1
|
Liu J, Zhang J, Zhao X, Pan C, Liu Y, Luo S, Miao X, Wu T, Cheng X. Identification of CXCL16 as a diagnostic biomarker for obesity and intervertebral disc degeneration based on machine learning. Sci Rep 2023; 13:21316. [PMID: 38044363 PMCID: PMC10694141 DOI: 10.1038/s41598-023-48580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of neck and back pain. Obesity has been established as a significant risk factor for IDD. The objective of this study was to explore the molecular mechanisms affecting obesity and IDD by identifying the overlapping crosstalk genes associated with both conditions. The identification of specific diagnostic biomarkers for obesity and IDD would have crucial clinical implications. We obtained gene expression profiles of GSE70362 and GSE152991 from the Gene Expression Omnibus, followed by their analysis using two machine learning algorithms, least absolute shrinkage and selection operator and support vector machine-recursive feature elimination, which enabled the identification of C-X-C motif chemokine ligand 16 (CXCL16) as a shared diagnostic biomarker for obesity and IDD. Additionally, gene set variant analysis was used to explore the potential mechanism of CXCL16 in these diseases, and CXCL16 was found to affect IDD through its effect on fatty acid metabolism. Furthermore, correlation analysis between CXCL16 and immune cells demonstrated that CXCL16 negatively regulated T helper 17 cells to promote IDD. Finally, independent external datasets (GSE124272 and GSE59034) were used to verify the diagnostic efficacy of CXCL16. In conclusion, a common diagnostic biomarker for obesity and IDD, CXCL16, was identified using a machine learning algorithm. This study provides a new perspective for exploring the possible mechanisms by which obesity impacts the development of IDD.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yuchi Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Shengzhong Luo
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Jiang F, Li XX, Xie ZY, Liu L, Wu XT, Wang YT. Scientific Bibliometric and Visual Analysis of Studies on Autophagy in Intervertebral Disc Degeneration Based on Web of Science. World Neurosurg 2023; 179:e601-e613. [PMID: 37708973 DOI: 10.1016/j.wneu.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To analyze the current research trends and potential mechanisms related to the role of autophagy in intervertebral disc degeneration (IVDD) and to provide new ideas for future research in this field. METHODS All articles on IVDD and autophagy were retrieved and extracted from the Web of Science (WoS) core collection database. The results were evaluated and visualized using the bibliometric Web site, CiteSpace, and VOSviewer software, including annual articles published, countries, institutions, authors, journals, research areas, funding agencies, citations, and keywords. RESULTS From January 1, 2011, to December 31, 2022, 323 reviews and original articles were included, and the overall trend in the number of articles was increasing rapidly. China and the United States were the countries with the most scientific research achievements. The 323 articles received a total number of citations of 6949, with an H index of 43 and an average citation of 21.51. The top publication country, institution, author, journal, research area, and funding agency were China, Huazhong University of Science and Technology, Cao Yang of Tongji Medical College, Oxidative Medicine and Cellular Longevity, cell biology, and National Natural Science Foundation of China, respectively. Most of the keywords were associated with the mechanisms and regulatory networks of autophagy. In addition, with increasing evidence showing the key role of autophagy in IVDD, therapy, signaling pathway, and mitophagy are emerging as new research hot spots that should be paid more attention. CONCLUSIONS This study provided a scientific perspective on autophagy in IVDD and elucidated the current research status and hot spots in this field. The mechanism of autophagy and the application of regulating autophagy in the treatment of IVDD deserve further research.
Collapse
Affiliation(s)
- Feng Jiang
- Southeast University Medical College, Nanjing, Jiangsu, China
| | - Xin-Xin Li
- Southeast University Medical College, Nanjing, Jiangsu, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China
| | - Xiao-Tao Wu
- Southeast University Medical College, Nanjing, Jiangsu, China; Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- Southeast University Medical College, Nanjing, Jiangsu, China; Department of Spine Surgery, Southeast University ZhongDa Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Huang J, Lian SL, Han JH, Lu ZC, Ding Y. Pure platelet-rich plasma promotes semaphorin-3A expression: a novel insight to ameliorate intervertebral disk degeneration in vitro. J Orthop Surg Res 2023; 18:789. [PMID: 37864189 PMCID: PMC10588088 DOI: 10.1186/s13018-023-04290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023] Open
Abstract
INTRODUCTION Intervertebral disk degeneration (IVDD) can be effectively treated using platelet-rich plasma (PRP). While the exact process is fully understood, it is believed that using pure PRP (P-PRP) without leukocytes is a better option for preventing IVDD. Semaphorin-3A (Sema3A), an inhibitor of angiogenesis and innervation, is essential for preserving IVDD's homeostasis. Whether PRP prevents IVDD by modifying Sema3A has yet to receive much research. This work aims to clarify how P-PRP affects Sema3A when IVDD develops in vitro. METHODS Nucleus pulposus cells (NPCs) isolated from 8-week-old male Sprague-Dawley rats were exposed to 10 ng/ml IL-1β and then treated with P-PRP or leukocyte platelet-rich plasma (L-PRP) in vitro, followed by measuring cell proliferation, apoptosis and microstructures, inflammatory gene and Sema3A expression, as well as anabolic and catabolic protein expression by immunostaining, quantitative real-time polymerase chain reaction (qPCR), western blot, and enzyme-linked immunosorbent assay (ELISA). RESULTS In comparison with L-PRP, P-PRP had a higher concentration of growth factors but a lower concentration of inflammatory substances. P-PRP increased the proliferation of NPCs, while IL-1 relieved the amount of apoptosis due to its intervention. Anabolic genes, aggrecan, and collagen II had higher expression levels. MMP-3 and ADAMTS-4, two catabolic or inflammatory genes, showed lower expression levels. Sema3A activity was enhanced after P-PRP injection, whereas CD31 and NF200 expression levels were suppressed. CONCLUSIONS P-PRP enhanced the performance of NPCs in IVDD by modifying the NF-κB signaling pathway and encouraging Sema3A expression, which may offer new therapy options for IVDD. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The findings provide a new therapeutic target for the treatment of IVDD and show a novel light on the probable mechanism of PRP and the function of Sema3A in the progression of IVDD.
Collapse
Affiliation(s)
- Jie Huang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shi-Lin Lian
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jia-Heng Han
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zheng-Cao Lu
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yu Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Cai M, Sun H, Huang Y, Yao H, Zhao C, Wang J, Zhu H. Resveratrol Protects Rat Ovarian Luteinized Granulosa Cells from H 2O 2-Induced Dysfunction by Activating Autophagy. Int J Mol Sci 2023; 24:10914. [PMID: 37446088 DOI: 10.3390/ijms241310914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Resveratrol performs a variety of biological activities, including the potential regulation of autophagy. However, it is unclear whether resveratrol protects against luteal dysfunction and whether autophagy involves the regulation of resveratrol. This study aims to investigate whether resveratrol can regulate autophagy to resist H2O2-induced luteinized granulosa cell dysfunction in vitro. Our results showed that resveratrol can enhance cell viability, stimulate the secretion of progesterone and estradiol, and resist cell apoptosis in H2O2-induced luteinized granulosa cell dysfunction. Resveratrol can activate autophagy by stimulating the expression of autophagy-related genes at the transcriptional and translational levels and increasing the formation of autophagosomes and autophagolysosomes. Rapamycin, 3-methyladenine, and bafilomycin A1 regulated the levels of autophagy-related genes in H2O2-induced luteinized granulosa cell dysfunction and further confirmed the protective role of autophagy activated by resveratrol. In conclusion, resveratrol activates autophagy to resist H2O2-induced oxidative dysfunction, which is crucial for stabilizing the secretory function of luteinized granulosa cells and inhibiting apoptosis. This study may contribute to revealing the protective effects of resveratrol on resisting luteal dysfunction from the perspective of regulating autophagy.
Collapse
Affiliation(s)
- Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | - Haijuan Sun
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | - Haixu Yao
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | - Chen Zhao
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
5
|
Cheng Y, Yang X, Tang W, Fu Q, Li H, Liang B. Alpha-lipoic acid inhibits sodium arsenite-mediated autophagic death of rat insulinoma cells. Hum Exp Toxicol 2023; 42:9603271221149196. [PMID: 36595328 DOI: 10.1177/09603271221149196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM To investigate the protective effect of α-lipoic acid on sodium arsenite (NaAsO2) induced INS-1 cells injury and its mechanism. METHODS The cell viability was measured by CCK-8 assay. The autophagosomes was observed under transmission electron microscopy. The autophagosomes in cells transfected with green fluorescent protein microtubule-associated protein light chain 3 (GFP-LC3) plasmids were observed under a laser scanning con-focal microscope. The expression of LC3-II, P62, PI3K, and mTOR proteins in INS-1 cells treated with a combination of chloroquine (CQ, autophagy inhibitor) and NaAsO2 were detected by Western blot assay. The expression of LC3-II, P62, PI3K, and mTOR proteins were detected in INS-1 cells treated with a combination of rapamycin (autophagy inducer, mTOR inhibitor) and α-LA. RESULTS The cytotoxicity induced by NaAsO2 was reversed by α-LA, and the viability of NaAsO2-treated INS-1 cells increased. α-LA pretreatment decreased the autophagosome accumulation induced by NaAsO2. α-LA also reduced the fluorescence spot aggregation of GFP-LC3 in INS-1 cells exposed to NaAsO2 as observed under a laser scanning con-focal microscope. α-LA inhibited NaAsO2 induced autophagy by up-regulating PI3K and mTOR and down-regulating LC3-II and P62. CQ inhibited NaAsO2 induced autophagy by up-regulating PI3K, mTOR, P62 and down-regulating LC3-II. α-LA inhibited rapamycin-induced autophagy by up-regulating PI3K, mTOR and P62 and down-regulating LC3-II. The results showed that NaAsO2 could induce autophagy activation in INS-1 cells. The α-LA may inhibit autophagy activation by regulating the PI3K/mTOR pathway. CONCLUSION The data indicated that α-LA might inhibit the NaAsO2-induced autophagic death of INS-1 cells by regulating the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Yong Cheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiuli Yang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Wenjuan Tang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Qiong Fu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Hong Li
- 74720The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Liang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Bai X, Jiang M, Wang J, Yang S, Liu Z, Zhang H, Zhu X. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2022; 60:427-436. [PMID: 35175176 PMCID: PMC8856032 DOI: 10.1080/13880209.2022.2035773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cyanidin has been shown to have therapeutic potential in osteoarthritis. However, it is unclear whether cyanidin prevents the progression of intervertebral disc degeneration (IVDD). OBJECTIVE This study evaluates the effects of cyanidin on IVDD in vitro and in vivo. MATERIALS AND METHODS Nucleus pulposus cells (NPCs) isolated from lumbar IVD of 4-week-old male Sprague-Dawley (SD) rats were exposed to 20 ng/mL IL-1β, and then treated with different doses (0-120 µM) of cyanidin for 24 h. SD rats were classified into three groups (n = 8) and treated as follows: control (normal saline), IVDD (vehicle), IVDD + cyanidin (50 mg/kg). Cyanidin was administered intraperitoneally for 8 weeks. RESULTS The IC50 of cyanidin for NPCs was 94.78 µM, and cyanidin had no toxicity at concentrations up to 500 mg/kg in SD rats. Cyanidin inhibited the apoptosis of NPCs induced by IL-1β (12.73 ± 0.61% vs. 18.54 ± 0.60%), promoted collagen II (0.82-fold) and aggrecan (0.81-fold) expression, while reducing MMP-13 (1.02-fold) and ADAMTS-5 (1.40-fold) expression. Cyanidin increased the formation of autophagosomes in IL-1β-induced NPCs, and promoted LC3II/LC3I (0.83-fold) and beclin-1 (0.85-fold) expression, which could be reversed by chloroquine. Cyanidin inhibited the phosphorylation of JAK2 (0.47-fold) and STAT3 (0.53-fold) in IL-1β-induced NPCs. The effects of cyanidin could be enhanced by AG490. Furthermore, cyanidin mitigated disc degeneration in IVDD rats in vivo. DISCUSSION AND CONCLUSIONS Cyanidin improved the function of NPCs in IVDD by regulating the JAK2/STAT3 pathway, which may provide a novel alternative strategy for IVDD. The mechanism of cyanidin improving IVDD still needs further work for in-depth investigation.
Collapse
Affiliation(s)
- Xiaoliang Bai
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meichao Jiang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Jie Wang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Shuai Yang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiwei Liu
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Hongxin Zhang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Xiaojuan Zhu
- Department of Geratology, Baoding NO.1 Central Hospital, Baoding, China
- CONTACT Xiaojuan Zhu Department of Geratology, Baoding NO.1 Central Hospital, No.320 Great Wall North Street, Baoding, 071000, China
| |
Collapse
|
7
|
Liu M, Zhang L, Zang W, Zhang K, Li H, Gao Y. Pharmacological Effects of Resveratrol in Intervertebral Disc Degeneration: A Literature Review. Orthop Surg 2022; 14:3141-3149. [PMID: 36303427 PMCID: PMC9732612 DOI: 10.1111/os.13560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a high incidence disease of musculoskeletal system that often leads to stenosis, instability, pain and even deformity of the spinal segments. IDD is an important cause of discogenic lower back pain and often leads to large economic burden to families and society. Currently, the treatment of IDD is aimed at alleviating symptoms rather than blocking or reversing pathological progression of the damaged intervertebral disc. Resveratrol (RSV) is a polyphenol phytoalexin first extracted from the Veratrum grandiflflorum O. Loes and can be found in various plants and red wine. Owing to the in-depth study of pharmacological mechanisms, the therapeutic potential of RSV in various diseases such as osteoarthritis, neurodegenerative diseases, cardiovascular diseases and diabetes have attracted the attention of many researchers. RSV has anti-apoptotic, anti-senescent, anti-inflammatory, anti-oxidative, and anabolic activities, which can prevent further degeneration of intervertebral disc cells and enhance their regeneration. With high safety and various biological functions, RSV might be a promising candidate for the treatment of IDD. This review summarizes the biological functions of RSV in the treatment of IDD and to facilitate further research.
Collapse
Affiliation(s)
- Ming‐yang Liu
- Present address:
Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's Hospital of Henan UniversityZhengzhouChina
| | - Liang Zhang
- Present address:
Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's Hospital of Henan UniversityZhengzhouChina
| | - Wei‐dong Zang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai‐guang Zhang
- Present address:
Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's Hospital of Henan UniversityZhengzhouChina
| | - Hai‐jun Li
- Department of Immunity, Institute of Translational MedicineThe First Hospital of Jilin UniversityJilinChina
| | - Yan‐zheng Gao
- Present address:
Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's Hospital of Henan UniversityZhengzhouChina
| |
Collapse
|
8
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Hussen BM, Talebi SF, Baig SG, Taheri M, Ayatollahi SA. Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell Int 2022; 22:298. [PMID: 36180892 PMCID: PMC9524725 DOI: 10.1186/s12935-022-02719-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural phenol that is present in the skin of the grape, blueberry, raspberry, mulberry, and peanut. This substance is synthesized in these plants following injury or exposure to pathogens. Resveratrol is used as a dietary supplement for a long time and its effects have been assessed in animal models of human disorders. It has potential beneficial effects in diverse pathological conditions such as diabetes mellitus, obesity, hypertension, neoplastic conditions, Alzheimer's disease, and cardiovascular disorders. Notably, resveratrol has been found to affect the expression of several genes including cytokine coding genes, caspases, matrix metalloproteinases, adhesion molecules, and growth factors. Moreover, it can modulate the activity of several signaling pathways such as PI3K/AKT, Wnt, NF-κB, and Notch pathways. In the current review, we summarize the results of studies that reported modulatory effects of resveratrol on the expression of genes and the activity of signaling pathways. We explain these results in two distinct sections of non-neoplastic and neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
9
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
10
|
Hydroxysafflor Yellow A (HSYA) Protects Endplate Chondrocytes Against IL-1 β-Induced Injury Through Promoting Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6326677. [PMID: 35832517 PMCID: PMC9273358 DOI: 10.1155/2022/6326677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
Background Intervertebral disc degeneration (IDD) refers to intractable pain in patients' waist and legs, which is caused by internal structural disorder and degeneration of intervertebral. This disease severely affects the quality-of-life of people. It has been reported that hydroxysafflor yellow A (HSYA), the active ingredient in safflower extract, could inhibit IL-1β-induced apoptosis of endplate chondrocytes. However, the mechanism by which HSYA regulates the occurrence and progression of IDD remains unclear. Methods Rat endplate chondrocytes were isolated from the intervertebral disc. Next, toluidine blue staining and collagen II immunofluorescence staining were used to identify endplate chondrocytes. Then, MDC staining was used to detect the autophagy of endplate chondrocytes. In addition, Western blot was used to measure the expression of cleaved caspase 3, LC-3I/II and ATG7 in endplate chondrocytes. Results IL-1β obviously inhibited the viability and proliferation of endplate chondrocytes, while these phenomena were notably reversed by HSYA. Additionally, HSYA was able to inhibit IL-1β-induced apoptosis of endplate chondrocytes. Moreover, HSYA protected endplate chondrocytes against IL-1β-induced inflammation via inducing autophagy. Conclusion HSYA protected rat endplate chondrocytes against IL-1β-induced injury via promoting autophagy. Therefore, the present study might provide some theoretical basis for exploring novel and effective methods for patients with IDD.
Collapse
|
11
|
BMSC-Derived Exosomes Alleviate Intervertebral Disc Degeneration by Modulating AKT/mTOR-Mediated Autophagy of Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:9896444. [PMID: 35855812 PMCID: PMC9288351 DOI: 10.1155/2022/9896444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of intervertebral disc degeneration (IDD) is still unclear. It has been shown that the pathological process of IDD is most closely related to inflammation of nucleus pulposus cells (NPCs), in which inflammatory factors play an important role. Exosomes are the main paracrine mediators and are microvesicles with biological functions similar to those of the cells from which they are derived. Studies have shown that bone mesenchymal stem cells (BMSCs) can inhibit apoptosis of NPCs by sending exosomes as anti-inflammatory and antioxidant, which has been proved to be effective on IDD. However, the specific mechanism of inhibiting apoptosis of NPCs is still unclear. In our study, BMSC-derived exosomes (BMSC-Exo) were isolated from the BMSC culture medium, and their antiapoptotic effects were evaluated in cells and rat models to explore the possible mechanisms. We observed that BMSC-Exo promotes autophagy in NPCs and inhibits the release of inflammatory factors such as IL-1β and TNF-α in LPS-treated NPCs and inhibits apoptosis in NPCs. Further studies showed that BMSC-Exo inhibited the Akt-mTOR pathway. Intramuscular injection of BMSC-Exo alleviates disc degeneration in rat IDD models. In conclusion, our results suggest that BMSC-Exo can reduce NPC apoptosis and alleviate IDD by promoting autophagy by inhibiting the Akt-mTOR pathway. Our study confers a promising therapeutic strategy for IDD.
Collapse
|
12
|
Costăchescu B, Niculescu AG, Teleanu RI, Iliescu BF, Rădulescu M, Grumezescu AM, Dabija MG. Recent Advances in Managing Spinal Intervertebral Discs Degeneration. Int J Mol Sci 2022; 23:6460. [PMID: 35742903 PMCID: PMC9223374 DOI: 10.3390/ijms23126460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) represents a frequent and debilitating condition affecting a large part of the global population and posing a worldwide health and economic burden. The major cause of LBP is intervertebral disc degeneration (IDD), a complex disease that can further aggravate and give rise to severe spine problems. As most of the current treatments for IDD either only alleviate the associated symptoms or expose patients to the risk of intraoperative and postoperative complications, there is a pressing need to develop better therapeutic strategies. In this respect, the present paper first describes the pathogenesis and etiology of IDD to set the framework for what has to be combated to restore the normal state of intervertebral discs (IVDs), then further elaborates on the recent advances in managing IDD. Specifically, there are reviewed bioactive compounds and growth factors that have shown promising potential against underlying factors of IDD, cell-based therapies for IVD regeneration, biomimetic artificial IVDs, and several other emerging IDD therapeutic options (e.g., exosomes, RNA approaches, and artificial intelligence).
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania;
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Florin Iliescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Marius Gabriel Dabija
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
13
|
Gao S, Li N, Chen R, Su Y, Song Y, Liang S. Bushen Huoxue Formula Modulates Autophagic Flux and Inhibits Apoptosis to Protect Nucleus Pulposus Cells by Restoring the AMPK/SIRT1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8929448. [PMID: 35669720 PMCID: PMC9167005 DOI: 10.1155/2022/8929448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Background Low back pain (LBP) has the characteristics of chronic and persistence, which is a heavy social burden. Intervertebral disc degeneration (IVDD) is a major cause of LBP. The typical features of IVDD are extracellular matrix (ECM) degradation and nucleus pulposus cell (NP) apoptosis. Bushen Huoxue Formula (BSHXF) has good clinical effects on LBP. However, the mechanism of BSHXF affecting ECM and NP cells is still unclear. Aim of the Study. In this study, the impact of BSHXF on autophagy and apoptosis of NP cells was studied through the AMPK/SIRT1 pathway. Material and Methods. NP cells were extracted through the digestion of collagenase and trypsin, and the components of BSHXF were identified. Cell Counting Kit-8 was applied to detect the impact of BSHXF on NP cells. Mitochondrial function was detected using MitoTracker assay, ATP kit, and SOD kit. Autophagy and apoptosis were detected by RT-qPCR, western blotting, and flow cytometry. Results BSHXF promoted NP cell survival in a concentration-dependent manner, and the elimination of rat serum did not increase cell proliferation; TNF-α accelerated ECM degradation, ROS accumulation, and NP cell apoptosis and decreased autophagic flux. BSHXF restored mitochondrial function and autophagic flux. In addition, AMPK/SIRT1 pathway activation was associated with IVDD. Conclusions BSHXF regulates autophagy and enhances autophagic flux to suppress excessive ROS production and restore mitochondrial function in an AMPK/SIRT1-dependent manner. However, the protection of BSHXF on TNF-α-treated cells was eliminated by 3-MA. Furthermore, the protective impact of BSHXF on ECM degradation and apoptosis induced by TNF-α was restrained by an AMPK inhibitor. Therefore, maintaining the proper autophagy illustrates treatment strategy for IVDD.
Collapse
Affiliation(s)
- Shang Gao
- First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Nianhu Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchang Chen
- First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Youxiang Su
- First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Song
- First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Songlin Liang
- First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Arias C, Salazar LA. Autophagy and Polyphenols in Osteoarthritis: A Focus on Epigenetic Regulation. Int J Mol Sci 2021; 23:ijms23010421. [PMID: 35008847 PMCID: PMC8745146 DOI: 10.3390/ijms23010421] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage. This review aims to analyze epigenetic mechanisms that are currently associated with autophagy in OA, and to evaluate whether polyphenols are used to reverse the epigenetic alterations generated by aging in the autophagy pathway.
Collapse
Affiliation(s)
- Consuelo Arias
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
- Interuniversity Center for Healthy Aging (ICHA), Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-45-259-6724
| |
Collapse
|
15
|
Melatonin Suppresses Apoptosis of Nucleus Pulposus Cells through Inhibiting Autophagy via the PI3K/Akt Pathway in a High-Glucose Culture. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4604258. [PMID: 34660789 PMCID: PMC8519679 DOI: 10.1155/2021/4604258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022]
Abstract
Diabetes mellitus- (DM-) associated hyperglycemia promotes apoptosis of disc nucleus pulposus (NP) cells, which is a contributor to intervertebral disc degeneration (IDD). Melatonin is able to protect against cell apoptosis. However, its effects on apoptosis of NP cell in a high-glucose culture remain unclear. The purpose of the present study was to investigate the effects and molecular mechanism of melatonin on NP cell apoptosis in a high-glucose culture. NP cells were cultured in the baseline medium supplemented with a high-glucose concentration (0.2 M) for 3 days. The control cells were only cultured in the baseline medium. Additionally, the pharmaceutical inhibitor LY294002 was added along with the culture medium to investigate the possible role of the PI3K/Akt pathway. Apoptosis, autophagy, and activity of the PI3K/Akt pathway of NP cells among these groups were evaluated. Compared with the control NP cells, high glucose significantly increased cell apoptosis ratio and caspase-3/caspase-9 activity and decreased mRNA expression of Bcl-2, whereas it increased mRNA or protein expression of Bax, caspase-3, cleaved caspase-3, cleaved PARP, and autophagy-related molecules (Atg3, Atg5, Beclin-1, and LC3-II) and decreased protein expression of p-Akt compared with the control cells. Additionally, melatonin partly inhibited the effects of high glucose on those parameters of cell apoptosis, autophagy, and activation of PI3K/Akt. In conclusion, melatonin attenuates apoptosis of NP cells through inhibiting the excessive autophagy via the PI3K/Akt pathway in a high-glucose culture. This study provides new theoretical basis of the protective effects of melatonin against disc degeneration in a DM patient.
Collapse
|
16
|
Resveratrol Suppresses Annulus Fibrosus Cell Apoptosis through Regulating Oxidative Stress Reaction in an Inflammatory Environment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9100444. [PMID: 34616848 PMCID: PMC8490034 DOI: 10.1155/2021/9100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/18/2022]
Abstract
During disc degeneration, the increase of inflammatory cytokines and decrease of disc cell density are two prominent features. Enhanced inflammatory reaction contributes to disc annulus fibrosus (AF) cell apoptosis. In this study, we investigated whether resveratrol can suppress AF cell apoptosis in an inflammatory environment. Rat disc AF cells were cultured in medium with or without tumor necrosis factor-α (TNF-α). Resveratrol was added along with the culture medium supplemented with TNF-α. Caspase-3 activity, cell apoptosis ratio, expression of apoptosis-associated molecules (Bcl-2, Bax, caspase-3, cleaved PARP, and cleaved caspase-3), reactive oxygen species (ROS) content, and the total superoxide dismutase (SOD) activity were measured. Our results showed that TNF-α significantly increased caspase-3 activity and AF cell apoptosis ratio and upregulated gene/protein expression of Bax, caspase-3, cleaved caspase-3, and cleaved PARP, whereas it downregulated the expression of Bcl-2. Moreover, TNF-α significantly increased ROS content but decreased the total SOD activity. Further analysis demonstrated that resveratrol partly attenuated the effects of TNF-α on AF cell apoptosis-associated parameters, decreased ROS content, and increased the total SOD activity in the AF cells treated with TNF-α. In conclusion, resveratrol attenuates inflammatory cytokine TNF-α-induced AF cell apoptosis through regulating oxidative stress reaction in vitro. This study sheds a new light on the protective role of resveratrol in alleviating disc degeneration.
Collapse
|
17
|
Gong CY, Zhang HH. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci 2021; 273:119266. [PMID: 33631177 DOI: 10.1016/j.lfs.2021.119266] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular recirculation system that delivers cytoplasmic content to lysosomes for degradation, thereby maintaining metabolism and homeostasis. Recent studies have found that autophagy plays a dual role in intervertebral disc degeneration (IDD). Most studies have shown that inducing autophagy can slow down the process of IDD. A few studies have shown that extensive autophagy activation-mediated apoptosis accelerates IDD. In this review, we describe the pathophysiological characteristics of intervertebral disc (IVD), the mechanism of autophagy and the application of regulating autophagy in the treatment of IDD, hoping to provide a certain theoretical basis for the biotherapy of IDD.
Collapse
Affiliation(s)
- Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China.
| |
Collapse
|
18
|
Xu WL, Zhao Y. Comprehensive analysis of lumbar disc degeneration and autophagy-related candidate genes, pathways, and targeting drugs. J Orthop Surg Res 2021; 16:252. [PMID: 33849578 PMCID: PMC8043061 DOI: 10.1186/s13018-021-02417-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Background Lumbar disc degeneration (LDD) is an essential pathological mechanism related to low back pain. Current research on spinal surgery focused on the sophisticated mechanisms involved in LDD, and autophagy was regarded as an essential factor in the pathogenesis. Objectives Our research aimed to apply a bioinformatics approach to select some candidate genes and signaling pathways in relationship with autophagy and LDD and to figure out potential agents targeting autophagy- and LDD-related genes. Materials and methods Text mining was used to find autophagy- and LDD-related genes. The DAVID program was applied in Gene Ontology and pathway analysis after selecting these genes. Several important gene modules were obtained by establishing a network of protein-protein interaction and a functional enrichment analysis. Finally, the selected genes were searched in the drug database to find the agents that target LDD- and autophagy-related genes. Results There were 72 genes related to “autophagy” and “LDD.” Three significant gene modules (22 genes) were selected by using gene enrichment analysis, which represented 4 signaling pathways targeted by 32 kinds of drugs approved by the Food and Drug Administration (FDA). The interactions between drugs and the genes were also identified. Conclusion To conclude, a method was proposed in our research to find candidate genes, pathways, and drugs which were involved in autophagy and LDD. We discovered 22 genes, 4 pathways, and 32 potential agents, which provided a theoretical basis and new direction for clinical and basic research on LDD.
Collapse
Affiliation(s)
- Wei-Long Xu
- Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yan Zhao
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China.
| |
Collapse
|
19
|
Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. GeroScience 2021; 43:517-537. [PMID: 33634362 PMCID: PMC8110620 DOI: 10.1007/s11357-021-00341-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of rheumatic and musculoskeletal diseases (RMDs) including osteoarthritis (OA) and low back pain (LBP) in aging societies present significant cost burdens to health and social care systems. Intervertebral disc (IVD) degeneration, which is characterized by disc dehydration, anatomical alterations, and extensive changes in extracellular matrix (ECM) composition, is an important contributor to LBP. IVD cell homeostasis can be disrupted by mitochondrial dysfunction. Mitochondria are the main source of energy supply in IVD cells and a major contributor to the production of reactive oxygen species (ROS). Therefore, mitochondria represent a double-edged sword in IVD cells. Mitochondrial dysfunction results in oxidative stress, cell death, and premature cell senescence, which are all implicated in IVD degeneration. Considering the importance of optimal mitochondrial function for the preservation of IVD cell homeostasis, extensive studies have been done in recent years to evaluate the efficacy of small molecules targeting mitochondrial dysfunction. In this article, we review the pathogenesis of mitochondrial dysfunction, aiming to highlight the role of small molecules and a selected number of biological growth factors that regulate mitochondrial function and maintain IVD cell homeostasis. Furthermore, molecules that target mitochondria and their mechanisms of action and potential for IVD regeneration are identified. Finally, we discuss mitophagy as a key mediator of many cellular events and the small molecules regulating its function.
Collapse
|
20
|
Yao M, Zhang J, Li Z, Bai X, Ma J, Li Y. Liraglutide Protects Nucleus Pulposus Cells Against High-Glucose Induced Apoptosis by Activating PI3K/Akt/ mTOR/Caspase-3 and PI3K/Akt/GSK3β/Caspase-3 Signaling Pathways. Front Med (Lausanne) 2021; 8:630962. [PMID: 33681258 PMCID: PMC7933515 DOI: 10.3389/fmed.2021.630962] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Objective: Diabetes mellitus (DM) is reportedly a significant risk factor for intervertebral disc degeneration (IDD). Incretin system and particularly glucagon-like peptide 1 (GLP-1) because of its glucose-lowering effects has become an important target in therapeutic strategies of type 2 diabetes (T2D). Liraglutide is a GLP-1 receptor (GLP-1R) agonist with glucoregulatory and insulinotropic functions as well as regulatory functions on cell proliferation, differentiation, and apoptosis. However, little is known on the roles and signaling pathways of apoptosis protecting effects of liraglutide in IDD. This study aimed to investigate the potential protective effects of liraglutide against high glucose-induced apoptosis of nucleus pulposus cells (NPCs) and the possible involved signaling pathways. Methods: The human NPCs were incubated with 100 nM liraglutide alone or in combination with LY294002 (PI3K inhibitor), rapamycin (mTOR inhibitor), and SB216763 (GSK3β inhibitor) in a high glucose culture for 48 h. The four groups were assessed further for apoptosis and genes expressions. The apoptotic effect was evaluated by flow cytometry and further confirmed by cell death detection enzyme-linked immunoassay plus (ELISAPLUS). The gene and protein expression levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting techniques. The results were comparatively assessed between the four groups. Results: The results confirmed the presence of GLP-1R in the NPCs indicating that liraglutide inhibited the high glucose-induced apoptosis, which was blocked by silencing GLP-1R with siRNA. Moreover, liraglutide stimulated the phosphorylation of Akt, mTOR and GSK3β. Treatment with LY294002 significantly increased the apoptosis of NPCs and reduced the levels of their downstream substrates (p-AKT, p-mTOR, and p-GSK3β). Further assessments revealed that activation of mTOR and GSK3β was almost completely inhibited by rapamycin and SB216763, respectively, which significantly increased the caspase-3 levels. Conclusion: Liraglutide could protect NPCs against high glucose-induced apoptosis by activating the PI3K/AKT/mTOR/caspase-3 and PI3K/AKT/GSK3β/caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Mingyan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhihong Li
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Xiaoliang Bai
- Department of Orthopedics, Baoding No.1 Central Hospital, Baoding, China
| | - Jinhui Ma
- Department of Endocrinology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Tang N, Dong Y, Chen C, Zhao H. Anisodamine Maintains the Stability of Intervertebral Disc Tissue by Inhibiting the Senescence of Nucleus Pulposus Cells and Degradation of Extracellular Matrix via Interleukin-6/Janus Kinases/Signal Transducer and Activator of Transcription 3 Pathway. Front Pharmacol 2021; 11:519172. [PMID: 33384595 PMCID: PMC7769940 DOI: 10.3389/fphar.2020.519172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives: Anisodamine (ANI) has been used to treat a variety of diseases. However, the study of ANI in intervertebral disc degeneration (IVDD) is unclear. This study investigated the effects of ANI on degenerative nucleus pulposus cells (NPCs) and IVDD rats, and its possible mechanisms. Methods: Human nucleus pulposus cells (HNPCs) were treated with IL-1β (20 ng/ml) to simulate IVDD, and an IVDD rat model was constructed. IL-1β-induced HNPCs were treated with different concentrations (10, 20, or 40 μM) of ANI, and IVDD rats were also treated with ANI (1 mg/kg). Results: ANI treatment significantly reduced the apoptosis, caspase-3 and SA-β-gal activities, and p53 and p21 proteins expression, while promoted telomerase activity and aggrecan and collagen II synthesis in IL-1β-induced HNPCs. Moreover, the introduction of ANI inhibited the expression of IL-6, phosphorylation of JAK and STAT3, and nuclear translocation of p-STAT3 in Degenerated HNPCs. Additionally, the application of ANI abolished the effects of IL-6 on apoptosis, SA-β-gal and telomerase activity, and the expression of p53, p21, aggrecan and collagen II proteins in degenerated HNPCs. Simultaneously, ANI treatment enhanced the effects of AG490 (inhibitor of JAK/STAT3 pathway) on IL-1β-induced apoptosis, senescence and ECM degradation in HNPCs. Furthermore, ANI treatment markedly inhibited the apoptosis and senescence in the nucleus pulposus of IVDD rats, while promoted the synthesis of aggrecan and collagen II. ANI treatment obviously inhibited JAK and STAT3 phosphorylation and inhibited nuclear translocation of p-STAT3 in IVDD rats. Conclusion: ANI inhibited the senescence and ECM degradation of NPCs by regulating the IL-6/JAK/STAT3 pathway to improve the function of NPCs in IVDD, which may provide new ideas for the treatment of IVDD.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Yulei Dong
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Chong Chen
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Hong Zhao
- Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
23
|
Zhu L, Yu C, Zhang X, Yu Z, Zhan F, Yu X, Wang S, He F, Han Y, Zhao H. The treatment of intervertebral disc degeneration using Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113117. [PMID: 32738389 DOI: 10.1016/j.jep.2020.113117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intervertebral disc degeneration (IDD) is one of the most common causes of chronic low back pain that spending a lot of workforces and financial resources, seriously affecting human physical and mental health. Clinically used drug treatments and surgical treatments cannot fundamentally relieve the disease and have a risk of recurrence. Traditional Chinese Medicine (TCM) has a history of more than a thousand years in the prevention and treatment of IDD. However, so far, there are few reviews on the treatment of IDD by TCM. Therefore, it is crucial and necessary to systematically mine the existing literature on the treatment of IDD with TCM. This paper strives to systematically describe the modern medicine and TCM theoretical research on IDD, progress in the treatment of IDD and focuses on the treatment of IDD by TCM, which would lay some theoretical foundation and provide new directions for future research. MATERIALS AND METHODS Information on clinical observations, animal experiments and relevant pharmacology data about the treatment of IDD were gathered from various sources including traditional Chinese books and Chinese Pharmacopoeia, scientific databases (Elsevier, PubMed, Science Direct, Baidu Scholar, CNKI, Spring Link, Web of Science) and from different professional websites. RESULTS This review mainly introduces the current research on the theoretical research on IDD, the combination principle of the TCM formula, and the underlying mechanism of the formula and active ingredients. CONCLUSIONS At present, domestic and foreign scholars have carried out a lot of research in different ways, such as the molecular mechanism and predisposing factors of IDD, which provides theoretical development and clinical practice significance for future research. TCM, as a multi-component and multi-targeted drug, can produce synergistic effects to exert its efficacy. Therefore, the development of TCM with more specific functions and practical data will not only become a significant trend in the world market but also has an irreplaceable role in the future treatment of IDD.
Collapse
Affiliation(s)
- Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Changsui Yu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Xiaofeng Zhang
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, 150030, China
| | - Zhongbao Yu
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Fengyuan Zhan
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Xin Yu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuren Wang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Feng He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Yusheng Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - He Zhao
- Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Deng Y, Gao X, Feng T, Wang Z, Xiao W, Xiong Z, Zhao L. Systematically characterized mechanism of treatment for lumbar disc herniation based on Yaobitong capsule ingredient analysis in rat plasma and its network pharmacology strategy by UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113097. [PMID: 32531413 DOI: 10.1016/j.jep.2020.113097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yaobitong capsule (YBTC) was a traditional Chinese medicine (TCM) and it had clinically used to treat lumbar disc degeneration (LDH) for a long time. However, the active ingredients of YBTC absorption into the plasma and its pharmacological mechanism of treatment for LDH still remained unclear. AIM OF THE STUDY In this study, our research committed to identify the absorbed active ingredients of YBTC in rat plasma, and it may be a potential mechanism of action on LDH by the biological targets regulating related pathways. MATERIALS AND METHODS An ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to identify the absorption components and metabolites of YBTC in rat plasma, and the network pharmacology was further investigated to illuminate its potential mechanism of treatment for LDH by the biological targets regulating related pathways. RESULTS The network analysis found that 56 components were identified as its main active ingredients including ginsenoside Rg1, ginsenoside Rb1, senkyunolide H, and tetrahydropalmatine, etc. Combining with biological process, cellular component and molecular functions of GO, and kyotoencyclopedia of genes and genomes pathway enrichment analysis to perform network topology analysis on core targets. These active ingredients regulated 29 mainly pathways by 87 direct target genes including MAPK, Ras, PI3K-Akt, and NF-kappa B signaling pathway, etc. CONCLUSION: In this study, the absorption active ingredients of YBTC in rat plasma were firstly combined with the network pharmacology investigation to elucidate its biological mechanism of treatment for LDH in vivo. It inhibited excessive inflammatory reactions, thereby reducing the sensitivity of the nerves to reduce pain and relieve LDH, and potential medicine targets could be identified to clarify the molecular mechanism of YBTCs' regulation of LDH.
Collapse
Affiliation(s)
- Yajie Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Tiantian Feng
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical CO. LTD, Jiangsu, Lianyungang, 222001, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, 222001, Jiangsu Lianyungang, China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| |
Collapse
|
25
|
Hu S, Fu Y, Yan B, Shen Z, Lan T. Analysis of key genes and pathways associated with the pathogenesis of intervertebral disc degeneration. J Orthop Surg Res 2020; 15:371. [PMID: 32873329 PMCID: PMC7465721 DOI: 10.1186/s13018-020-01902-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is widely known as the main contributor to low back pain which has a negative socioeconomic impact worldwide. However, the underlying mechanism remains unclear. This study aims to analyze the dataset GSE23130 using bioinformatics methods to identify the pivotal genes and pathways associated with IDD. MATERIAL/METHODS The gene expression data of GSE23130 was downloaded, and differentially expressed genes (DEGs) were extracted from 8 samples and 15 controls. GO and KEGG pathway enrichment analyses were performed. Also, protein-protein interaction (PPI) network was constructed and visualized, followed by identification of hub genes and key module. RESULTS A total of 30 downregulated and 79 upregulated genes were identified. The DEGs were mainly enriched in the regulation of protein catabolic process, extracellular matrix organization, collagen fibril organization, and extracellular structure organization. Meanwhile, we found that most DEGs were primarily enriched in the PI3K-Akt signaling pathway. The top 10 hub genes were FN1, COL1A2, SPARC, COL3A1, CTGF, LUM, TIMP1, THBS2, COL5A2, and TGFB1. CONCLUSIONS In summary, key candidate genes and pathways were identified by using integrated bioinformatics analysis, which may provide insights into the underlying mechanisms and offer potential target genes for the treatment of IDD.
Collapse
Affiliation(s)
- Shiyu Hu
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Yan
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhe Shen
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Tao Lan
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
26
|
Apelin Promotes ECM Synthesis by Enhancing Autophagy Flux via TFEB in Human Degenerative NP Cells under Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4897170. [PMID: 32149109 PMCID: PMC7042543 DOI: 10.1155/2020/4897170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Abstract
Background Apelin alleviates oxidative stress which contributes to the development of aging. IVDD is a disease closely correlated to aging and oxidative stress which is known to be harmful to NP cells' matrix synthesis. The purpose of the present study was to investigate the role and underlying mechanism of Apelin in NP cells' matrix degradation under oxidative stress. Methods First, the mRNA and protein expressions of Apelin were checked by RT-PCR and Western blot in NP from normal and degenerative IVD to explore the relationship between Apelin and IVDD preliminarily. Then, H2O2 was used to mimic oxidative stress of NP cells. After treated with Apelin 13 and CQ, the GAG content was assessed by DMMB and the mRNA/protein expressions of NP matrix macromolecules (Collagen II and Aggrecan) and autophagy-related markers (LC3 and p62) were assessed by RT-PCR/Western blot. Finally, TFEB was knocked down by esiRNA-TFEB transfection and the nucleoprotein expression of TFEB and autophagy-related markers (LC3 and p62) were assessed by Western blot to discuss whether TFEB is involved in Apelin regulating autophagy flux in NP cells under oxidative stress. Results Our data first confirmed that the mRNA and protein expressions of Apelin were decreased with IVDD. Furthermore, Apelin increased GAG content of NP cells and mRNA/protein expressions of NP matrix macromolecules (Collagen II and Aggrecan) and promoted autophagic flux (LC3II/I increased and p62 decreased) under oxidative stress. Finally, after transfected with esiRNA-TFEB, Apelin cannot promote autophagic flux any more in human degenerative NP cells. Conclusion Our data indicated that Apelin promotes ECM synthesis by enhancing autophagy flux via TFEB in human degenerative NP cells under oxidative stress. This viewpoint may provide a new therapeutic idea for IVDD.
Collapse
|
27
|
Tian D, Liu J, Chen L, Zhu B, Jing J. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency. J Orthop Surg Res 2020; 15:29. [PMID: 31992313 PMCID: PMC6988348 DOI: 10.1186/s13018-020-1551-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To study the effects of hypoxia and nutrition deficiency mimicking degenerated intervertebral disc on the biological behavior of human nucleus-derived pulposus mesenchymal stem cells (hNP-MSCs) and the role of PI3K/Akt pathway in the process in vitro. METHODS hP-MSCs were isolated from lumbar disc and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were divided into the control group, hypoxia and nutrition deficiency group, the LY294002 group, and insulin-like growth factor 1 (IGF-1) group. Then cell apoptosis, the cell viability, the caspase 3 activity, and the expression of PI3K, Akt, and functional genes (aggrecan, collagen I, and collagen II) were evaluated. RESULT Our work showed that isolated cells met the criteria of International Society for cellular Therapy. Therefore, cells obtained from degenerated nucleus pulposus were definitely hNP-MSCs. Our results showed that hypoxia and nutrition deficiency could significantly increase cell apoptosis, the caspase 3 activity, and inhibit cell viability. Gene expression results demonstrated that hypoxia and nutrition deficiency could increase the relative expression of PI3K and Akt gene and inhibit the expression of functional genes. However, when the PI3K/Akt pathway was inhibited by LY294002, the cell apoptosis and caspase 3 activity significantly increased while the cell viability was obviously inhibited. Quantitative real-time PCR results showed that the expression of functional genes was more significantly inhibited. Our study further verified that the above-mentioned biological activities of hNP-MSCs could be significantly improved by IGF1. CONCLUSIONS PI3K/Akt signal pathway may have protective effects on human nucleus pulposus-derived mesenchymal stem cells against hypoxia and nutrition deficiency.
Collapse
Affiliation(s)
- DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Jianjun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Lei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Bin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
28
|
Cudraxanthone D Regulates Epithelial-Mesenchymal Transition by Autophagy Inhibition in Oral Squamous Cell Carcinoma Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5213028. [PMID: 31781271 PMCID: PMC6874991 DOI: 10.1155/2019/5213028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Cudraxanthone D (CD), derived from the root bark of Cudrania tricuspidata, is a natural xanthone compound. However, the biological activity of CD in terms of human metabolism has been barely reported to date. Autophagy is known as a self-degradation process related to cancer cell viability and metastasis. Herein, we investigated the effects of CD on human oral squamous cell carcinoma (OSCC) metastatic related cell phenotype. We confirmed that CD effectively decreased proliferation and viability in a time- and dose-dependent manner in human OSCC cells. In addition, OSCC cell migration, invasion, and EMT were inhibited by CD. To further determine the underlying mechanism of CD's inhibition of cell metastatic potential, we established the relationship between EMT and autophagy in OSCC cells. Thus, our findings indicated that CD inhibited the potential metastatic abilities of OSCC cells by attenuating autophagy.
Collapse
|
29
|
Li X, Lin F, Wu Y, Liu N, Wang J, Chen R, Lu Z. Resveratrol attenuates inflammation environment-induced nucleus pulposus cell senescence in vitro. Biosci Rep 2019; 39:BSR20190126. [PMID: 30962260 PMCID: PMC6509054 DOI: 10.1042/bsr20190126] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Intervertebral disc degeneration is a disease identified as an inflammation response-participated pathological process. As a classical cellular feature, disc cell senescence is reported to be closely related with disc cell senescence. Resveratrol has a protective role against inflammation in some cells. However, its biological effects on disc cells remain largely unclear. The present study was aimed to study the effects of resveratrol on disc nucleus pulposus (NP) cell senescence in an inflammation environment. Isolated NP cells were cultured in cultured medium with (control group) or without (inflammation group) inflammatory cytokine TNF-α and IL-1β for 14 days. Resveratrol was added along with the NP cells treated with inflammatory cytokines to investigate its effects. NP cell senescence was analyzed by senescence-associated β-Galactosidase (SA-β-Gal) staining, cell proliferation, G0/1 cell cycle arrest, telomerase activity, gene/protein expression of senescence markers (p16 and p53) and NP matrix biosynthesis. In addition, the intracellular reactive oxygen species (ROS) was also analyzed. Compared with the control group, inflammation group significantly increased SA-β-Gal activity and ROS content, decreased cell proliferation and telomerase activity, promoted G0/1 cell cycle arrest, up-regulated gene/protein expression of senescence markers (p16 and p53) and matrix catabolism enzymes (MMP-3, MMP-13 and ADAMTS-4), and down-regulated gene/protein expression of NP matrix macromolecules (aggrecan and collagen II). However, resveratrol partly reversed the effects of inflammatory cytokine on these cell senescence-associated parameters. Together, resveratrol was effective to suppress cell senescence in an inflammatory environment. The present study shows new knowledge on how to retard inflammation response-initiated disc degeneration.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Feixiang Lin
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Yaohong Wu
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Ning Liu
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Jun Wang
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Rongchun Chen
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Zhijun Lu
- Department of Spinal Surgery, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
30
|
Luo R, Liao Z, Song Y, Yin H, Zhan S, Li G, Ma L, Lu S, Wang K, Li S, Zhang Y, Yang C. Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells. Life Sci 2019; 228:85-97. [PMID: 31047897 DOI: 10.1016/j.lfs.2019.04.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
AIM Nucleus pulposus (NP) cell apoptosis induced by oxidative stress is known to be closely involved in the pathogenesis of intervertebral disc (IVD) degeneration. Berberine, a small molecule derived from Rhizoma coptidis, has been found to exert antioxidative activity and preserve cell viability. The present study aims to investigate whether berberine can prevent NP cell apoptosis under oxidative damage and the potential underlying mechanisms. METHODS AND MATERIALS The effects of berberine on IVD degeneration were investigated both in vitro and in vivo. KEY FINDINGS Our results showed that berberine significantly mitigated oxidative stress-decreased cell viability as well as apoptosis in human NP cells. Berberine treatment could attenuate oxidative stress-induced ER stress and autophagy in a concentration-dependent manner. With 4-PBA (ER stress specific inhibitor) and 3-MA (autophagy specific inhibitor) administration, we demonstrated that berberine inhibited oxidative stress-induced apoptosis by modulating the ER stress and autophagy pathway. We also found that the IRE1/JNK pathway was involved in the induction of ER stress-dependent autophagy. With Ca2+ chelator BAPTA-AM utilization, we revealed that oxidative stress-mediated ER stress and autophagy repressed by berberine could be restored by inducing intracellular Ca2+ dysregulation. Furthermore, in vivo study provided evidence that berberine treatment could retard the process of puncture-induced IVD degeneration in a rat model. SIGNIFICANCE Our results indicate that berberine could prevent oxidative stress-induced apoptosis by modulating ER stress and autophagy, thus offering a novel potential pharmacological treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengfeng Zhan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
31
|
Jiang Y, Xie Z, Yu J, Fu L. Resveratrol inhibits IL-1β-mediated nucleus pulposus cell apoptosis through regulating the PI3K/Akt pathway. Biosci Rep 2019; 39:BSR20190043. [PMID: 30867252 PMCID: PMC6434388 DOI: 10.1042/bsr20190043] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Nucleus pulposus (NP) cell apoptosis is a classical cellular character during intervertebral disc degeneration (IDD). Previous studies have shown that inflammatory cytokine-induced NP cell apoptosis plays an important role in disc degeneration. The present study was aimed to investigate whether resveratrol can suppress IL-1β-mediated NP cell apoptosis and the potential signal transduction pathway. Experimental rat NP cells were treated with culture medium containing IL-1β (20 ng/ml) for 7 days. Control NP cells were cultured in the baseline medium. Resveratrol was added along with culture medium to investigate its effects. The inhibitor LY294002 was used to study the role of the PI3K/Akt pathway. NP cell apoptosis was reflected by the caspase-3 activity, cell apoptosis ratio, and expression of apoptosis-related molecules (Bcl-2, Bax, caspase-3, cleaved caspase-3, and cleaved PARP). Compared with the control NP cells, IL-1β significantly increased caspase-3 activity, NP cell apoptosis ratio and mRNA/protein expression of Bax, caspase-3, cleaved caspase-3 and cleaved PARP, but decreased mRNA expression of Bcl-2. However, resveratrol partly suppressed the effects of IL-1β on those cell apoptosis-related parameters. Further analysis showed that IL-1β significantly decreased activity of the PI3K/Akt pathway whereas resveratrol partly increased activity of the PI3K/Akt pathway in NP cells treated with IL-1β. Additionally, when the inhibitor LY294002 was added along with the resveratrol, its protective effects against IL-1β-induced NP cell apoptosis were attenuated. In conclusion, resveratrol suppresses IL-1β-mediated NP cell apoptosis through activating the PI3K/Akt pathway. Resveratrol may be an effective drug to attenuate inflammatory cytokine-induced disc degenerative changes.
Collapse
Affiliation(s)
- Yanhai Jiang
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Zhijie Xie
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Jinying Yu
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Lianqiang Fu
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| |
Collapse
|
32
|
Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018; 11:nu11010053. [PMID: 30597847 PMCID: PMC6357531 DOI: 10.3390/nu11010053] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
Aging is a major risk factor in the development of chronic diseases affecting various tissues including the cardiovascular system, muscle and bones. Age-related diseases are a consequence of the accumulation of cellular damage and reduced activity of protective stress response pathways leading to low-grade systemic inflammation and oxidative stress. Both inflammation and oxidative stress are major contributors to cellular senescence, a process in which cells stop proliferating and become dysfunctional by secreting inflammatory molecules, reactive oxygen species (ROS) and extracellular matrix components that cause inflammation and senescence in the surrounding tissue. This process is known as the senescence associated secretory phenotype (SASP). Thus, accumulation of senescent cells over time promotes the development of age-related diseases, in part through the SASP. Polyphenols, rich in fruits and vegetables, possess antioxidant and anti-inflammatory activities associated with protective effects against major chronic diseases, such as cardiovascular disease (CVD). In this review, we discuss molecular mechanisms by which polyphenols improve anti-oxidant capacity, mitochondrial function and autophagy, while reducing oxidative stress, inflammation and cellular senescence in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). We also discuss the therapeutic potential of polyphenols in reducing the effects of the SASP and the incidence of CVD.
Collapse
|
33
|
Yang Y, Wang X, Liu Z, Xiao X, Hu W, Sun Z. Osteogenic protein-1 attenuates nucleus pulposus cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture. Biosci Rep 2018; 38:BSR20181708. [PMID: 30459239 PMCID: PMC6294645 DOI: 10.1042/bsr20181708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have indicated that osteogenic protein-1 has protective effects on the biological functions of intervertebral disc cells. Hyperosmolarity is an important physicochemical factor within the disc nucleus pulposus (NP) region, which obviously promotes NP cell apoptosis. OBJECTIVE To study the effects of osteogenic protein-1 (OP-1) on NP cell apoptosis induced by hyperosmolarity and the potential signaling transduction pathway. METHODS Rat NP cells were cultured in a hyperosmotic medium with or without OP-1 addition for 7 days. Inhibitor 294002 and inhibitor FK-506 were used to investigate the role of the PI3K/Akt/mTOR pathway in this process. NP cell apoptosis were evaluated by cell apoptosis ratio, activity of caspase-3/9 and gene/protein expression of apoptosis-related molecules (Bax, Bcl-2, caspase-3/cleaved caspase-3 and cleaved PARP). RESULTS OP-1 addition obviously decreased cell apoptosis ratio and caspase-3/9 activity, down-regulated gene/protein expression of pro-apoptosis molecules (Bax, caspase-3/cleaved casepase-3 and cleaved PARP), up-regulated gene/protein expression of anti-apoptosis molecule (Bcl-2) in a hyperosmotic culture. Moreover, OP-1 addition significantly increased protein expression of p-Akt and p-mTOR. Further analysis showed that addition of LY294002 and FK-506 partly attenuated these protective effects of OP-1 against NP cell apoptosis and activation of the PI3K/Akt/mTOR pathway in a hyperosmotic culture. CONCLUSION OP-1 can attenuate NP cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture. The present study sheds a new light on the protective role of OP-1 in regulating disc cell biology and provides some theoretical basis for the application of OP-1 in retarding/regenerating disc degeneration.
Collapse
Affiliation(s)
- Yan Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xiyang Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zheng Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Wenkai Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zhicheng Sun
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|