Treatment of Intrabony Defects in Chronic Periodontitis. J Pharm Bioallied Sci 2019; 11:S301-S304. [PMID: 31198358 PMCID: PMC6555350 DOI: 10.4103/jpbs.jpbs_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose: The aim of this study was to estimate the Receptor activator of nuclear factor kappa-B ligand (RANKL) and Osteoprotegrin (OPG) levels in gingival crevicular fluid (GCF) after placement of collagen membrane with simvastatin in intrabony defects. Materials and Methods: Sixty subjects were grouped according to the treatment plan as Group I and Group II. Group I included patients with intrabony defects treated with collagen membrane. Group II included patients with intrabony defects treated with simvastatin of 1.5 mg concentration incorporated into the collagen membrane. A split-mouth design was planned, in which two contralateral sites with >5 mm probing pocket depth and radiographic evidence of bone loss at baseline were chosen. Probing pocket depth was standardized with acrylic stent in all the selected areas. GCF samples were collected at baseline and 21 days. The amount of RANKL and OPG in the samples was determined by commercial ELISA kits (Biomedica Medizinprodukte, Austria). Results: When comparing both the groups, Group II had more statistically significant (P < 0.001**) decrease in the levels of RANKL than Group I. In contrast to RANKL, the OPG levels were significantly increased in patients (Group II) having intrabony defects treated with collagen membrane along with simvastatin. Conclusion: Simvastatin-loaded collagen membrane expressed increased OPG and decreased RANKL levels, which could have a potential role in periodontal regeneration.
Collapse
Affiliation(s)
| | - Sivakumar Annamalai
- Department of Oral Surgery, JKK Nattraja Dental College and Hospital, Komarapalayam, Tamil Nadu, India
| | - Sugirtha Chellapandi
- Department of Periodontics JKK Nattraja Dental College and Hospital, Komarapalayam, Tamil Nadu, India
| | - Sreelakshmi Puthenveetil
- Department of Periodontics JKK Nattraja Dental College and Hospital, Komarapalayam, Tamil Nadu, India
| | - Syed Dhasthaheer
- Department of Periodontics JKK Nattraja Dental College and Hospital, Komarapalayam, Tamil Nadu, India
| | - Srinivasan Narasimhan
- Department of Endocrinology, Post Graduate Institute of Basic Medical Sciences (PGIBMS), University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
49
|
Kaur R, Ajitha M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur J Pharm Sci 2019; 136:104956. [PMID: 31202895 DOI: 10.1016/j.ejps.2019.104956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023]
Abstract
The objective of present study was to develop hydrogel based nanoemulsion (NE) drug delivery system for transdermal delivery and evaluate its potential in in vivo anti-osteoporotic activity. NE was prepared using aqueous phase titration method and characterized for droplet size, zeta potential and morphology. It was then formulated into hydrogel based NE gel using carbopol 940 as gelling agent. NE gel was evaluated for pH, viscosity, in vitro/ex vivo permeation studies and in vivo anti-osteoporotic activity. The results indicated formation of spherical, nano sized globules of NE ranging from 11.17 ± 0.24 to 128.8 ± 0.16 nm with polydispersity of <0.5. In vitro and ex vivo permeation studies showed significantly higher permeation of NE as well as NE gel in comparison to fluvastatin solution indicating that NE gel can effectively penetrate through skin layers. In vivo anti-osteoporotic results demonstrated formation of new bone in trabecular region of osteoporotic rat femurs through micro-CT scanning radiographs. Biomechanical strength testing demonstrated greater load bearing capacity of rat femurs in the treated animals in comparison with the osteoporotic group. Thus, developed NE gel formulation of fluvastatin demonstrated greater potential for transdermal delivery and in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana State, India.
| | - Makula Ajitha
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana State, India
| |
Collapse
|
50
|
Kalani MM, Nourmohammadi J, Negahdari B, Rahimi A, Sell SA. Electrospun core-sheath poly(vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:129-139. [DOI: 10.1016/j.msec.2019.01.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/31/2023]
|