1
|
Li J, Hu H, Fu P, Yang Q, Wang P, Gao X, Yang J, Gun S, Huang X. Pig Milk Exosome Packaging ssc-miR-22-3p Alleviates Pig Intestinal Epithelial Cell Injury and Inflammatory Response by Targeting MAPK14. Int J Mol Sci 2024; 25:10715. [PMID: 39409044 PMCID: PMC11476862 DOI: 10.3390/ijms251910715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory diseases of the intestinal tract in piglets severely impair the economic performance of pig farms. Pig milk exosomes can encapsulate miRNAs which can then enter the piglet intestine to play an immunomodulatory role. Previously, we comparatively analyzed and identified exosomal miRNAs in the colostrum and mature milk of Bamei and Landrace pigs, and we screened for ssc-miR-22-3p, which is associated with inflammation and immune response; however, the role played by ssc-miR-22-3p in the immune response in IPEC-J2 cells is not yet clear. In this study, we first constructed a pig intestinal inflammatory response model using Lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (Poly (I:C)), and we investigated the role of ssc-miR-22-3p targeting MAPK14 in the regulation of LPS and Poly (I:C)-induced inflammatory injury in IPEC-J2 cells by RT-qPCR, cell counting kit-8 (CCK-8), EdU staining, lactate dehydrogenase (LDH) activity assay, and dual luciferase reporter gene assay. We successfully established LPS and Poly (I:C)-induced cell damage models in IPEC-J2 cells. The immune response of IPEC-J2 cells was stimulated by induction of IPEC-J2 cells at 10 μg/mL LPS and 20 μg/mL Poly (I:C) for 24 h. Overexpression of ssc-miR-22-3p decreased cytokine expression and promoted cell viability and proliferation. The functional enrichment analysis revealed that ssc-miR-22-3p targets genes enriched in the pathways of negative regulation of inflammatory response and bacterial invasion of epithelial cells. The validity of the binding site of ssc-miR-22-3p to MAPK14 was tested by a dual luciferase reporter gene. Pig milk exosome ssc-miR-22-3p promotes cell viability and proliferation by targeting MAPK14, and it alleviates LPS and Poly (I:C)-induced inflammatory responses in IPEC-J2 cells.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Huihui Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Panpan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| |
Collapse
|
2
|
Han SJ, Kim SK, Hong SM. Next-generation Sequencing of MicroRNA in Acquired Middle Ear Cholesteatoma. Laryngoscope 2024; 134:4374-4382. [PMID: 38775212 DOI: 10.1002/lary.31507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES/HYPOTHESIS The pathophysiology of cholesteatoma is not precisely understood, and research on the associated microRNAs (miRNAs) is also deficient. We demonstrated the expression of miRNA in normal skin and middle ear cholesteatoma by next-generation sequencing (NGS) technology. The profiles of miRNA and relevant molecular interaction pathways were investigated. STUDY DESIGN Case-control experimental study. METHODS Middle ear cholesteatoma and post-auricular skin tissue specimens were collected from 13 adult patients. Total RNA was extracted, and miRNA expression profiles were analyzed by NGS technology. Functional gene classification to predict target genes and relevant biological pathways was performed using DIANA-microT-CDS and the Kyoto Encyclopedia Gene and Genome database (KEGG) pathways. RESULTS The expression of 2588 miRNAs from middle ear cholesteatoma and skin tissue samples was analyzed. The expression of 76 upregulated and 128 downregulated miRNAs was identified in the cholesteatoma samples compared to normal skin (FC ≥2 and p < 0.05). Ninety-nine differentially expressed miRNAs (FC ≥4 and p < 0.05) were used to explore the biological pathways involved in the etiopathogenesis of cholesteatoma. The most predicted pathway in cholesteatoma in the upregulated miRNA group was the ErbB signaling pathway and it was extracellular matrix (ECM)-receptor interaction in the downregulated miRNA group. CONCLUSIONS This was the first study investigating small miRNAs in human acquired cholesteatoma using NGS technique. We were able to identify new miRNAs and pathways related to cholesteatoma. The results of this study are expected to be helpful in revealing new pathophysiologies of cholesteatoma. LEVEL OF EVIDENCE N/A Laryngoscope, 134:4374-4382, 2024.
Collapse
Affiliation(s)
- Sung Jun Han
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Hwaseong, Korea
| | - Sung Kyun Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Hwaseong, Korea
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| | - Seok Min Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of MicroRNA in the Pathogenesis of Acute Kidney Injury. Cells 2024; 13:1559. [PMID: 39329743 PMCID: PMC11444149 DOI: 10.3390/cells13181559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) describes a condition associated with elevated serum creatinine levels and decreased glomerular filtration rate. AKI can develop as a result of sepsis, the nephrotoxic properties of several drugs, and ischemia/reperfusion injury. Renal damage can be associated with metabolic acidosis, fluid overload, and ionic disorders. As the molecular background of the pathogenesis of AKI is insufficiently understood, more studies are needed to identify the key signaling pathways and molecules involved in the progression of AKI. Consequently, future treatment methods may be able to restore organ function more rapidly and prevent progression to chronic kidney disease. MicroRNAs (miRNAs) are small molecules that belong to the non-coding RNA family. Recently, numerous studies have demonstrated the altered expression profile of miRNAs in various diseases, including inflammatory and neoplastic conditions. As miRNAs are major regulators of gene expression, their dysregulation is associated with impaired homeostasis and cellular behavior. The aim of this article is to discuss current evidence on the involvement of miRNAs in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Kuang J, Fang J, Hu S, Yang X, Fan X. MECHANISM OF MICRORNA-218-5P IN MITOCHONDRIAL BIOGENESIS OF SEPSIS-INDUCED ACUTE KIDNEY INJURY BY THE REGULATION OF PGC-1Α. Shock 2024; 62:426-436. [PMID: 38888503 DOI: 10.1097/shk.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Sepsis-induced acute kidney injury (SI-AKI) is a kind of kidney dysfunction, which brings a lot of suffering. This study aimed to figure out the role of the miR-218-5p/PGC-1α axis in SI-AKI. Methods: AKI mouse model was established through cecal ligation and puncture. PGC-1α expression was activated using an activator ZLN005 before the serum and tissue samples were collected. Next, pathological structure and apoptosis of kidney tissues were observed. Levels of blood urea nitrogen, serum creatinine, and indicators of inflammation and oxidative stress were assessed. Moreover, reactive oxygen species and mitochondrial membrane potential levels, adenosine 5'-triphosphate content, and mitochondrial ultrastructure of kidney tissues were observed. HK2 cells were treated by lipopolysaccharide (LPS) to mimic sepsis in vitro , followed by evaluation of cell survival and apoptosis, inflammation, and oxidative stress. Subsequently, the binding relation between PGC-1α and miR-218-5p was predicted and validated. Then expression of PGC-1α and miR-218-5p was detected. PGC-1α and miR-218-5p expression were intervened to detect their influences in mitochondrial biogenesis. At last, miR-218-5p was overexpressed in ZLN005 (PGC-1α activating agent) pretreated SI-AKI mice to validate the mechanism. Results: PGC-1α is poorly expressed in SI-AKI, but overexpression of PGC-1α using ZLN005 alleviated SI-AKI injury and promoted mitochondrial biogenesis in AKI mice, and relieved LPS-induced cell injury. PGC-1α is a target of miR-218-5p. Downregulation of miR-218-5p expression in HK2 cells attenuated mitochondrial biogenesis disorder. Inhibition of PGC-1α annulled the role of miR-218-5p silencing in cells. In vivo , miR-218-5p overexpression partly reversed the protective role of ZLN005 in SI-AKI mice. Conclusion: miR-218-5p targeted PGC-1α to disrupt mitochondrial biogenesis, thereby exacerbating SI-AKI.
Collapse
Affiliation(s)
- Jing Kuang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Fang
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Shuli Hu
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xiuhong Yang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xuepeng Fan
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
5
|
Cao F, Li Y, Peng T, Li Y, Yang L, Hu L, Zhang H, Wang J. PTEN in kidney diseases: a potential therapeutic target in preventing AKI-to-CKD transition. Front Med (Lausanne) 2024; 11:1428995. [PMID: 39165377 PMCID: PMC11333338 DOI: 10.3389/fmed.2024.1428995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Renal fibrosis, a critical factor in the development of chronic kidney disease (CKD), is predominantly initiated by acute kidney injury (AKI) and subsequent maladaptive repair resulting from pharmacological or pathological stimuli. Phosphatase and tensin homolog (PTEN), also known as phosphatase and tensin-associated phosphatase, plays a pivotal role in regulating the physiological behavior of renal tubular epithelial cells, glomeruli, and renal interstitial cells, thereby preserving the homeostasis of renal structure and function. It significantly impacts cell proliferation, apoptosis, fibrosis, and mitochondrial energy metabolism during AKI-to-CKD transition. Despite gradual elucidation of PTEN's involvement in various kidney injuries, its specific role in AKI and maladaptive repair after injury remains unclear. This review endeavors to delineate the multifaceted role of PTEN in renal pathology during AKI and CKD progression along with its underlying mechanisms, emphasizing its influence on oxidative stress, autophagy, non-coding RNA-mediated recruitment and activation of immune cells as well as renal fibrosis. Furthermore, we summarize prospective therapeutic targeting strategies for AKI and CKD-treatment related diseases through modulation of PTEN.
Collapse
Affiliation(s)
- Fangfang Cao
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanyuan Li
- Division of Science and Education, Mianyang Central Hospital, Mianyang, China
| | - Ting Peng
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanmei Li
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lihua Yang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lanping Hu
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Han Zhang
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| |
Collapse
|
6
|
Jennings H, McMorrow S, Chlebeck P, Heise G, Levitsky M, Verhoven B, Kink JA, Weinstein K, Hong S, Al‐Adra DP. Normothermic liver perfusion derived extracellular vesicles have concentration-dependent immunoregulatory properties. J Extracell Vesicles 2024; 13:e12485. [PMID: 39051751 PMCID: PMC11270586 DOI: 10.1002/jev2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) are major contributors to immunological responses following solid organ transplantation. Donor derived EVs are best known for their role in transplant rejection through transferring donor major histocompatibility complex proteins to recipient antigen presenting cells, a phenomenon known as ‛cross-decoration'. In contrast, donor liver-derived EVs are associated with organ tolerance in small animal models. Therefore, the cellular source of EVs and their cargo could influence their downstream immunological effects. To investigate the immunological effects of EVs released by the liver in a physiological and transplant-relevant model, we isolated EVs being produced during normothermic ex vivo liver perfusion (NEVLP), a novel method of liver storage prior to transplantation. We found EVs were produced by the liver during NEVLP, and these EVs contained multiple anti-inflammatory miRNA species. In terms of function, liver-derived EVs were able to cross-decorate allogeneic cells and suppress the immune response in allogeneic mixed lymphocyte reactions in a concentration-dependent fashion. In terms of cytokine response, the addition of 1 × 109 EVs to the mixed lymphocyte reactions significantly decreased the production of the inflammatory cytokines TNF-α, IL-10 and IFN-γ. In conclusion, we determined physiologically produced liver-derived EVs are immunologically regulatory, which has implications for their role and potential modification in solid organ transplantation.
Collapse
Affiliation(s)
- Heather Jennings
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Stacey McMorrow
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Peter Chlebeck
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Grace Heise
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mia Levitsky
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bret Verhoven
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - John A. Kink
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kristin Weinstein
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - David P. Al‐Adra
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
7
|
Niu X, Wang C, Li H, Chen W. Role of OPG/RANKL/RANK/TLR4 signaling pathway in sepsis-associated acute kidney injury. BMC Nephrol 2024; 25:205. [PMID: 38910256 PMCID: PMC11194911 DOI: 10.1186/s12882-024-03648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) has high mortality rates. The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK)/Toll-like receptor 4 (TLR4) pathway and its potential role in SA-AKI pathogenesis remain to be fully understood. Herein, we addressed this issue using mouse models. METHODS An SA-AKI mouse model was established using the cecal ligation and puncture method (CLP). Mice were grouped into sham, CLP model, CLP + recombinant RANKL, and CLP + anti-RANKL groups. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured to assess kidney function. ELISA was used to detect serum IL-1β, TNF-α, and IL-6 levels. Real-time quantitative PCR and Western blot were used to detect the mRNA and protein expression levels of OPG, RANKL, RANK, and TLR4 in kidney tissues. HE staining was performed to evaluate the pathological changes. RESULTS The CLP model group showed higher levels of Scr and BUN, indicating impaired kidney function in SA-AKI, compared to the sham group. Treatment with recombinant RANKL in the CLP + recombinant RANKL group reduced Scr and BUN levels, while anti-RANKL treatment in the CLP + anti-RANKL group elevated their levels. Moreover, the CLP model group had significantly increased IL-1β, TNF-α, and IL-6 than the sham group, indicating elevated inflammation in SA-AKI. The CLP + recombinant RANKL group demonstrated decreased cytokine levels, whereas the CLP + anti-RANKL group showed an increase. Additionally, the histopathological evaluation revealed distinct kidney tissue damage in the CLP model group. Recombinant RANKL treatment reduced this damage, while anti-RANKL treatment exacerbated it. Mechanically, the mRNA and protein expression of RANKL were significantly decreased, while those of OPG, RANK, and TLR4 were significantly increased in the CLP model group and the CLP + anti-RANKL group. Interestingly, treatment with recombinant RANKL reversed these changes, as evidenced by significantly increased RANKL but decreased OPG, RANK, and TLR4. CONCLUSION The OPG/RANKL/RANK/TLR4 pathway is involved in SA-AKI pathogenesis. Recombinant RANKL treatment attenuates the inflammatory response and kidney tissue damage in SA-AKI, possibly via regulating this pathway. This pathway shows promise as a therapeutic target for SA-AKI.
Collapse
Affiliation(s)
- Xinrong Niu
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China.
| | - Caihong Wang
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China
| | - Hui Li
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China
| | - Weilin Chen
- Department of Critical Care Medicine, Xinjiang Uyghur Autonomous Region People's Hospital, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, P.R. China
| |
Collapse
|
8
|
Gratpain V, Loriot A, Bottemanne P, d’Auria L, Terrasi R, Payen VL, van Pesch V, Muccioli GG, des Rieux A. Influence of a pro-inflammatory stimulus on the miRNA and lipid content of human dental stem cell-derived extracellular vesicles and their impact on microglial activation. Heliyon 2024; 10:e27025. [PMID: 38463764 PMCID: PMC10923689 DOI: 10.1016/j.heliyon.2024.e27025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Neuro-inflammation occurs in numerous disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. However, anti-inflammatory drugs for the central nervous system have failed to show significant improvement when compared to a placebo in clinical trials. Our previous work demonstrated that stem cells from the apical papilla (SCAP) can decrease neuro-inflammation and stimulate oligodendrocyte progenitor cell differentiation. One hypothesis is that the therapeutic effect of SCAP could be mediated by their secretome, including extracellular vesicles (EV). Here, our objectives were to characterize SCAP-EV and to study their effect on microglial cells. We isolated EV from non-activated SCAP and from SCAP activated with TNFα and IFN-γ and characterized them according to their size, EV markers, miRNA and lipid content. Their ability to decrease pro-inflammatory cytokine expression in vitro and ex vivo was also assessed. We showed that the miRNA content was impacted by a pro-inflammatory environment but not their lipid composition. SCAP-EV reduced the expression of pro-inflammatory markers in LPS-activated microglial cells while their effect was limited on mouse spinal cord sections. In conclusion, we were able to isolate EV from SCAP, to show that their miRNA content was impacted by a pro-inflammatory stimulus, and to describe that SCAP-EV and not the protein fraction of conditioned medium could reduce pro-inflammatory marker expression in LPS-activated BV2 cells.
Collapse
Affiliation(s)
- Viridiane Gratpain
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Axelle Loriot
- de Duve Institute, Computational Biology Unit, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Pauline Bottemanne
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Ludovic d’Auria
- Institute of Neuroscience, Neurochemistry Unit, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Romano Terrasi
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Valéry L. Payen
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Institute of Neuroscience, Neurochemistry Unit, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, 1200, Brussels, Belgium
| |
Collapse
|
9
|
Zhang P, Guo E, Xu L, Shen Z, Jiang N, Liu X. Knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney. BMC Nephrol 2024; 25:79. [PMID: 38443846 PMCID: PMC10916237 DOI: 10.1186/s12882-024-03513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Enwei Guo
- Department of Intensive Care Unit, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Zhenhua Shen
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Na Jiang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Xinhui Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China.
| |
Collapse
|
10
|
Liu M, Guo P, Zeng M, Zhang Y, Jia J, Liu Y, Chen X, Kuang H, Feng W, Zheng X. Effects and mechanisms of frehmaglutin D and rehmaionoside C improve LPS-induced acute kidney injury through the estrogen receptor-mediated TLR4 pathway in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155218. [PMID: 37980806 DOI: 10.1016/j.phymed.2023.155218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (S-AKI) is an inflammatory disease with sex differences and there has no effective drugs to cure it. Frehmaglutin D (Fre D) and rehmaionoside C (Reh C) are two violetone compounds with estrogenic activity isolated from Rehmannia glutinosa. However, whether these two drugs exert protective effects on S-AKI through their estrogen-like activity are unclear. PURPOSE This study aimed to explore the effects and mechanisms of Fre D and Reh C on lipopolysaccharide (LPS)-induced S-AKI through the estrogen receptor pathway in vivo and in vitro and to explore the interaction between ER and TLR4 for the first time. METHODS The LPS-induced female BALB/c mice S-AKI mouse model was established by adding the estrogen receptor antagonist ICI182,780. Renal function, inflammation, oxidative stress, apoptosis, immune cells, and expression of key proteins of the ER-TLR4-IL-1β pathway were tested. The affinity of Fre D and Reh C for the ER was investigated by molecular docking. Then, an in vitro S-AKI model was established, and ERα/ERβ antagonists (MPP/PHTPP) were added and combined with gene overexpression techniques. The interaction between ER and TLR4 was further explored by Co-IP, GST pull-down and SPR techniques. RESULTS Fre D and Reh C ameliorated LPS-induced renal damage, inflammation in mice, regulated the immune cells, decreased ROS levels, increased ERα and ERβ protein expression, and decreased TLR4, caspase 11 and IL-1β protein expression. These effects were blocked by ICI182,780. Molecular docking results showed that Fre D and Reh C bound ERα and ERβ with similar potency. The results of in vitro suggested that Fre D and Reh C reduced the levels of inflammation, ROS and apoptosis, TLR4, caspase 11, and IL-1β protein expression and increased ERα/ERβ protein expression in cells. All of these effects were reversed by the addition of MPP/PHTPP and further enhanced after ERα/ERβ gene overexpression with no significant difference in effects. Moreover, there was an indirect or direct interaction between ER and TLR4, and the binding of ERα and ERβ to TLR4 was concentration dependent. CONCLUSION Fre D and Reh C may improve S-AKI through the ER-TLR4-IL-1β pathway and may act on both ERα and ERβ receptors. Moreover, ERα and ERβ may interact directly or indirectly with TLR4, which was studied for the first time.
Collapse
Affiliation(s)
- Meng Liu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150000, Heilongjiang, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Pengli Guo
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Mengnan Zeng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yuhan Zhang
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Jufang Jia
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yanling Liu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xu Chen
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150000, Heilongjiang, China
| | - Weisheng Feng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Xiaoke Zheng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| |
Collapse
|
11
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Martino E, D'Onofrio N, Balestrieri A, Mele L, Sardu C, Marfella R, Campanile G, Balestrieri ML. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett 2023; 28:66. [PMID: 37587410 PMCID: PMC10428548 DOI: 10.1186/s11658-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial dysfunction and deregulated microRNAs (miRNAs) participate in the development of sepsis and are associated with septic organ failure and death. Here, we explored the role of miR-15b-5p on inflammatory pathways in lipopolysaccharide (LPS)-treated human endothelial cells, HUVEC and TeloHAEC. METHODS The miR-15b-5p levels were evaluated in LPS-stimulated HUVEC and TeloHAEC cells by quantitative real-time PCR (qRT-PCR). Functional experiments using cell counting kit-8 (CCK-8), transfection with antagomir, and enzyme-linked immunosorbent assays (ELISA) were conducted, along with investigation of pyroptosis, apoptosis, autophagy, and mitochondrial reactive oxygen species (ROS) by cytofluorometric analysis and verified by fluorescence microscopy. Sirtuin 4 (SIRT4) levels were detected by ELISA and immunoblotting, while proprotein convertase subtilisin-kexin type 9 (PCSK9) expression was determined by flow cytometry (FACS) and immunofluorescence analyses. Dual-luciferase reporter evaluation was performed to confirm the miR-15b-5p-SIRT4 interaction. RESULTS The results showed a correlation among miR-15b-5p, PCSK9, and SIRT4 levels in septic HUVEC and TeloHAEC. Inhibition of miR-15b-5p upregulated SIRT4 content, alleviated sepsis-related inflammatory pathways, attenuated mitochondrial stress, and prevented apoptosis, pyroptosis, and autophagic mechanisms. Finally, a PCSK9 inhibitor (i-PCSK9) was used to analyze the involvement of PCSK9 in septic endothelial injury. i-PCSK9 treatment increased SIRT4 protein levels, opposed the septic inflammatory cascade leading to pyroptosis and autophagy, and strengthened the protective role of miR-15b-5p inhibition. Increased luciferase signal validated the miR-15b-5p-SIRT4 binding. CONCLUSIONS Our in vitro findings suggested the miR-15b-5p-SIRT4 axis as a suitable target for LPS-induced inflammatory pathways occurring in sepsis, and provide additional knowledge on the beneficial effect of i-PCSK9 in preventing vascular damage by targeting SIRT4.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
13
|
Deng P, Hu H. HSP90-Dependent Upregulation of EZH2 Promotes Hypoxia/Reoxygenation-Induced Pyroptosis by Inhibiting miR-22 in Endothelial Cells. J Inflamm Res 2023; 16:2615-2630. [PMID: 37360624 PMCID: PMC10289174 DOI: 10.2147/jir.s403531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Endothelial cell pyroptosis induced by hypoxia/reoxygenation (H/R) plays a key role in the pathogenesis of myocardial infarction (MI). However, the underlying mechanism is not clearly elucidated. Methods Human umbilical vein endothelial cells (HUVECs) exposed to H/R acted as in vitro model to investigate the mechanism of H/R-induced endothelial cell pyroptosis. CCK-8 assays were performed to investigate the viability of HUVECs. Calcein-AM/PI staining was carried out to quantify the death of HUVECs. The expression level of miR-22 was measured by RT-qPCR. The protein expression levels of zeste 2 polycomb repressive complex 2 subunit (EZH2), NLRP3, cleaved caspase-1 (c-caspase-1), GSDMD-N and heat shock protein 90 (HSP90) were measured by Western blot. Levels of IL-1β and IL-18 in culture medium were detected by ELISA. The intracellular localization of EZH2 was detected by immunofluorescence staining. Chromatin immunoprecipitation (ChIP) assay was used to detect the enrichment of EZH2 and H3K27me3 in the miR-22 promoter region. The binding between miR-22 and NLRP3 in HUVECs was confirmed by the dual luciferase assay. Reciprocal coimmunoprecipitation was conducted to detect the direct interaction between HSP90 and EZH2. Results H/R increased EZH2 expression, and the EZH2 siRNA could inhibit H/R-induced pyroptosis in HUVECs. H/R reduced miR-22 expression, which was reversed by EZH2 siRNA. Silencing of miR-22 by its inhibitor reversed EZH2 siRNA-induced pyroptosis inhibition in H/R-exposed HUVECs. Upregulation of miR-22 by its mimic suppressed EZH2 overexpression-enhanced pyroptosis in H/R-exposed HUVECs. ChIP assay confirmed that EZH2 bound to the miR-22 promoter region and repressed miR-22 expression through H3K27me3. Furthermore, luciferase reporter assay indicated that NLRP3 was a direct target of miR- 22 in HUVECs. Finally, HSP90 siRNA inhibited H/R-induced EZH2 expression, miR-22 downregulation, and pyroptosis in HUVECs. Conclusion H/R induces pyroptosis via the HSP90/EZH2/miR-22/NLRP3 signaling axis in endothelial cells.
Collapse
Affiliation(s)
- Paihe Deng
- Clinical Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, People’s Republic of China
| | - Huimin Hu
- Clinical Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, People’s Republic of China
| |
Collapse
|
14
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Vanillin and pentoxifylline ameliorate isoproterenol-induced myocardial injury in rats via the Akt/HIF-1α/VEGF signaling pathway. Food Funct 2023; 14:3067-3082. [PMID: 36917190 DOI: 10.1039/d2fo03570g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Myocardial infarction (MI) is a major health problem associated with high morbidity and mortality. Recently, angiogenesis has emerged as a novel therapeutic approach against ischemic diseases including MI. Therefore, we aimed to investigate the potential angiogenic effects of vanillin (Van) both alone and in combination with pentoxifylline (PTX), and to examine the molecular mechanisms through which Van and PTX may ameliorate cardiac injury induced in rats including their effects on oxidative stress, inflammation and apoptosis which play a key role in MI pathogenesis. MI was induced in rats using isoproterenol (ISO) (150 mg kg-1, SC, twice at a 24 h interval). Then, rats were treated orally with Van (150 mg kg-1 day-1), PTX (50 mg kg-1 day-1) or Van + PTX combination. ISO-induced cardiac injury was characterized by cardiac hypertrophy, ST-segment elevation and elevated serum levels of troponin-I, creatine kinase-MB and lactate dehydrogenase. Cardiac levels of the antioxidant markers GSH and SOD and the antiapoptotic protein Bcl-2 were decreased. On the other hand, cardiac levels of the oxidative stress marker malonaldehyde, the inflammatory cytokines TNF-α, IL-6 and IL-1β, the proapoptotic protein Bax, and caspase-3 were increased. Moreover, the cardiac levels of p-Akt and HIF-1α and the mRNA expression levels of the angiogenic genes VEGF, FGF-2 and ANGPT-1 were increased. Treatment with either Van or PTX ameliorated ISO-induced changes and further upregulated Akt/HIF-1α/VEGF signaling. Furthermore, Van + PTX combination was more effective than monotherapy. These findings suggest a novel therapeutic potential of Van and PTX in ameliorating MI through enhancing cardiac angiogenesis and modulating oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sally K Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
15
|
Therapeutic role of adipose-derived mesenchymal stem cells-derived extracellular vesicles in rats with obstructive sleep apnea hypopnea syndrome. Regen Ther 2023; 22:210-223. [PMID: 36926469 PMCID: PMC10011058 DOI: 10.1016/j.reth.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 03/06/2023] Open
Abstract
Background Obstructive sleep apnea hypopnea syndrome (OSAHS) is an underestimated sleep disorder that leads to multiple organ damages, including lung injury (LI). This paper sought to analyze the molecular mechanism of extracellular vesicles (EVs) from adipose-derived mesenchymal stem cells (ADSCs) in OSAHS-induced lung injury (LI) via the miR-22-3p/histone lysine demethylase 6 B (KDM6B)/high mobility group AT-hook 2 (HMGA2) axis. Methods ADSCs and ADSCs-EVs were separated and characterized. Chronic intermittent hypoxia (CIH) was used to mimic OSAHS-LI, followed by ADSCs-EVs treatment and hematoxylin and eosin staining, TUNEL, ELISA, and assays of inflammation and oxidative stress (MPO/ROS/MDA/SOD). The CIH cell model was established and treated with ADSCs-EVs. Cell injury was assessed by the assays of MTT, TUNEL, ELISA, and others. Levels of miR-22-3p, KDM6B, histone H3 trimethylation at lysine 27 (H3K27me3), and HMGA2 were determine by RT-qPCR or Western blot analysis. The transfer of miR-22-3p by ADSCs-EVs was observed by fluorescence microscopy. Gene interactions were analyzed by dual-luciferase assay or chromatin immunoprecipitation. Results ADSCs-EVs effectively alleviated OSAHS-LI by reducing lung tissue injury, apoptosis, oxidative stress, and inflammation. In vitro, ADSCs-EVs increased cell viability and reduced apoptosis, inflammation and oxidative stress. ADSCs-EVs delivered enveloped miR-22-3p into pneumonocytes to upregulate miR-22-3p expression, inhibit KDM6B expression, increase H3K27me3 levels on the HMGA2 promoter, and decrease HMGA2 mRNA levels. Overexpression of KDM6B or HMGA2 attenuated the protective role of ADSCs-EVs in OSAHS-LI. Conclusion ADSCs-EVs transferred miR-22-3p to pneumonocytes and reduced apoptosis, inflammation, and oxidative stress through KDM6B/HMGA2, mitigating OSAHS-LI progression.
Collapse
|
16
|
Wang B, Xu J, Fu P, Ma L. MicroRNAs in septic acute kidney injury. BURNS & TRAUMA 2023; 11:tkad008. [PMID: 36959845 PMCID: PMC10027606 DOI: 10.1093/burnst/tkad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 01/29/2023] [Indexed: 03/25/2023]
Abstract
Sepsis is a potentially fatal complication of burns and trauma that can cause acute kidney injury (AKI) with substantial morbidity and mortality, but this disease is poorly understood. Despite medical advances, effective therapeutic regimens for septic AKI remain uncommon. MicroRNAs (miRNAs) are endogenous non-coding RNAs that influence the translation of target messenger RNAs in a variety of biological processes. Emerging evidence has shown that miRNAs are intimately associated with septic AKI. The goal of this review was to summarize recent advances in the profound understanding of the functional role of miRNAs in septic AKI, as well as to provide new insights into miRNAs as feasible biomarkers and therapeutic targets for septic AKI.
Collapse
Affiliation(s)
| | | | - Ping Fu
- Correspondence, Ping Fu, ; Liang Ma,
| | - Liang Ma
- Correspondence, Ping Fu, ; Liang Ma,
| |
Collapse
|
17
|
Huang L, Shi Y, Hu J, Ding J, Guo Z, Yu B. Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease. Urolithiasis 2022; 51:13. [PMID: 36484839 DOI: 10.1007/s00240-022-01384-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. The molecular mechanism of kidney stone formation is complex and remains to be illustrated. Transcript factors (TFs) that influenced the expression pattern of multiple genes, as well as microRNAs, important posttranscriptional modulators, play vital roles in this disease progression. Datasets of nephrolithiasis mice and kidney stone patients were acquired from Gene Expression Omnibus repository. TFs were predicted from differentially expressed genes by RcisTarget. The target genes of differential-expressed microRNAs were predicted by miRWalk. MicroRNA-mRNA network and PPI network were constructed. Functional enrichment analysis was performed via Metascape and Cytoscape identified hub genes. The assay of quantitative real-time PCR (q-PCR) and immunochemistry and the datasets of oxalate diet-induced nephrolithiasis mice kidneys and kidney stone patients' samples were utilized to validate the bioinformatic results. We identified three potential key TFs (Egr1, Rxra, Max), which can be modulated by miR-181a-5p, miR-7b-3p and miR-22-3p, respectively. The TFs and their regulated hub genes influenced the progression of nephrolithiasis via altering the expression of genes enriched in the functions of fibrosis, cell proliferation and molecular transportation and metabolism. The expression changes of transcription factors were consistent in q-PCR and immunochemistry results. For regulated hub genes, they showed consistent expression changes in oxalate diet-induced nephrolithiasis mice model and human kidneys with stones. The identified and verified three TFs, which may be modulated by microRNAs in nephrolithiasis disease progression, mainly influence biological processes responding to fibrosis, proliferation and molecular transportation and metabolism. The transcript influence showed consistency in multiple nephrolithiasis mice models and kidney stone patients.
Collapse
Affiliation(s)
- Linxi Huang
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China
- Department of Cell Biology, Naval Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Yuxuan Shi
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Junjie Hu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
18
|
lncRNA IL-17RA-1 Attenuates LPS-Induced Sepsis via miR-7847-3p/PRKCG-Mediated MAPK Signaling Pathway. Mediators Inflamm 2022; 2022:9923204. [PMID: 36274974 PMCID: PMC9584741 DOI: 10.1155/2022/9923204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis represents a syndrome of systemic inflammatory response, which is mostly a result of infection with various pathogenic microorganisms, characterized by an uncontrolled infection response of the organism leading to life-threatening organ dysfunction. Long noncoding RNA (lncRNA), as competing endogenous RNA, can affect the binding of microRNA (miRNA) to mRNA, thus influencing the development of sepsis. In this study, based on transcriptome data from GEO database, we screened differentially expressed lncRNAs and constructed lncRNA-miRNA-mRNA network. And pathway IL-17RA-1/miR-7847-3p/protein kinase C gamma (PRKCG) coexpression network was successfully sorted out. The effect of this network on LPS-induced sepsis model in THP-1 cells was also verified by CCK-8, scratch, ELISA, Western blot, and qRT-PCR assays. Corresponding binding sites of miR-7847-3p to IL-17RA-1 and miR-7847-3p to PRKCG were verified using dual luciferase gene reporter assays, respectively. Compared with control, si-IL-17RA-1 significantly inhibited the cell viability and migration ability of THP-1, and levels of proinflammatory factors IL-6, IL-1β, and TNF-α secreted were markedly decreased, and the expression of IL-17RA-1, PRKCG, p-MEKK1, and p-JNK were markedly reduced. In addition, IL-17RA-1 could target binding to miR-7847-3p and inhibit its expression, and miR-7847-3p could also bind to PRKCG. Our experiments demonstrate that IL17-RA-1 attenuates the sepsis response through the miR-7847-3p/MAPK pathway, and this competing endogenous RNA (ceRNA) network may be a potential approach to predict and combat sepsis.
Collapse
|
19
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
20
|
Exosomes Derived from Adipose Mesenchymal Stem Cells Carrying miRNA-22-3p Promote Schwann Cells Proliferation and Migration through Downregulation of PTEN. DISEASE MARKERS 2022; 2022:7071877. [PMID: 36148159 PMCID: PMC9489425 DOI: 10.1155/2022/7071877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Peripheral nerve injury (PNI) is often resulting from trauma, which leads to severe and permanently disability. Schwann cells are critical for facilitating the regeneration process after PNI. Adipose-derived mesenchymal stem cells (ADSCs) exosomes have been used as a novel treatment for peripheral nerve injury. However, the underlying mechanism remains unclear. In this study, we isolated ADSCs and extracted exosomes, which were verified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot (WB). Cocultured with Dorsal Root Ganglion (DRG) and Schwann cells (SCs) to evaluate the effect of exosomes on the growth of DRG axons by immunofluorescence, and the proliferation and migration of SCs by CCK8 and Transwell assays, respectively. Through exosomal miRNA sequencing and bioinformatic analysis, the related miRNAs and target gene were predicted and identified by dual luciferase assay. Related miRNAs were overexpressed and inhibited, respectively, to clarify their effects; the downstream pathway through the target gene was determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and WB. Results found that ADSC-exosomes could promote the proliferation and migration of SCs and the growth of DRG axons, respectively. Exosomal miRNA-22-3p from ADSCs directly inhibited the expression of Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), activated phosphorylation of the AKT/mTOR axis, and enhanced SCs proliferation and migration. In conclusion, our findings suggest that ADSC-exosomes could promote SCs function through exosomal miRNA-22-3p, which could be used as a therapeutic target for peripheral nerve injury.
Collapse
|
21
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
22
|
Wu P, Tang Y, Jin C, Wang M, Li L, Liu Z, Shi H, Sun Z, Hou X, Chen W, Xu W, Qian H. Neutrophil membrane engineered HucMSC sEVs alleviate cisplatin-induced AKI by enhancing cellular uptake and targeting. J Nanobiotechnology 2022; 20:353. [PMID: 35918718 PMCID: PMC9344666 DOI: 10.1186/s12951-022-01574-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (hucMSC-sEVs) have been demonstrated as a therapeutic agent to prevent and treat cisplatin-induced acute kidney injury (AKI). However, hucMSC-sEVs still face many problems and challenges in the repair and treatment of tissue injury, including short circulation time, insufficient targeting, and low therapeutic efficacy. Therefore, we constructed engineered hybrid vesicles fused with nanovesicles derived from human neutrophil membranes and hucMSC-sEVs, named neutrophil membrane engineered hucMSC-sEVs (NEX). NEX significantly enhanced the targeting of hucMSC-sEVs to injured kidney tissues, improved the impaired renal function via reducing pro-inflammatory cytokines expression, promoted the proliferation of renal tissue cells, and inhibited renal cell apoptosis in vivo. In addition, NEX enhanced hucMSC-sEVs uptake by NRK52E cells, but inhibited its uptake by RAW264.7 cells. Moreover, administration of NEX reduced cellular oxidative stress and promoted proliferation of NRK52E cells treated with cisplatin in vitro. In summary, our findings indicate that this design of a universal approach enhances the targeting and therapeutic efficacy of hucMSC-sEVs in kidney tissue regeneration, and provides new evidence promoting its clinical application.
Collapse
Affiliation(s)
- Peipei Wu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yuting Tang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Can Jin
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Min Wang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Linli Li
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Liu
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hui Shi
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zixuan Sun
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaomei Hou
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wenya Chen
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
| |
Collapse
|
23
|
Xing J, Fan S, Liu H, Zhang S, Li N. CircZNF644 aggravates lipopolysaccharide-induced HK-2 cell impairment via the miR-140-5p/MLKL axis. J Bioenerg Biomembr 2022; 54:215-226. [PMID: 35976517 DOI: 10.1007/s10863-022-09946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Circular RNAs (circRNAs) play vital roles in human diseases, including acute kidney injury (AKI). In this paper, we focused on the effect of circRNA zinc finger protein 644 (circZNF644) on AKI cell model progression. qRT-PCR was conducted for the levels of circZNF644, ZNF644, miR-140-5p and mixed lineage kinase domain like pseudokinase (MLKL). RNase R assay, actinomycin D assay and subcellular fraction analysis were conducted to analyze the features of circZNF644. CCK-8 assay and EdU assay were used to explore cell proliferation. Flow cytometry analysis was conducted to analyze cell cycle and cell apoptosis. Western blot assay was executed for protein levels. ELISA was performed for the levels of inflammatory cytokines. The relationships among circZNF644, miR-140-5p and MLKL were analyzed by dual-luciferase reporter assay and RIP assay. CircZNF644 was upregulated in LPS-stimulated HK-2 cells. LPS-mediated inhibitory effects on cell proliferation and cell cycle and promotional effects on apoptosis and inflammation were reversed by circZNF644 knockdown. CircZNF644 directly interacted with miR-140-5p and MLKL was the target gene of miR-140-5p. The impact of circZNF644 knockdown on HK-2 cell injury was relieved by miR-140-5p inhibition. Moreover, miR-140-5p enhancement alleviated LPS-triggered HK-2 cell damage, while MLKL elevation reversed the effect. CircZNF644 knockdown protected HK-2 cells from LPS-induced injury by altering miR-140-5p/MLKL pathway, suggesting that circZNF644 may be a hopeful therapeutic target for AKI.
Collapse
Affiliation(s)
- Jing Xing
- Department of Emergency, the First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian City, 116011, Liaoning Province, China
| | - Songtao Fan
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Hongyang Liu
- Department of Cardiac ICU, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Su Zhang
- Department of Emergency, the First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian City, 116011, Liaoning Province, China
| | - Nan Li
- Department of Emergency, the First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian City, 116011, Liaoning Province, China.
| |
Collapse
|
24
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
26
|
Fu TY, Wang SH, Lin TY, Shen PC, Chang SC, Lin YH, Chou CJ, Yu YH, Yang KT, Huang CW, Shaw SW, Peng SY. The Exploration of miRNAs From Porcine Fallopian Tube Stem Cells on Porcine Oocytes. Front Vet Sci 2022; 9:869217. [PMID: 35615247 PMCID: PMC9125035 DOI: 10.3389/fvets.2022.869217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fallopian tube is essential to fertilization and embryonic development. Extracellular vesicles (EVs) from Fallopian tube containing biological regulatory factors, such as lipids, proteins and microRNAs (miRNAs) serve as the key role. At present, studies on oocytes from porcine oviduct and components from EVs remain limited. We aim to explore the effect of EVs secreted by porcine fallopian tube stem cells (PFTSCs) on oocyte. When the fifth-generation PFTSCs reached 80–90% of confluency, the pig in vitro maturation medium was utilized, and the conditioned medium collected for oocyte incubations. To realize the functions of EVs, several proteins were used to determine whether extracted EVs were cell-free. Field emission scanning electron microscope and nanoparticle tracking analyzer were used to observe the morphology. By next generation sequencing, 267 miRNAs were identified, and those with higher expression were selected to analyze the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment maps. The selected miR-152-3p, miR-148a-3p, miR-320a-3p, let-7f-5p, and miR-22-3p, were predicted to target Cepb1 gene affecting MAPK pathway. Of the five miRNAs, miR-320a-3p showed significant difference in maturation rate in vitro maturation. The blastocyst rate of pig embryos was also significantly enhanced by adding 50 nM miR-320a-3p. In vitro culture with miR-320a-3p, the blastocyst rate was significantly higher, but the cleavage rate and cell numbers were not. The CM of PFTSCs effectively improves porcine oocyte development. The miRNAs in EVs are sequenced and identified. miR-320a-3p not only helps the maturation, but also increases the blastocyst rates.
Collapse
Affiliation(s)
- Tzu-Yen Fu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Hsuan Wang
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung, Taiwan
| | - Yu-Han Lin
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Kuo-Tai Yang
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
- *Correspondence: Steven W. Shaw
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Shao-Yu Peng
| |
Collapse
|
27
|
Ji J, Luo H, Shi J. Clinical value of serum miR-320-3p expression in predicting the prognosis of sepsis-induced acute kidney injury. J Clin Lab Anal 2022; 36:e24358. [PMID: 35334494 PMCID: PMC9102729 DOI: 10.1002/jcla.24358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND For investigating the expression of miR-320-3p in children with sepsis-induced acute kidney injury (AKI) and its prognostic value. METHODS A total of 142 patients were grouped into a survival group (n = 95) and death group (n = 47), which was based on their 28-day survival. Serum degrees of miR-320-3p, neutrophil gelatinase-associated lipid carrier protein (NGAL) and kidney injury molecule-1 (KIM-1) were detected. The Acute Physiology and Chronic Health scoring system Ⅱ (APACHE Ⅱ) marks were recorded. Target gene forecast and functional enrichment discussion of miR-320-3p were performed, and a protein-protein interaction (PPI) network diagram was plotted by applying bioinformatics methods. Multivariate logistic regression, ROC curve and Pearson correlation analysis were applied. RESULTS The death group showed greatly higher serum levels of miR-320-3p, KIM-1 and APACHE Ⅱ scores than the survival group (p < 0.01). Multivariate logistic regression analysis showed that levels of miR-320-3p, NGAL, KIM-1 and APACHE Ⅱ scores were independent risk elements for death in sepsis children with AKI (p < 0.01). According to ROC curve analysis, the region under the curve (0.963, 95% CI: 0.908-0.996) of miR-320-3p, NGAL, KIM-1 levels and APACHE Ⅱ scores combined to forecast the death of kids suffering from sepsis and AKI were the biggest. According to correlation analysis, the expression degree of serum miR-320-3p in the death group was positively correlated with NGAL, KIM-1 and APACHE Ⅱ scores (all p < 0.01). CONCLUSIONS The expression level of serum miR-320-3p in children with sepsis-induced AKI was significantly increased, and the combination of NGAL, KIM-1 and APACHE Ⅱ scores has good value for prognosis prediction in children.
Collapse
Affiliation(s)
- Jian Ji
- Department of Clinical laboratoryAffiliated Children’s Hospital of Soochow UniversitySuzhouChina
| | - Hong Luo
- Tuberculosis and Respiratory DepartmentTongji Medical CollegeWuhan Jinyintan HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Jufen Shi
- Department of Burn and Plastic SurgeryAffiliated Children’s Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
28
|
Zhou Y, Wang Y, Li Q, Dong K, Chen C, Mao E, Jiang W. Downregulation of lncRNA NEAT1 alleviates sepsis-induced acute kidney injury. Cent Eur J Immunol 2022; 47:8-19. [PMID: 35600150 PMCID: PMC9115601 DOI: 10.5114/ceji.2022.115628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is one of the important causes of increased mortality in sepsis patients. Long non-coding RNA (lncRNA) is believed to play a vital function in the progression of AKI. However, the mechanism of nuclear enriched abundant transcript 1 (NEAT1) has not been fully elucidated. NEAT1 was overexpressed and miR-22-3p was underexpressed in sepsis patients and lipopolysaccharide (LPS)-induced AKI cell models. Knockdown of NEAT1 could promote viability and suppress apoptosis and the inflammatory response in LPS-induced HK2 cells. MiR-22-3p could be sponged by NEAT1, and its inhibitor reversed the inhibition effect of NEAT1 silencing on LPS-induced HK2 cell injury. CXCL12 could be targeted by miR-22-3p, and its overexpression reversed the suppression effect of miR-22-3p on LPS-induced HK2 cell injury. Silenced NEAT1 could restrain the activity of the NF-κB signaling pathway, and miR-22-3p inhibitor or CXCL12 overexpression could reverse this effect. In addition, NEAT1 knockdown alleviated the inflammation response of cecal ligation and puncture (CLP) mouse models. In summary, our data showed that NEAT1 promoted LPS-induced HK2 cell injury via regulating the miR-22-3p/CXCL12/NF-κB signaling pathway, suggesting that NEAT1 knockdown might be a potential pathway for alleviating sepsis-induced AKI.
Collapse
Affiliation(s)
- Yuhua Zhou
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingtian Li
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ke Dong
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunyan Chen
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weisong Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
29
|
Chen Y, Jing H, Tang S, Liu P, Cheng Y, Fan Y, Chen H, Zhou J. Non-Coding RNAs in Sepsis-Associated Acute Kidney Injury. Front Physiol 2022; 13:830924. [PMID: 35464083 PMCID: PMC9024145 DOI: 10.3389/fphys.2022.830924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sepsis is a systemic inflammatory response caused by a severe infection that leads to multiple organ damage, including acute kidney injury (AKI). In intensive care units (ICU), the morbidity and mortality associated with sepsis-associated AKI (SA-AKI) are gradually increasing due to lack of effective and early detection, as well as proper treatment. Non-coding RNAs (ncRNAs) exert a regulatory function in gene transcription, RNA processing, post-transcriptional translation, and epigenetic regulation of gene expression. Evidence indicated that miRNAs are involved in inflammation and programmed cell death during the development of sepsis-associated AKI (SA-AKI). Moreover, lncRNAs and circRNAs appear to be an essential regulatory mechanism in SA-AKI. In this review, we summarized the molecular mechanism of ncRNAs in SA-AKI and discussed their potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People’s Hospital of Kashgar, Xinjiang, China
- Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
30
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021; 12:11353-11368. [PMID: 34783627 PMCID: PMC8810185 DOI: 10.1080/21655979.2021.2005987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, is characterized by a rapid loss of renal excretory function. A variety of etiologies and pathophysiological processes may contribute to AKI. Previously, mitogen-activated protein kinase 1 (MAPK1) was reported to regulate cellular processes in various sepsis-associated diseases. The current study aimed to further explore the biological function and regulatory mechanism of MAPK1 in sepsis-induced AKI. In our study, MAPK1 exhibited high expression in the serum of AKI patients. Functionally, knockdown of MAPK1 suppressed inflammatory response, cell apoptosis in response of lipopolysaccharide (LPS) induction in HK-2 cells. Moreover, MAPK1 deficiency alleviated renal inflammation, renal dysfunction, and renal injury in vivo. Mechanistically, MAPK1 could activate the downstream p38/NF-κB pathway. Moreover, long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) was identified to serve as a competing endogenous RNA for miR-212-3p to regulate MAPK1. Finally, rescue assays indicated that the inhibitory effect of KCNQ1OT1 knockdown on inflammatory response, cell apoptosis, and p38/NF-κB pathway was reversed by MAPK1 overexpression in HK-2 cells. In conclusion, KCNQ1OT1 aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 axis in sepsis. Therefore, KCNQ1OT may serve as a potential biomarker for the prognosis and diagnosis of AKI patients.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Hongbin Mou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Changhua Liu
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Gang Zhou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Bo Gao
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
32
|
Comparison of MicroRNA Profiles in Extracellular Vesicles from Small and Large Goat Follicular Fluid. Animals (Basel) 2021; 11:ani11113190. [PMID: 34827922 PMCID: PMC8614480 DOI: 10.3390/ani11113190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ovarian follicular development is associated with ovulation and is further related to litter size in goats. Extracellular vesicles (EVs) derived from miRNAs within follicular fluid undergo dynamic changes, and, together with follicle growth, may be considered as potential regulators of follicular development. However, the function and changes in EVs remain ambiguous. Here, we identified miRNA changes in EVs from small to large goat follicular fluid. Using bioinformatics tools, we demonstrated the existence of differentially expressed miRNAs in EVs from follicles of different sizes that are responsible for an altered biological effect. This study contributes to a better understanding of follicular development in goats. Abstract Extracellular vesicles (EVs), which exist in the follicular fluid of ruminant ovaries, are considered as cargo carriers for the transfer of biomolecules to recipient cells. However, the functions and changes in EVs in antral follicles remain ambiguous. In the present study, we isolated and characterized EVs from goat follicular fluid by means of differential ultracentrifugation and Western blotting of marker proteins. Bioinformatics tools were used to detect miRNA expression levels in EVs. Different miRNA expression patterns of EVs exist in small to large follicles. Thirteen differentially expressed miRNAs (seven upregulated and six downregulated) were identified and used for analysis. A total of 1948 predicted target genes of 13 miRNAs were mapped to signaling pathways, and three significantly enriched pathways (FoxO, MAPK, and PI3K-AKT signaling pathways) were involved in follicular development, as revealed by KEGG enrichment analysis. Our findings suggest that EVs in follicular fluid play biofunctional roles during follicular development in goats.
Collapse
|
33
|
Xiong Y, Wang Y, Tian H, Li Y, Xu Q, He Z. Circ-PRKCI Alleviates Lipopolysaccharide-induced Human Kidney 2 Cell Injury by Regulating miR-106b-5p/GAB1 Axis. J Cardiovasc Pharmacol 2021; 78:523-533. [PMID: 34269703 DOI: 10.1097/fjc.0000000000001031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Circular RNAs act as vital regulators in diverse diseases. However, the investigation of circular RNAs in sepsis-engendered acute kidney injury remains dismal. We aimed to explore the effects of circular RNA protein kinase C iota (circ-PRKCI) in lipopolysaccharide (LPS)-mediated HK2 cell injury. Sepsis in vitro model was established by LPS treatment. Quantitative real-time polymerase chain reaction assay was conducted for determining the levels of circ-PRKCI, microRNA-106b-5p (miR-106b-5p), and growth factor receptor binding 2-associated binding protein 1 (GAB1). Cell viability and apoptosis were evaluated using Cell Counting Kit-8 assay and flow cytometry analysis, respectively. The concentrations of interleukin-6, interleukin-1β, and tumor necrosis factor-α were measured with enzyme-linked immunosorbent assay kits. The levels of oxidative stress markers were determined using relevant commercial kits. Western blot assay was conducted for B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and GAB1 protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to verify the association between miR-106b-5p and circ-PRKCI or GAB1. We found the Circ-PRKCI level was decreased in sepsis patients and LPS-induced human kidney 2 (HK-2) cells. LPS exposure inhibited cell viability and facilitated apoptosis, inflammation, and oxidative stress in HK-2 cells. Circ-PRKCI overexpression abrogated the effects of LPS on cell apoptosis, inflammation, and oxidative stress in HK-2 cells. Furthermore, circ-PRKCI was identified as the sponge for miR-106b-5p to positively regulate GAB1 expression. Overexpression of circ-PRKCI relieved LPS-mediated HK-2 cell damage by sponging miR-106b-5p. MiR-106b-5p inhibition ameliorated the injury of HK-2 cells mediated by LPS, whereas GAB1 knockdown reversed the effect. Collectively, Circ-PRKCI overexpression attenuated LPS-induced HK-2 cell injury by regulating miR-106b-5p/GAB1 axis.
Collapse
Affiliation(s)
- Yueli Xiong
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Yang Wang
- Department of Ultrasound, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Hui Tian
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Yuanyuan Li
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Qingjie Xu
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Zhenkun He
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| |
Collapse
|
34
|
Guo P, Ma Y, Deng G, Li L, Gong Y, Yang F, You Y. CYR61, regulated by miR-22-3p and MALAT1, promotes autophagy in HK-2 cell inflammatory model. Transl Androl Urol 2021; 10:3486-3500. [PMID: 34532273 PMCID: PMC8421830 DOI: 10.21037/tau-21-623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Renal tubular epithelial cells play an important role in renal function and are a major site of injury from inflammation. Emerging evidence suggests that CYR61 is involved in the regulation of autophagy. However, there are few studies on CYR61 in nephropathy and associated inflammation. This study aimed to clarify how CYR61 regulates autophagy in human renal epithelial cells while in an inflammatory state and regulates the upstream pathway of CYR61 levels. Methods The human renal tubular epithelial cells (HK-2) cell line treated by lipopolysaccharide (LPS) was used as an inflammatory model of human epithelial cells. Short hairpin RNA (shRNA) was used to down-regulate CYR61, and the changes in the transcription and expression levels of related molecules, as well as the morphological changes of HK-2 cells, were detected by quantitative real time-PCR (qRT-PCR), western blot (WB), and transmission electron microscopy. Either CYR61 or MALAT1 were up-regulated by overexpression vectors, or MALAT1 was down-regulated by miR-22-3p mimics. Subsequently, the levels of CYR61, MALAT1, related inflammatory factors, and autophagy factors were measured by qPCR, WB, and enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was detected by flow cytometry and acridine-orange assay. Results We observed that down-regulation of CYR61 could down-regulate 1B-light chain 3 (LC3) level and inhibit autophagy in the LPS-induced inflammation model of HK-2 cells. The expression levels of CYR61, Beclin1, Atg5, LC3, interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) were significantly increased by upregulating CYR61 or MALAT1 by overexpression vector, while the expression level of p62 was significantly decreased, intracellular reactive oxygen species (ROS) content was increased, and the proportion of autophagy and apoptosis was increased. The use of miR-22-3p mimics significantly reversed the changes induced by up-regulation of CYR61 or MALAT1 at the molecular and cellular levels. Conclusions Our data indicated that CYR61 positively regulates autophagy of HK-2 cells under an inflammatory state, and was negatively regulated by miR-22-3p, while miR-22-3p and MALAT1 were negatively regulated by each other.
Collapse
Affiliation(s)
- Pengwei Guo
- Department of Nephrology, Jinan University, Guangzhou, China.,Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanfei Ma
- Department of Gland Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Gao Deng
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lingling Li
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yunxia Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fafen Yang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanwu You
- Department of Nephrology, Jinan University, Guangzhou, China.,Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
35
|
Cao J, Shi D, Zhu L, Song L. Circ_RASGEF1B Promotes LPS-Induced Apoptosis and Inflammatory Response by Targeting MicroRNA-146a-5p/Pdk1 Axis in Septic Acute Kidney Injury Cell Model. Nephron Clin Pract 2021; 145:748-759. [PMID: 34438395 DOI: 10.1159/000517475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We intended to investigate the function of circular RNA RasGEF domain family member 1B (circ_RASGEF1B) in lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) cell model and its associated mechanism. METHODS TCMK-1 cells were exposed to 10 μg/mL LPS for 24 h to establish a septic AKI cell model. Mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic AKI mice model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were used to measure RNA and protein expression, respectively. Cell viability and apoptosis were assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Cell inflammatory response was analyzed using enzyme-linked immunosorbent assay. Dual-luciferase reporter assay was conducted to confirm the predicted target relationship between microRNA-146a-5p (miR-146a-5p) and circ_RASGEF1B or pyruvate dehydrogenase kinase 1 (Pdk1). RESULTS The circ_RASGEF1B level was upregulated in LPS-induced TCMK-1 cells and septic AKI mice models. LPS exposure reduced cell viability and promoted cell apoptosis and inflammatory response partly by upregulating circ_RASGEF1B. Circ_RASGEF1B bound to miR-146a-5p and miR-146a-5p interference partly overturned circ_RASGEF1B silencing-mediated effects in LPS-induced TCMK-1 cells. Pdk1 was a target of miR-146a-5p, and Pdk1 accumulation partly counteracted miR-146a-5p-induced influences in TCMK-1 cells upon LPS stimulation. CONCLUSION Circ_RASGEF1B promoted LPS-induced apoptosis and inflammatory response in renal tubular epithelial cells partly by upregulating Pdk1 via acting as miR-146a-5p sponge.
Collapse
Affiliation(s)
- Jianghong Cao
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Dongwu Shi
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Lili Zhu
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Lu Song
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
36
|
Shi L, Zhang Y, Xia Y, Li C, Song Z, Zhu J. MiR-150-5p protects against septic acute kidney injury via repressing the MEKK3/JNK pathway. Cell Signal 2021; 86:110101. [PMID: 34333083 DOI: 10.1016/j.cellsig.2021.110101] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Septic acute kidney injury (AKI) is associated with increased morbidity and mortality in critically ill patients. MicroRNA is reportedly involved in sepsis-induced organ dysfunction, while the role of miR-150 in septic AKI remains ambiguous. METHODS Quantitative real-time PCR (qRT-PCR) was carried out to examine miR-150-5p expression in both septic AKI patients and volunteers without septic AKI. Lipopolysaccharide (LPS) was used to treat renal tubular epithelial cell line HK-2 and C57/BL6 mice to establish in vitro and in vivo sepsis-induced AKI models. Cell apoptosis was determined using TdT-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry. Cell viability was tested using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Renal pathological changes were examined via Hematoxylin-Eosin (H&E) staining, and renal function was measured via blood urea nitrogen (BUN) and creatinine (Cre) measurements. The MEKK3/JNK profile and oxidative stress markers (including COX2 and iNOS) were examined by immunoblot analysis, and the expression levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and oxidative stress markers (MDA, SOD, and CAT) were evaluated by ELISA. RESULTS MiR-150-5p was down-regulated in the serum of patients with septic AKI (compared to healthy volunteers). Moreover, miR-150-5p levels were lower in LPS-treated HK-2 cell lines and in the septic AKI mouse model. Additionally, Stat-3 activation mediated the decrease of miR-150-5p. Functionally, miR-150-5p agomir attenuated LPS-induced apoptosis in HK-2 cells, in addition to renal inflammatory responses and oxidative stress. In contrast, inhibition of miR-150-5p aggravated LPS-induced apoptosis, inflammatory reactions and oxidative stress. Furthermore, miR-150-5p agomir decreased BUN and Scr levels in the septic AKI mice model repressed TNF-α, IL-6 and IL-1β, and up-regulated SOD and CAT down-regulated MDA in the kidney tissues. Moreover, miR-150-5p was identified as a target gene for Stat3, and the overexpression of Stat3 partially promoted the effect of down-regulating miR-150-5p on LPS-induced HK2 cell injury. Mechanistically, the MEKK3/JNK pathway was identified as a functional target of miR-150-5p, and the knockdown of MEKK3 showed protective effects against LPS mediated HK-2 cell apoptosis. CONCLUSION Stat3-mediated miR-150-5p exerted protective effects in sepsis-induced acute kidney injury by regulating the MEKK3/JNK pathway.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Yafei Zhang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China.
| | - Jiefu Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuchang, Hubei 430060, China.
| |
Collapse
|
37
|
Pei Y, Xie S, Li J, Jia B. Bone marrow-mesenchymal stem cell-derived exosomal microRNA-141 targets PTEN and activates β-catenin to alleviate myocardial injury in septic mice. Immunopharmacol Immunotoxicol 2021; 43:584-593. [PMID: 34308733 DOI: 10.1080/08923973.2021.1955920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and their derived exosomes have shown potentials in the control of myocardial dysfunction. This study aimed to reveal the function of bone marrow (BM)-MSC-derived exosomes in sepsis-induced myocardial injury and the molecular mechanism. METHODS BM-MSC-derived exosomes were obtained and identified. A mouse model with sepsis was induced by cecalligation puncture (CLP) and treated with exosomes. The myocardial function of mice, the production of creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH) in serum, the phosphorylation of a key myocardial contractility-related protein phospholamban (PLB), and the pathological changes in the myocardial tissues were examined. A microRNA (miRNA) microarray analysis was performed to examine the candidate miRNAs carried by the exosomes. Rescue experiments were conducted to validate the involvement of miR-141. RESULTS CLP treatment led to sepsis and notably reduced the myocardial function in mice. Further treatment of BM-MSC-derived exosomes alleviated the CLP-induced myocardial impairment, production of CK-MB and LDH, and inflammatory infiltration and cell apoptosis in mouse myocardial tissues, and restored the PLB phosphorylation. miR-141 was the most upregulated miRNA in the myocardial tissues after exosome treatment. Downregulation of miR-141 blocked the myocardium-protective functions of the exosomes. miR-141 was found to bind to and suppress PTEN expression, which further enhanced the activity of β-catenin. CONCLUSION This study suggested that BM-MSC derived exosomes ameliorates myocardial injury in septic mice through conveying miRNA-141 and regulating the PTEN/β-catenin axis, and exosomes may serve as promising tools for the management of myocardial injury induced by sepsis or other factors.
Collapse
Affiliation(s)
- Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Shutang Xie
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jiang Li
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, P.R. China.,Henan Provincial Engineering Research Center of Natural Drug Extraction and Medical Technology Application, Zhengzhou, P.R. China
| | - Baohui Jia
- Department of Central ICU, ZhengZhou Central Hospital, Zhengzhou, P.R. China
| |
Collapse
|
38
|
Guo S, Chen R, Zhang L, Wu M, Wei Y, Dai W, Jiang Y, Kong X. microRNA-22-3p plays a protective role in a murine asthma model through the inhibition of the NLRP3-caspase-1-IL-1β axis. Exp Physiol 2021; 106:1829-1838. [PMID: 33932961 DOI: 10.1113/ep089575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does miR-22-3p exert a protective role in asthma? What is the main finding and its importance? Upregulation of miR-22-3p hampered airway inflammation and release of inflammatory cytokines through blocking the activation of the NLRP3-caspase-1-IL-1β signalling pathway in asthma. ABSTRACT Asthma, a great public health burden, is triggered by inflammatory responses in the airways and these are not addressed appropriately by current therapies. This study aims to investigate the regulatory mechanism of microRNA-22-3p (miR-22-3p) on the proliferation of bronchial epithelial cells exposed to lipopolysaccharide (LPS) and expression of pro-inflammatory cytokines in a murine asthma model challenged by ovalbumin. We first confirmed the downregulation of miR-22-3p in the murine asthma model and bronchial epithelial cells. miR-22-3p remarkably reversed the decline in bronchial epithelial cell viability, enhancement in apoptosis rate and release of inflammatory factors induced by LPS. miR-22-3p targeted and conversely regulated NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Overexpression of NLRP3 counteracted the inhibitory effect of miR-22-3p on inflammatory damage in bronchial epithelial cells through activation of caspase-1/interleukin (IL)-1β. In an in vivo model, overexpression of miR-22-3p significantly attenuated airway obstruction and tissue damage in mice. In summary, our study underscores that miR-22-3p serves both as a negative regulator of the NLRP3-caspase-1-IL-1β axis and as a protective factor against the inflammatory response, suggesting a future therapeutic role in asthma.
Collapse
Affiliation(s)
- Shufang Guo
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Lina Zhang
- Department of Intensive Care, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yangyang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
39
|
He Y, Sun Y, Peng J. Circ_0114428 Regulates Sepsis-Induced Kidney Injury by Targeting the miR-495-3p/CRBN Axis. Inflammation 2021; 44:1464-1477. [PMID: 33830389 DOI: 10.1007/s10753-021-01432-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Septic acute kidney injury (AKI) is considered as a severe and common complication of sepsis, with complex pathogenesis. Recently, Circular RNA (circRNA) is considered to be implicated in this disease. This study was intended to elucidate the role of circ_0114428 and the potential mechanism of action in sepsis-induced kidney injury. Sepsis-induced kidney injury cell model was established in human kidney 2 (HK2) cells by the treatment of lipopolysaccharide (LPS). The expression of circ_0114428, CRBN mRNA, and miR-495-3p was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was assessed by cell counting kit-8 (CCK-8) assay. The inflammatory response was monitored according to the release of proinflammatory factors by enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was evaluated by flow cytometry assay. The activities of oxidative indicators were examined using the corresponding kits. Endoplasmic reticulum (ER) stress-related proteins and CRBN protein were quantified by western blot. RNA immunoprecipitation (RIP) assay was performed to ensure whether circ_0114428 could interact with Argonaute 2 (Ago2) protein. The potential miRNAs targeted by circ_0114428 were predicted by the bioinformatics tool and screened by RNA pull-down assay. The interaction between miR-495-3p and circ_0114428 or CRBN was validated by dual-luciferase reporter assay. The results showed that circ_0114428 and CRBN were upregulated in septic AKI serum specimens and LPS-induced HK2 cells. Circ_0114428 knockdown attenuated LPS-induced apoptosis, inflammation, oxidative stress, and ER stress, which were rescued by CRBN overexpression. Further analysis revealed that miR-495-3p was targeted by circ_0114428 and directly bound to CRBN, and circ_0114428 regulated CRBN expression by sponging miR-495-3p. Besides, miR-495-3p inhibition also reversed the effects of circ_0114428 knockdown. In conclusion, circ_00114428 knockdown attenuated LPS-induced HK2 cell injury by regulating CRBN expression via targeting miR-495-3p.
Collapse
Affiliation(s)
- Yan He
- Department of Nephrology, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao City, 276826, Shandong Province, China
| | - Yuanzhu Sun
- Hemodialysis Room, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Jun Peng
- Department of Nephrology, People's Hospital of Rizhao, No. 126, Tai'an Road, Donggang District, Rizhao City, 276826, Shandong Province, China.
| |
Collapse
|
40
|
Zhang H, Che L, Wang Y, Zhou H, Gong H, Man X, Zhao Q. Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes. Int Urol Nephrol 2021; 53:2107-2116. [PMID: 33511504 DOI: 10.1007/s11255-021-02784-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious complication of sepsis. MicroRNA-22-3p (miR-22-3p) has been found to be involved in septic AKI progression. The purpose of this study was to analyze both the serum and urinary expression of miR-22-3p in septic AKI patients, and evaluated the clinical value of miR-22-3p in the diagnosis and prognosis of sepsis-induced AKI. METHODS Serum and urinary expression of miR-22-3p was examined using qRT-PCR. The risk factors related with septic AKI onset were assessed using logistic analysis. A receiver-operating characteristic (ROC) curve was constructed to evaluate the diagnostic performance of miR-22-3p, and the Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the predictive value of miR-22-3p for the 28-day survival of septic AKI patients. RESULTS Both serum and urinary miR-22-3p expression was decreased and negatively correlated with kidney injury biomarkers in septic AKI patients. MiR-22-3p expression was a risk factor for AKI onset and had diagnostic accuracy in septic AKI patients. The expression of both serum and urinary miR-22-3p was lower in patients who died, and served as a prognostic biomarker to predict 28-day survival in septic AKI patients. CONCLUSION Serum and urinary miR-22-3p was reduced in sepsis-induced AKI patients, and served as a biomarker to predict AKI occurrence and 28-day survival in sepsis patients.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Yanfei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Haiyan Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Haihong Gong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Qian Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
41
|
Ghafouri-Fard S, Abak A, Shoorei H, Mohaqiq M, Majidpoor J, Sayad A, Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 2020; 133:110986. [PMID: 33166764 DOI: 10.1016/j.biopha.2020.110986] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) gene encodes a tumor suppressor protein which is altered in several malignancies. This protein is a negative regulator of the PI3K/AKT signaling. Several transcription factors regulate the expression of PTEN in positive or negative directions. Moreover, numerous microRNAs (miRNAs) have functional interactions with PTEN and inhibit its expression. Suppression of PTEN can attenuate the response of cancer cells to chemotherapeutic agents. Based on the critical role of this tumor suppressor gene, the identification of negative regulators of its expression has practical significance particularly in the prevention and management of cancer. Meanwhile, the interaction between miRNAs and PTEN has functional consequences in non-malignant disorders including myocardial infarction, osteoporosis, cerebral ischemic stroke, and recurrent abortion. In the present review, we describe the role of miRNAs in the regulation of expression and activity of PTEN.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Jin C, Jia L, Tang Z, Zheng Y. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/ AKT pathway. Cell Death Dis 2020; 11:601. [PMID: 32732881 PMCID: PMC7393093 DOI: 10.1038/s41419-020-02813-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a prevalent metabolic bone disease characterized by low bone mineral density and degenerative disorders of bone tissues. Previous studies showed the abnormal osteogenic differentiation of endogenous bone marrow mesenchymal stem cells (BMSCs) contributes to the development of osteoporosis. However, the underlying mechanisms by which BMSCs undergo osteogenic differentiation remain largely unexplored. Recently, long non-coding RNAs have been discovered to play important roles in regulating BMSC osteogenesis. In this study, we first showed MIR22HG, which has been demonstrated to be involved in the progression of several cancer types, played an important role in regulating BMSC osteogenesis. We found the expression of MIR22HG was significantly decreased in mouse BMSCs from the osteoporotic mice and it was upregulated during the osteogenic differentiation of human BMSCs. Overexpression of MIR22HG in human BMSCs enhanced osteogenic differentiation, whereas MIR22HG knockdown inhibited osteogenic differentiation both in vitro and in vivo. Mechanistically, MIR22HG promoted osteogenic differentiation by downregulating phosphatase and tensin homolog (PTEN) and therefore activating AKT signaling. Moreover, we found MIR22HG overexpression promoted osteoclastogenesis of RAW264.7 cells, which indicated that MIR22HG played a significant role in bone metabolism and could be a therapeutic target for osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Chanyuan Jin
- The Second Clinical Division of Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, 100081, Beijing, China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Zhihui Tang
- The Second Clinical Division of Peking University School and Hospital of Stomatology, 100081, Beijing, China.
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081, Beijing, China.
| |
Collapse
|