1
|
Schäufele TJ, Kolbinger A, Friedel J, Gurke R, Geisslinger G, Weigert A, Pierre S, Scholich K. Meloxicam treatment disrupts the regional structure of innate inflammation sites by targeting the pro-inflammatory effects of prostanoids. Br J Pharmacol 2024; 181:1051-1067. [PMID: 37823675 DOI: 10.1111/bph.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed drugs in the world due to their analgesic, antipyretic and anti-inflammatory effects. However, NSAIDs inhibit prostanoid synthesis, interfering with their pro-inflammatory and anti-inflammatory functions and potentially prolonging acute inflammation. EXPERIMENTAL APPROACH We used high-content immunohistochemistry to define the impact of meloxicam treatment on spatially separated pro-inflammatory and anti-inflammatory processes during innate inflammation in mice induced by zymosan. This allowed us to determine the effect of meloxicam treatment on the organization of pro-inflammatory and anti-inflammatory microenvironments, thereby identifying relevant changes in immune cell localization, recruitment and activation. KEY RESULTS Meloxicam treatment reduced zymosan-induced thermal hypersensitivity at early time points but delayed its resolution. High-content immunohistochemistry revealed that the pro-inflammatory area was smaller after treatment, diminishing neutrophil recruitment, M1-like macrophage polarization, and especially phagocytosis by neutrophils and macrophages. The polarization of macrophages towards the M2-like anti-inflammatory phenotype was unaffected, and the number of anti-inflammatory eosinophils actually increased. CONCLUSION AND IMPLICATIONS High-content immunohistochemistry was able to identify relevant meloxicam-mediated effects on inflammatory processes based on alterations in the regional structure of inflammation sites. Meloxicam delayed the clearance of pathogens by inhibiting pro-inflammatory processes, causing prolonged inflammation. Our data suggest that the prescription of NSAIDs as a treatment during an acute pathogen-driven inflammation should be reconsidered in patients with compromised immune systems.
Collapse
Affiliation(s)
- Tim J Schäufele
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Joschua Friedel
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
2
|
He Z, Xiao J, Wang J, Lu S, Zheng K, Yu M, Liu J, Wang C, Ding N, Liang M, Wu Y. The Chlamydia psittaci Inclusion Membrane Protein 0556 Inhibits Human Neutrophils Apoptosis Through PI3K/AKT and NF-κB Signaling Pathways. Front Immunol 2021; 12:694573. [PMID: 34484191 PMCID: PMC8414580 DOI: 10.3389/fimmu.2021.694573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023] Open
Abstract
Inclusion membrane proteins (Incs) play an important role in the structure and stability of chlamydial inclusion and the interaction between Chlamydia spp. and their hosts. Following Chlamydia infection through the respiratory tract, human polymorphonuclear neutrophils (hPMN) not only act as the primary immune cells reaching the lungs, but also serve as reservoir for Chlamydia. We have previously identified a Chlamydia psittaci hypothetical protein, CPSIT_0556, as a medium expressed inclusion membrane protein. However, the role of inclusion membrane protein, CPSIT_0556 in regulating hPMN functions remains unknown. In the present study, we found that CPSIT_0556 could not only inhibit hPMN apoptosis through the PI3K/Akt and NF-κB signaling pathways by releasing IL-8, but also delays procaspase-3 processing and inhibits caspase-3 activity in hPMN. Up-regulating the expression of anti-apoptotic protein Mcl-1 and down-regulating the expression of pro-apoptotic protein Bax could also inhibit the translocalization of Bax in the cytoplasm into the mitochondria, as well as induce the transfer of p65 NF-κB from the cytoplasm to the nucleus. Overall, our findings demonstrate that CPSIT_0556 could inhibit hPMN apoptosis through PI3K/Akt and NF-κB pathways and provide new insights towards understanding a better understanding of the molecular pathogenesis and immune escape mechanisms of C. psittaci.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jie Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Mingxing Liang
- Department of Clinical Laboratory, The Affiliated Huaihua Hospital of University of South China, Huaihua, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
3
|
Schmid T, Brüne B. Prostanoids and Resolution of Inflammation - Beyond the Lipid-Mediator Class Switch. Front Immunol 2021; 12:714042. [PMID: 34322137 PMCID: PMC8312722 DOI: 10.3389/fimmu.2021.714042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bioactive lipid mediators play a major role in regulating inflammatory processes. Herein, early pro-inflammatory phases are characterized and regulated by prostanoids and leukotrienes, whereas specialized pro-resolving mediators (SPM), including lipoxins, resolvins, protectins, and maresins, dominate during the resolution phase. While pro-inflammatory properties of prostanoids have been studied extensively, their impact on later phases of the inflammatory process has been attributed mainly to their ability to initiate the lipid-mediator class switch towards SPM. Yet, there is accumulating evidence that prostanoids directly contribute to the resolution of inflammation and return to homeostasis. In this mini review, we summarize the current knowledge of the resolution-regulatory properties of prostanoids and discuss potential implications for anti-inflammatory, prostanoid-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
4
|
Zhuang C, Gao J, Liu G, Zhou M, Yang J, Wang D, Kastelic JP, Han B. Selenomethionine activates selenoprotein S, suppresses Fas/FasL and the mitochondrial pathway, and reduces Escherichia coli-induced apoptosis of bovine mammary epithelial cells. J Dairy Sci 2021; 104:10171-10182. [PMID: 34053755 DOI: 10.3168/jds.2020-20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Escherichia coli is a major environmental pathogen causing bovine mastitis, characterized by cell death and mammary tissue damage. Apoptosis, a form of cell death, has an important role in the pathogenesis of mastitis. Selenium, an essential trace element, protects against mastitis by acting through several biochemical pathways, potentially including prevention of apoptosis. Our objective was to investigate whether selenomethionine (SeMet) attenuated E. coli-induced apoptosis in bovine mammary epithelial cells (bMEC). These cells were cultured in vitro and treated with 0, 5, 10, 20, and 40 μM SeMet for 12 h, with or without E. coli (multiplicity of infection of 5) for 8 h. Treatment with SeMet/Z-IE(OMe)TD(OMe)-FMK (ZIK)/Z-LE(OMe)HD(OMe)-FMK (ZLK, specific inhibitors of caspase-8 and -9, respectively) significantly counteracted effects of E. coli on bMEC. Specifically, SeMet upregulated selenoprotein S (SeS) and increased mitochondrial membrane potential and the ratio of Bcl-2 and Bax. Furthermore, it decreased protein expressions of Fas, FasL, FADD, cleaved caspase-8, cytochrome c, cleaved caspase-9, and cleaved caspase-3, namely, decreasing protein expression of the Fas/FasL and mitochondrial pathways. Furthermore, it downregulated total apoptosis indexes in E. coli-infected bMEC. Although ZIK and ZLK (specific inhibitors of caspases 8 and 9, respectively) significantly inhibited Fas/FasL and the mitochondrial apoptotic pathway and apoptosis indexes, respectively, substantial apoptosis still occurred. In conclusion, SeMet attenuated E. coli-induced apoptosis in bMEC by activating SeS, associated with Fas/FasL and mitochondrial pathways.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Wang
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
5
|
Zhang W, Yang J, Liu J, Long X, Zhang X, Li J, Hou C. Red yeast rice prevents chronic alcohol-induced liver disease by attenuating oxidative stress and inflammatory response in mice. J Food Biochem 2021; 45:e13672. [PMID: 33624852 DOI: 10.1111/jfbc.13672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease (ALD) is characterized by dyslipidemia, hepatic steatosis, steatohepatitis, edema, necrosis, etc. Studies have reported that some dietary nutrition factors have beneficial effects in improving ALD. Red yeast rice (RYR), a traditional herbal supplement, has been confirmed to lower cholesterol mainly due to its component monacolin K. However, the effect of RYR on ALD has not been investigated. In this study, mice were supplemented with a daily oral gavage of 4 g/kg 50% ethanol for 8 weeks to induce a chronic ALD. RYR (150 mg kg-1 day-1 ) was supplied to ALD mice in treatment group. The results showed that RYR supplementation significantly attenuated hyperlipidemia, elevated circulating inflammatory cytokines, hepatic structural damage, and oxidative stress in mice supplemented with alcohol with no effects on body weight. Moreover, RYR significantly suppressed alcohol-induced hepatic NF-κB activation and apoptosis. Our results suggest that RYR is capable of preventing ALD mainly by attenuating hepatic oxidative stress and inflammatory response. PRACTICAL APPLICATIONS: RYR was known for cholesterol-lowering effect through its main component monacolin K. The current study revealed that RYR was capable of ameliorating ALD, which is characterized by profound dyslipidemia, hepatic steatosis, steatohepatitis, edema, etc. Our results indicated that the protective effect of RYR on ALD is largely achieved by regulating lipid metabolism, and closely related to the anti-inflammatory and antioxidant effects of RYR. This study provides research foundation for the development of RYR-related food or pharmaceutical products, especially targeting for ALD.
Collapse
Affiliation(s)
- Weimin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China
| | - Junqi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., LTD, Beijing, China
| | - Xingyu Long
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China
| | - Xitong Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China
| | - Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
6
|
Gan QX, Wang J, Hu J, Lou GH, Xiong HJ, Peng CY, Huang QW. Modulation of Apoptosis by Plant Polysaccharides for Exerting Anti-Cancer Effects: A Review. Front Pharmacol 2020; 11:792. [PMID: 32536869 PMCID: PMC7267062 DOI: 10.3389/fphar.2020.00792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer has become a significant public health problem with high disease burden and mortality. At present, radiotherapy and chemotherapy are the main means of treating cancer, but they have shown serious safety problems. The severity of this problem has caused further attention and research on effective and safe cancer treatment methods. Polysaccharides are natural products with anti-cancer activity that are widely present in a lot of plants, and many studies have found that inducing apoptosis of cancer cells is one of their important mechanisms. Therefore, this article reviews the various ways in which plant polysaccharides promote apoptosis of cancer cells. The major apoptotic pathways involved include the mitochondrial pathway, the death receptor pathway, and their upstream signal transduction such as MAPK pathway, PI3K/AKT pathway, and NF-κB pathway. Moreover, the paper has also been focused on the absorption and toxicity of plant polysaccharides with reference to extant literature, making the research more scientific and comprehensive. It is hoped that this review could provide some directions for the future development of plant polysaccharides as anticancer drugs in pharmacological experiments and clinical researches.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Jun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-Yi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Shoeb M, Zhang M, Xiao T, Syed MF, Ansari NH. Amelioration of Endotoxin-Induced Inflammatory Toxic Response by a Metal Chelator in Rat Eyes. Invest Ophthalmol Vis Sci 2018; 59:31-38. [PMID: 29302691 PMCID: PMC5754197 DOI: 10.1167/iovs.17-22172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Metal ions play a key role in exacerbating toxicity associated with oxidative stress and inflammation. This study examines the effects of a formulation containing the metal chelator ethylenediaminetetraacetic acid (EDTA) and permeability enhancer methyl sulfonyl methane (MSM) on the early course of inflammation in endotoxin-induced uveitis (EIU). The proprietary MSM/EDTA formulation of Livionex, Inc., which was used for this study, is covered by several patents and pending patent applications. Methods EIU was induced by using subcutaneous injection of lipopolysaccharide (LPS) into the thighs of Lewis rats. Treatment consisted of topical application to the eyes of either PBS or eye drops designated as ME that contain EDTA and MSM. Clinical signs of uveitis were monitored at 6 and 24 hours postinjection. Oxidative and inflammatory markers were evaluated by ELISA or immunohistochemistry. Results Rats treated with ME showed fewer clinical signs of uveitis including reduced miosis, fibrinous exudates, and dilated blood vessels. The aqueous humor of treated rats contained fewer leukocytes, lower protein levels, and less PGE2. Formation of protein adducts with the lipid peroxidation end-product, 4-hydroxynonenal, expression of NF-κB, TNF-α, and MMP-9 were all reduced in rats treated with ME. Conclusions Our results indicate that ME eye drops downregulate the ocular inflammatory response in LPS treated rats, suggesting that induction of EIU involves metal ions and chelation therapy with ME is a potential treatment for uveitis.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Min Zhang
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Tianlin Xiao
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Misha F Syed
- Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, Texas, United States
| | - Naseem H Ansari
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States.,Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
8
|
Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Kozik A, Rapala-Kozik M. Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:414. [PMID: 28983472 PMCID: PMC5613151 DOI: 10.3389/fcimb.2017.00414] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans-an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the initial stages of infection. However, NET release seemed to be blocked by increasing numbers of fungal cells.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Karolina Seweryn-Ozog
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
9
|
Carmo AAF, Costa BRC, Vago JP, de Oliveira LC, Tavares LP, Nogueira CRC, Ribeiro ALC, Garcia CC, Barbosa AS, Brasil BSAF, Dusse LM, Barcelos LS, Bonjardim CA, Teixeira MM, Sousa LP. Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:3654-63. [PMID: 25165151 DOI: 10.4049/jimmunol.1400334] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The plasminogen (Plg)/plasmin (Pla) system is associated with a variety of biological activities beyond the classical dissolution of fibrin clots, including cell migration, tissue repair, and inflammation. Although the capacity of Plg/Pla to induce cell migration is well defined, the mechanism underlying this process in vivo is elusive. In this study, we show that Pla induces in vitro migration of murine fibroblasts and macrophages (RAW 264.7) dependent on the MEK/ERK pathway and by requiring its proteolytic activity and lysine binding sites. Plasmin injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that was associated with augmented ERK1/2 and IκB-α phosphorylation and increased levels of CCL2 and IL-6 in pleural exudates. The inhibition of protease activity by using a serine protease inhibitor leupeptin or two structurally different protease-activated receptor-1 antagonists (SCH79797 and RWJ56110) abolished Pla-induced mononuclear recruitment and ERK1/2 and IκB-α phosphorylation. Interestingly, inhibition of the MEK/ERK pathway abolished Pla-induced CCL2 upregulation and mononuclear cell influx. In agreement with a requirement for the CCL2/CCR2 axis to Pla-induced cell migration, the use of a CCR2 antagonist (RS504393) prevented the Plg/Pla-induced recruitment of mononuclear cells to the pleural cavity and migration of macrophages at transwell plates. Therefore, Pla-induced mononuclear cell recruitment in vivo was dependent on protease-activated receptor-1 activation of the MEK/ERK/NF-κB pathway, which led to the release of CCL2 and activation of CCR2.
Collapse
Affiliation(s)
- Aline A F Carmo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Bruno R C Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Juliana P Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Leonardo C de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Luciana P Tavares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Camila R C Nogueira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ana Luíza C Ribeiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cristiana C Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alan S Barbosa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Luci M Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Lucíola S Barcelos
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cláudio A Bonjardim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| |
Collapse
|
10
|
Behnen M, Leschczyk C, Möller S, Batel T, Klinger M, Solbach W, Laskay T. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. THE JOURNAL OF IMMUNOLOGY 2014; 193:1954-65. [PMID: 25024378 DOI: 10.4049/jimmunol.1400478] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the β2 integrin macrophage-1 Ag but not lymphocyte function-associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs.
Collapse
Affiliation(s)
- Martina Behnen
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Christoph Leschczyk
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Sonja Möller
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Tobit Batel
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Matthias Klinger
- Institute of Anatomy, University of Lübeck, D-23538 Lübeck, Germany
| | - Werner Solbach
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Tamás Laskay
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| |
Collapse
|
11
|
Burgon J, Robertson AL, Sadiku P, Wang X, Hooper-Greenhill E, Prince LR, Walker P, Hoggett EE, Ward JR, Farrow SN, Zuercher WJ, Jeffrey P, Savage CO, Ingham PW, Hurlstone AF, Whyte MKB, Renshaw SA. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1796-805. [PMID: 24431232 PMCID: PMC3921102 DOI: 10.4049/jimmunol.1300087] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Joseph Burgon
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Anne L. Robertson
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Pranvera Sadiku
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Xingang Wang
- Institute of Molecular and Cellular Biology, 61, Biopolis Drive, Proteos, Singapore
| | - Edward Hooper-Greenhill
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Lynne R. Prince
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Paul Walker
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, The University of Manchester, Manchester, United Kingdom
| | - Emily E. Hoggett
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan R. Ward
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Stuart N. Farrow
- Respiratory Therapy Area, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - William J. Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Philip Jeffrey
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Caroline O. Savage
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd., Stevenage, United Kingdom
| | - Philip W. Ingham
- Institute of Molecular and Cellular Biology, 61, Biopolis Drive, Proteos, Singapore
| | - Adam F. Hurlstone
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, The University of Manchester, Manchester, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
El Kebir D, Damlaj A, Filep JG. Toll-like receptor 9 signaling delays neutrophil apoptosis by increasing transcription of Mcl-1. PLoS One 2014; 9:e87006. [PMID: 24466313 PMCID: PMC3899359 DOI: 10.1371/journal.pone.0087006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/16/2013] [Indexed: 01/13/2023] Open
Abstract
Neutrophils detect bacterial constituents, including bacterial DNA (CpG DNA), which elicits innate immunity and prolongs the functional life span of neutrophils through suppression of apoptosis. Both the anti-apoptotic protein Mcl-1 and activation of NF-κB have been implicated in neutrophil survival, but there is no evidence that these are linked in neutrophils. We hypothesized that CpG DNA could simultaneously activate these pathways. High purity CpG DNA (0.4–3.2 µg/ml) extended the life span of human neutrophils in vitro by delaying apoptosis through altering the rate of Mcl-1 turnover. CpG DNA slightly decreased Mcl-1 protein level in the presence of cyclohexmide and the proteasome inhibitor MG132 had little effect on Mcl-1 expression in CpG DNA-treated neutrophils. In contrast, CpG DNA evoked rapid increases in DNA binding by NF-κB/p65 and Mcl-1 mRNA. NF-κB inhibitors and the telomere-derived TLR9 inhibitory oligonucleotide 5′-TTT AGG GTT AGG GTT AGG G-3′ markedly reduced Mcl-1 protein levels and subsequently abrogated suppression of apoptosis by CpG DNA. Furthermore, CpG DNA attenuated the decreases in Mcl-1 in both cell lysate and nucleus of neutrophils undergoing spontaneous apoptosis and increased Mcl-1 translocation to the mitochondria, leading to preservation of mitochondrial transmembrane potential. These results demonstrate that CpG DNA through toll-like receptor 9 links two survival signaling pathways by delaying apoptosis through induction of NF-κB-mediated Mcl-1 gene transcription and promoting Mcl-1 translocation to the mitochondria.
Collapse
Affiliation(s)
- Driss El Kebir
- Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Montréal, Quebec, Canada
| | - Anas Damlaj
- Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Montréal, Quebec, Canada
| | - János G. Filep
- Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Targeting neutrophil apoptosis for enhancing the resolution of inflammation. Cells 2013; 2:330-48. [PMID: 24709704 PMCID: PMC3972676 DOI: 10.3390/cells2020330] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/25/2013] [Accepted: 05/14/2013] [Indexed: 12/25/2022] Open
Abstract
Resolution of acute inflammation is an active process that requires inhibition of further leukocyte recruitment and removal of leukocytes from inflamed sites. Emigrated neutrophils undergo apoptosis before being removed by scavenger macrophages. Recent studies using a variety of gene knockout, transgenic and pharmacological strategies in diverse models of inflammation established neutrophil apoptosis as a critical control point in resolving inflammation. Analysis of death mechanisms revealed distinct features in executing the death program in neutrophils, which can be exploited as targets for controlling the lifespan of neutrophils. Indeed, anti-inflammatory and pro-resolution lipid mediators derived from essential fatty acids, such as lipoxin A4 and resolvin E1, autacoids and proteins, such as annexin A1 and TRAIL, and cyclin-dependent kinase inhibitors, can enhance the resolution of inflammation through induction of neutrophil apoptosis and promoting their removal by efferocytosis. In this review, we discuss recent advances in understanding the molecular basis of these actions, highlighting the potential of therapeutic induction of neutrophil apoptosis for dampening neutrophil-mediated tissue injury and inflammation underlying a variety of diseases.
Collapse
|
14
|
Wu CX, Liu Y, Zhang JC. Chronic intermittent hypoxia and hypertension: A review of systemic inflammation and Chinese Medicine. Chin J Integr Med 2013; 19:394-400. [DOI: 10.1007/s11655-013-1459-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Indexed: 01/14/2023]
|
15
|
Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 2013; 139:189-212. [PMID: 23583354 DOI: 10.1016/j.pharmthera.2013.04.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is a beneficial host reaction to tissue damage and has the essential primary purpose of restoring tissue homeostasis. Inflammation plays a major role in containing and resolving infection and may also occur under sterile conditions. The cardinal signs of inflammation dolor, calor, tumor and rubor are intrinsically associated with events including vasodilatation, edema and leukocyte trafficking into the site of inflammation. If uncontrolled or unresolved, inflammation itself can lead to further tissue damage and give rise to chronic inflammatory diseases and autoimmunity with eventual loss of organ function. It is now evident that the resolution of inflammation is an active continuous process that occurs during an acute inflammatory episode. Successful resolution requires activation of endogenous programs with switch from production of pro-inflammatory towards pro-resolving molecules, such as specific lipid mediators and annexin A1, and the non-phlogistic elimination of granulocytes by apoptosis with subsequent removal by surrounding macrophages. These processes ensure rapid restoration of tissue homeostasis. Here, we review recent advances in the understanding of resolution of inflammation, highlighting the pharmacological strategies that may interfere with the molecular pathways which control leukocyte survival and clearance. Such strategies have proved beneficial in several pre-clinical models of inflammatory diseases, suggesting that pharmacological modulation of the resolution process may be useful for the treatment of chronic inflammatory diseases in humans.
Collapse
|
16
|
El Kebir D, Filep JG. Modulation of Neutrophil Apoptosis and the Resolution of Inflammation through β2 Integrins. Front Immunol 2013; 4:60. [PMID: 23508943 PMCID: PMC3589696 DOI: 10.3389/fimmu.2013.00060] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/21/2013] [Indexed: 01/13/2023] Open
Abstract
Precise control of the neutrophil death program provides a balance between their defense functions and safe clearance, whereas impaired regulation of neutrophil death is thought to contribute to a wide range of inflammatory pathologies. Apoptosis is essential for neutrophil functional shutdown, removal of emigrated neutrophils, and timely resolution of inflammation. Neutrophils receive survival and pro-apoptosis cues from the inflammatory microenvironment and integrate these signals through surface receptors and common downstream mechanisms. Among these receptors are the leukocyte-specific membrane receptors β2 integrins that are best known for regulating adhesion and phagocytosis. Accumulating evidence indicate that outside-in signaling through the β2 integrin Mac-1 can generate contrasting cues in neutrophils, leading to promotion of their survival or apoptosis. Binding of Mac-1 to its ligands ICAM-1, fibrinogen, or the azurophilic granule enzyme myeloperoxidase suppresses apoptosis, whereas Mac-1-mediated phagocytosis of bacteria evokes apoptotic cell death. Mac-1 signaling is also target for the anti-inflammatory, pro-resolving mediators, including lipoxin A4, aspirin-triggered lipoxin A4, and resolvin E1. This review focuses on molecular mechanisms underlying Mac-1 regulation of neutrophil apoptosis and highlights recent advances how hierarchy of survival and pro-apoptosis signals can be harnessed to facilitate neutrophil apoptosis and the resolution of inflammation.
Collapse
Affiliation(s)
- Driss El Kebir
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital Montreal, QC, Canada
| | | |
Collapse
|
17
|
Mooren FC, Völker K, Klocke R, Nikol S, Waltenberger J, Krüger K. Exercise delays neutrophil apoptosis by a G-CSF-dependent mechanism. J Appl Physiol (1985) 2012; 113:1082-90. [PMID: 22858628 DOI: 10.1152/japplphysiol.00797.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of the study was to determine whether exercise affects neutrophil apoptosis and to characterize the underlying mechanisms. Using annexin V labeling, neutrophil apoptosis was measured using flow cytometry after various bouts of exercise (marathon run, concentric/eccentric treadmill exercise, moderate/intensive resistance training) and in vitro conditions. Similarly, apoptosis-related markers as death receptors/ligands and mitochondrial membrane potential were detected. Furthermore, concentrations of intracellular free calcium and glutathione were measured using spectrofluorometry. After both marathon run and intensive laboratory exercise tests, neutrophil apoptosis was delayed. Furthermore, neutrophils mitochondrial membrane potential and death receptor/ligand expression were not affected by exercise. Apoptosis delay was accompanied under some exercise conditions by enhanced intracellular calcium transients and decreased glutathione levels. A delay of spontaneous apoptosis in vitro could be induced by incubation of neutrophils in postexercise serum. Heating of postexercise serum abolished the apoptosis delaying effect. In vitro stimulation of resting neutrophils with granulocyte-colony-stimulating factor (G-CSF) and C-reactive protein resulted in apoptosis delay too. Addition of anti-G-CSF antibody to postexercise serum was also effective in reversing its apoptosis-delaying effect. Exercise-induced mobilization of neutrophils is associated with a delay of apoptosis. This fundamental process seems to maintain exercise-induced neutrophilia and to contribute to the alerting and activation of the nonadaptive immune system known from other inflammatory conditions. An important extracellular trigger of apoptosis delay during exercise conditions seems to be G-CSF; intracellular processes may include calcium and redox signaling.
Collapse
Affiliation(s)
- Frank C Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Kugelberg 62, Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Vago JP, Nogueira CRC, Tavares LP, Soriani FM, Lopes F, Russo RC, Pinho V, Teixeira MM, Sousa LP. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J Leukoc Biol 2012; 92:249-58. [PMID: 22493082 DOI: 10.1189/jlb.0112008] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed at assessing whether AnxA1, a downstream mediator for the anti-inflammatory effects of GCs, could affect the fate of immune cells in tissue exudates, using LPS-induced pleurisy in BALB/c mice. AnxA1 protein expression in exudates was increased during natural resolution, as seen at 48-72 h post-LPS, an effect augmented by treatment with GC and associated with marked presence of apoptotic neutrophils in the pleural exudates. The functional relevance of AnxA1 was determined using a neutralizing antibody or a nonspecific antagonist at FPR/ALXRs: either treatment inhibited both spontaneous and GC-induced resolution of inflammation. Injection of Ac2-26 (100 μg, given 4 h into the LPS response), an AnxA1-active N-terminal peptide, promoted active resolution and augmented the extent of neutrophil apoptosis. Such an effect was prevented by the pan-caspase inhibitor zVAD-fmk. Mechanistically, resolution of neutrophilic inflammation was linked to cell apoptosis with activation of Bax and caspase-3 and inhibition of survival pathways Mcl-1, ERK1/2, and NF-κB. These novel in vivo data, using a dynamic model of acute inflammation, provide evidence that AnxA1 is a mediator of natural and GC-induced resolution of inflammation with profound effects on neutrophil apoptosis.
Collapse
Affiliation(s)
- Juliana P Vago
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yazdani S, Karimfar MH, Imani Fooladi AA, Mirbagheri L, Ebrahimi M, Ghanei M, Nourani MR. Nuclear factor κB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Recept Signal Transduct Res 2012; 31:367-73. [PMID: 21929290 DOI: 10.3109/10799893.2011.602415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM) is known as an effective chemical agent and was used in the 1980s during the Iran-Iraq war against Iranians. At the present time, there are more than 40,000 people suffering from pulmonary lesions due to mustard gas in Iran. Though much is known about the gross pathology of SM damage, the molecular and cellular basis for this pathology is not well understood. OBJECTIVE One of the most important protein groups involved in inflammatory responses is nuclear factor κB protein (NF-κB1) family. They belong to the category of DNA-binding protein factors necessary for transcription of many proinflammatory molecules. In our research, we examined the role of NF-κB1/RelA in the pathophysiology of the lung. MATERIALS AND METHODS We investigated 10 normal individuals and 20 SM induced patients. Expression of NF-κB1/RelA in controls and the SM exposed samples was measured by real-time polymerase chain reaction and localization of NF-κB1 protein was detected by immunohistochemistry staining. RESULTS Our results revealed that expression levels of NF-κB1 and RelA were upregulated 0.64-6.50 fold and 0.83-8.34 fold, respectively, in the SM exposed patients in comparison with control samples. DISCUSSION AND CONCLUSION As far as we know, this is the first finding of induction of NF-κB in patients exposed to SM. NF-κB1/RelA may play a major role in inflammation induced by mustard gas or even in cell survival in the bronchial wall of affected patients.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
20
|
Lopes F, Coelho FM, Costa VV, Vieira ÉLM, Sousa LP, Silva TA, Vieira LQ, Teixeira MM, Pinho V. Resolution of neutrophilic inflammation by H2O2 in antigen-induced arthritis. ACTA ACUST UNITED AC 2011; 63:2651-60. [PMID: 21567381 DOI: 10.1002/art.30448] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Neutrophil accumulation contributes to the pathogenesis of rheumatoid arthritis. This study was undertaken to examine the ability of H2O2 to influence neutrophilic inflammation in a model of antigen-induced arthritis (AIA) in mice. METHODS AIA was induced by administration of antigen into the knee joints of previously immunized mice. Neutrophil accumulation was measured by counting neutrophils in the synovial cavity and assaying myeloperoxidase activity in the tissue surrounding the mouse knee joint. Apoptosis was determined by morphologic and molecular techniques. The role of H2O2 was studied using mice that do not produce reactive oxygen species (gp91phox-/- mice) and drugs that enhance the generation or enhance the degradation of H2O2. RESULTS Antigen challenge of immunized mice induced neutrophil accumulation that peaked at 12-24 hours after challenge. H2O2 production peaked at 24 hours, after which time, the inflammation resolved. Neutrophil recruitment was similar in wild-type and gp91phox-/- mice, but there was delayed resolution in gp91phox-/- mice or after administration of catalase. In contrast, administration of H2O2 or superoxide dismutase (SOD) resolved neutrophilic inflammation. The resolution of inflammation induced by SOD or H2O2 was accompanied by an increase in the number of apoptotic neutrophils. Apoptosis was associated with an increase in Bax and caspase 3 cleavage and was secondary to phosphatidylinositol 3-kinase (PI3K)/Akt activation. CONCLUSION Our findings indicate that levels of H2O2 increase during neutrophil influx and are necessary for the natural resolution of neutrophilic inflammation. Mechanistically, enhanced levels of H2O2 (endogenous or exogenous) inhibit p-Akt/NF-κB and induce apoptosis of migrated neutrophils. Modulation of H2O2 production may represent a novel strategy for controlling neutrophilic inflammation in the joints.
Collapse
Affiliation(s)
- Fernando Lopes
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Milot E, Filep JG. Regulation of neutrophil survival/apoptosis by Mcl-1. ScientificWorldJournal 2011; 11:1948-62. [PMID: 22125448 PMCID: PMC3217587 DOI: 10.1100/2011/131539] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022] Open
Abstract
Neutrophil granulocytes have the shortest lifespan among leukocytes in the circulation and die via apoptosis. At sites of infection or tissue injury, prolongation of neutrophil lifespan is critical for effective host defense. Apoptosis of inflammatory neutrophils and their clearance are critical control points for termination of the inflammatory response. Evasion of neutrophil apoptosis aggravates local injury and leads to persistent tissue damage. The short-lived prosurvival Bcl-2 family protein, Mcl-1 (myeloid cell leukemia-1), is instrumental in controlling apoptosis and consequently neutrophil lifespan in response to rapidly changing environmental cues during inflammation. This paper will focus on multiple levels of control of Mcl-1 expression and function and will discuss targeting Mcl-1 as a potential therapeutic strategy to enhance the resolution of inflammation through accelerating neutrophil apoptosis.
Collapse
Affiliation(s)
- Eric Milot
- Department of Medicine, Research Center Maisonneuve-Rosemont Hospital, University of Montreal, 5415 Boulevard de l'Assomption, Montreal, QC, Canada H1T 2M4
| | | |
Collapse
|
22
|
Dyugovskaya L, Polyakov A, Ginsberg D, Lavie P, Lavie L. Molecular Pathways of Spontaneous and TNF-α–Mediated Neutrophil Apoptosis under Intermittent Hypoxia. Am J Respir Cell Mol Biol 2011; 45:154-62. [DOI: 10.1165/rcmb.2010-0025oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
|
24
|
Duffin R, Leitch AE, Fox S, Haslett C, Rossi AG. Targeting granulocyte apoptosis: mechanisms, models, and therapies. Immunol Rev 2010; 236:28-40. [PMID: 20636806 DOI: 10.1111/j.1600-065x.2010.00922.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The inflammatory process is a complex series of tightly controlled cellular and biochemical events initiated by the immune system, which has evolved to eliminate or contain infectious agents and to repair damaged tissue. Apoptosis is essential for the clearance of potentially injurious inflammatory cells, such as neutrophils, eosinophils, and basophils, and the subsequent efficient resolution of inflammation. In this review, we aim to cover key features of the granulocyte life-cycle ranging from their differentiation within the bone marrow to their maturation and ultimate clearance, with a focus on granulocyte apoptosis and macrophage efferocytosis. We further aim to discuss current and emerging models of inflammation and suggest novel ways of terminating or resolving deleterious inflammatory responses with a specific view to the translation of these strategies into fully realized, pro-resolution therapies.
Collapse
Affiliation(s)
- Rodger Duffin
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
25
|
Binet F, Chiasson S, Girard D. Interaction between arsenic trioxide (ATO) and human neutrophils. Hum Exp Toxicol 2010; 30:416-24. [DOI: 10.1177/0960327110372645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytotoxic effect of arsenic trioxide (ATO) is known to be mediated by its ability to induce cell apoptosis in a variety of cells, including neutrophils. More recently, we demonstrated that ATO induced several parameters involved in endoplasmic reticulum (ER) stress-induced neutrophil apoptosis but that caspase-4 was not involved. The aim of this study was to better understand how neutrophils are activated by ATO and to further demonstrate that ATO is an ER stressor. Human neutrophils were isolated from healthy blood donors and incubated in vitro in the presence or absence of ATO and several parameters were investigated. We found that ATO induced the expression of the proapoptotic GADD153 protein, a key player involved in ER stress-induced apoptosis, activated nuclear nuclear factor κB (NF-κB) DNA binding activities, and increased prostaglandine E2 (PGE2) production. Using an antibody array approach, we found that ATO increased the production of several cytokines, with interleukin 8 (IL-8) being the predominant one. We confirmed that ATO increased the production of IL-8 by enzyme-linked-immunosorbent assay (ELISA). Treatment with a caspase-4 inhibitor did not inhibit IL-8 production. The results of the present study further support the notion that ATO is an ER stressor and that, although its toxic effect is mediated by induction of apoptosis, this chemical also induced, in parallel, NF-κB activation, the production of PGE2 and several cytokines probably involved in other cell functions. Also, we conclude that the production of IL-8 is not induced by a caspase-4-dependent mechanism, suggesting that ATO-induced caspase-4 activation is involved in other as yet unidentified functions in human neutrophils.
Collapse
Affiliation(s)
- François Binet
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Sonia Chiasson
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada,
| |
Collapse
|
26
|
Rusu D, Drouin R, Pouliot Y, Gauthier S, Poubelle PE. A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-kappaB- and MAPK-dependent mechanism. J Nutr 2010; 140:382-91. [PMID: 20032479 DOI: 10.3945/jn.109.109645] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Innate immunity depends on the efficiency of neutrophils to be activated rapidly to restore homeostasis. It can benefit from priming agents that enhance neutrophil capacity to respond more efficiently to a subsequent stimulation. Among natural products, a bovine whey protein extract (WPE) has been shown to prime normal human blood neutrophils by enhancing their chemotaxis, phagocytosis, oxidative burst, and degranulation. These leukocytes are also an important source of cytokines, some of which have antiinflammatory functions. We investigated the role of WPE, as well as its mechanisms of action, on the production of interleukin (IL)-1 receptor antagonist (IL-1Ra) by neutrophils in vitro. WPE dose-dependently stimulated de novo synthesis and release of IL-1Ra by normal human blood neutrophils. Among the major proteins present in WPE, beta-lactoglobulin (beta-LG) and alpha-lactalbumin (alpha-LA) were the only active components. They had additive effects that exactly reproduced those of WPE. Similarly to WPE, they also stimulated the accumulation of IL-1beta, IL-8, IL-6, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and tumor necrosis factor-alpha. However, neutrophils incubated with WPE, beta-LG, and alpha-LA produced IL-1Ra in excess of IL-1beta and the ratio IL-1Ra:IL-1beta increased linearly. The amounts of IL-1Ra stimulated by WPE or beta-LG + alpha-LA significantly reduced the IL-1 activity in EL4 cells. Inhibitors of p38 and extracellular signal-regulated kinases (ERK)1/2 mitogen-activated protein kinase, and nuclear factor-kappaB cascades reduced neutrophil production of IL-1Ra. Our data suggest that WPE, through beta-LG + alpha-LA, has immunomodulatory properties and the potential to increase host defenses.
Collapse
Affiliation(s)
- Daniel Rusu
- Centre de Recherche en Rhumatologie et Immunologie and Department of Medicine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
Sousa LP, Lopes F, Silva DM, Tavares LP, Vieira AT, Rezende BM, Carmo AF, Russo RC, Garcia CC, Bonjardim CA, Alessandri AL, Rossi AG, Pinho V, Teixeira MM. PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA-PI3K/Akt-dependent and NF-κB-independent manner. J Leukoc Biol 2010; 87:895-904. [DOI: 10.1189/jlb.0809540] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Borges VM, Vandivier RW, McPhillips KA, Kench JA, Morimoto K, Groshong SD, Richens TR, Graham BB, Muldrow AM, Van Heule L, Henson PM, Janssen WJ. TNFalpha inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am J Physiol Lung Cell Mol Physiol 2009; 297:L586-95. [PMID: 19648283 DOI: 10.1152/ajplung.90569.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Efficient removal of apoptotic cells is essential for resolution of inflammation. Failure to clear dying cells can exacerbate lung injury and lead to persistent inflammation and autoimmunity. Here we show that TNFalpha blocks apoptotic cell clearance by alveolar macrophages and leads to proinflammatory responses in the lung. Compared with mice treated with intratracheal TNFalpha or exogenous apoptotic cells, mice treated with the combination of TNFalpha plus apoptotic cells demonstrated reduced apoptotic cell clearance from the lungs and increased recruitment of inflammatory leukocytes to the air spaces. Treatment with intratracheal TNFalpha had no effect on the removal of exogenous apoptotic cells from the lungs of TNFalpha receptor-1 (p55) and -2 (p75) double mutant mice and no effect on leukocyte recruitment. Bronchoalveolar lavage from mice treated with TNFalpha plus apoptotic cells contained increased levels of proinflammatory cytokines IL-6, KC, and MCP-1, but exhibited no change in levels of anti-inflammatory cytokines IL-10 and TGF-beta. Administration of TNFalpha plus apoptotic cells during LPS-induced lung injury augmented neutrophil accumulation and proinflammatory cytokine production. These findings suggest that the presence of TNFalpha in the lung can alter the response of phagocytes to apoptotic cells leading to inflammatory cell recruitment and proinflammatory mediator production.
Collapse
Affiliation(s)
- Valeria M Borges
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sousa LP, Carmo AF, Rezende BM, Lopes F, Silva DM, Alessandri AL, Bonjardim CA, Rossi AG, Teixeira MM, Pinho V. Cyclic AMP enhances resolution of allergic pleurisy by promoting inflammatory cell apoptosis via inhibition of PI3K/Akt and NF-kappaB. Biochem Pharmacol 2009; 78:396-405. [PMID: 19422809 DOI: 10.1016/j.bcp.2009.04.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 12/23/2022]
Abstract
Selective and timely induction of apoptosis is an effective means of resolving inflammation. The effects and putative mechanisms by which cyclic AMP (cAMP) modulates leukocyte apoptosis in vivo are still unclear. The present study aims at identifying intracellular pathways underlying the ability of cAMP elevating agents to resolve eosinophilic inflammation in a model of allergic pleurisy in mice. Ovalbumin (OVA) challenge of immunized mice induced eosinophil recruitment that peaked at 24h and persisted till 48h. Treatment with the PDE4 inhibitor rolipram, cAMP mimetic db-cAMP or adenylate cyclase activator forskolin, at 24h after antigen-challenge resulted in profound resolution of eosinophilic inflammation, without a decrease of mononuclear cell numbers. There was a concomitant increase in number of apoptotic cells in the pleural cavity. The effects of rolipram and db-cAMP were inhibited by the PKA inhibitor H89. Inhibition of PI3K/Akt or NF-kappaB induced resolution of inflammation that was associated with increased apoptosis. OVA-challenge resulted in a time-dependent activation of Akt and NF-kappaB, which was blocked by treatment with rolipram or PI3K/Akt pathway inhibitors. Thus, cAMP elevating agents resolve established eosinophilic inflammation by inducing leukocyte apoptosis. Mechanistically, the actions of cAMP are dependent on PKA and target a PI3K/Akt-dependent NF-kappaB survival pathway.
Collapse
Affiliation(s)
- Lirlândia P Sousa
- Setor de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martinez-Losa M, Cortijo J, Piqueras L, Sanz MJ, Morcillo EJ. Taurine chloramine inhibits functional responses of human eosinophilsin vitro. Clin Exp Allergy 2009; 39:537-46. [DOI: 10.1111/j.1365-2222.2009.03204.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Seeds MC, Peachman KK, Bowton DL, Sivertson KL, Chilton FH. Regulation of arachidonate remodeling enzymes impacts eosinophil survival during allergic asthma. Am J Respir Cell Mol Biol 2009; 41:358-66. [PMID: 19151322 DOI: 10.1165/rcmb.2008-0192oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the role of arachidonic acid (AA) metabolism to eicosanoids has been well established in allergy and asthma, recent studies in neoplastic cells have revealed that AA remodeling through phospholipids impacts cell survival. This study tests the hypothesis that regulation of AA/phospholipid-remodeling enzymes, cytosolic phospholipase A(2) alpha(cPLA(2)-alpha, gIValphaPLA(2)) and CoA-independent transacylase (CoA-IT), provides a mechanism for altered eosinophil survival during allergic asthma. In vitro incubation of human eosinophils (from donors without asthma) with IL-5 markedly increased cell survival, induced gIValphaPLA(2) phosphorylation, and increased both gIValphaPLA(2) and CoA-IT activity. Furthermore, treatment of eosinophils with nonselective (ET18-O-CH(3)) and selective (SK&F 98625) inhibitors of CoA-IT triggered apoptosis, measured by changes in morphology, membrane phosphatidylserine exposure, and caspase activation, completely reversing IL-5-induced eosinophil survival. To determine if similar activation occurs in vivo, human blood eosinophils were isolated from either normal individuals at baseline or from subjects with mild asthma, at both baseline and 24 hours after inhaled allergen challenge. Allergen challenge of subjects with allergic asthma induced a marked increase in cPLA(2) phosphorylation, augmented gIValphaPLA(2) activity, and increased CoA-IT activity. These findings indicate that both in vitro and in vivo challenge of eosinophils activated gIValphaPLA(2) and CoA-IT, which may play a key role in enhanced eosinophil survival.
Collapse
Affiliation(s)
- Michael C Seeds
- Department of Internal Medicine/Sections on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
32
|
Enteral Nutrition with Anti-inflammatory Lipids in ALI/ARDS. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Kolaczkowska E, Plytycz B, Arnold B, Piccard H, Opdenakker G. Increased cyclooxygenase activity impairs apoptosis of inflammatory neutrophils in mice lacking gelatinase B/matrix metalloproteinase-9. Immunology 2008; 128:e262-74. [PMID: 19175797 DOI: 10.1111/j.1365-2567.2008.02956.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9)/gelatinase B plays an important role in neutrophil infiltration during inflammation and cyclooxygenases (COX-1 and COX-2) and their products are important regulators of inflammation. Recently, we reported that a genetic lack of MMP-9 impairs neutrophil infiltration during early zymosan-induced peritonitis but at later stages (> 24 hr) neutrophils persist in the peritoneal cavity. Here we show that this is the result of impaired apoptosis of MMP-9(-/-)-derived leucocytes. As enhanced COX-1 expression was reported in MMP-9(-/-) mice, we evaluated the hypothesis that altered COX expression induced the above phenomenon as COX-dependent prostaglandins can act either anti-apoptotically (PGE(2)) or pro-apoptotically (PGD(2)). The current data demonstrate that messenger RNA and protein expression of both COX isoforms and their activities are increased in MMP-9(-/-) mice during late peritonitis. Application of selective COX inhibitors revealed enhanced COX-1-dependent PGE(2) production and impaired COX-2-dependent PGD(2) synthesis in MMP-9(-/-) mice. Most importantly, inhibition of COX-1 abolished prolonged neutrophil accumulation in the peritoneal cavity of MMP-9(-/-) mice and increased apoptosis of inflammatory leucocytes. Similarly, weaker apoptosis of MMP-9(-/-) bone marrow neutrophils treated in vitro with zymosan was reversed by COX-1 inhibition. In conclusion, enhanced COX-1 expression is responsible for persistent neutrophil presence in the peritoneum of MMP-9(-/-) mice because of increased synthesis of anti-apoptotic PGE(2). In non-transgenic mice, however, inflammatory leucocytes die apoptotically in the late stages of peritonitis as a result of COX-2-dependent PGD(2) activity. Overall, we show a dependence of COX expression on the presence of MMP-9.
Collapse
Affiliation(s)
- Elzbieta Kolaczkowska
- Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | |
Collapse
|
34
|
Hallett JM, Leitch AE, Riley NA, Duffin R, Haslett C, Rossi AG. Novel pharmacological strategies for driving inflammatory cell apoptosis and enhancing the resolution of inflammation. Trends Pharmacol Sci 2008; 29:250-7. [DOI: 10.1016/j.tips.2008.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/30/2022]
|
35
|
Terao A, Huang ZL, Wisor JP, Mochizuki T, Gerashchenko D, Urade Y, Kilduff TS. Gene expression in the rat brain during prostaglandin D2 and adenosinergically-induced sleep. J Neurochem 2008; 105:1480-98. [PMID: 18331290 DOI: 10.1111/j.1471-4159.2008.05257.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have supported the hypothesis that macromolecular synthesis occurs in the brain during sleep as a response to prior waking activities and that prostaglandin D2 (PGD2) is an endogenous sleep substance whose effects are dependent on adenosine A2a receptor-mediated signaling. We compared gene expression in the cerebral cortex, basal forebrain, and hypothalamus during PGD2-induced and adenosinergically-induced sleep to results from our previously published study of recovery sleep (RS) after sleep deprivation (SD). Immediate early gene expression in the cortex during sleep induced by PGD2- or by the selective adenosine A2a agonist CGS21680 showed limited similarity to that observed during RS while, in the basal forebrain and hypothalamus, widespread activation of immediate early genes not seen during RS occurred. In all three brain regions, PGD2 and CGS21680 reduced the expression of arc, a transcript whose expression is elevated during SD. Using GeneChips, the majority of genes induced by either PGD2 or CGS21680 were induced by both, suggesting activation of the same pathways. However, gene expression induced in the brain after PGD2 or CGS21680 treatment was distinct from that described during RS after SD and apparently involves glial cell gene activation and signaling pathways in neural-immune interactions.
Collapse
Affiliation(s)
- Akira Terao
- Biosciences Division, SRI International, Menlo Park, California 94025, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Rossi AG, Hallett JM, Sawatzky DA, Teixeira MM, Haslett C. Modulation of granulocyte apoptosis can influence the resolution of inflammation. Biochem Soc Trans 2007; 35:288-91. [PMID: 17371262 DOI: 10.1042/bst0350288] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apoptosis of granulocytes and the subsequent clearance of apoptotic cells are important processes for the successful resolution of inflammation. Signalling pathways, including those involving NF-kappaB (nuclear factor kappaB), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) have been shown to be key regulators of inflammatory cell survival and apoptosis in vitro. In addition, manipulation of such pathways in vivo has indicated that they also play a role in the resolution of inflammation. Furthermore, manipulation of proteins directly involved in the control of apoptosis, such as Bcl-2 family members and caspases, can be targeted in vivo to influence inflammatory resolution. Recently, it has been shown that CDK (cyclin-dependent kinase) inhibitor drugs induce caspase-dependent human neutrophil apoptosis possibly by altering levels of the anti-apoptotic Bcl-2 family member, Mcl-1. Importantly, CDK inhibitor drugs augment the resolution of established 'neutrophil-dominant' inflammation by promoting apoptosis of neutrophils. Thus manipulation of apoptotic pathways, together with ensuring macrophage clearance of apoptotic cells, appears to be a viable pharmacological target for reducing established inflammation.
Collapse
Affiliation(s)
- A G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
37
|
Frenette AJ, Perreault MM, Lam S, Williamson DR. Thiopental-Induced Neutropenia in Two Patients with Severe Head Trauma. Pharmacotherapy 2007; 27:464-71. [PMID: 17316158 DOI: 10.1592/phco.27.3.464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thiopental has been used for decades in the treatment of refractory intracranial hypertension in patients with traumatic and nontraumatic head injuries. Commonly reported adverse effects include hypotension, hypokalemia, respiratory complications, and hepatic dysfunction. Neutropenia has rarely been reported as an adverse effect of thiopental. We witnessed probable thiopental-induced neutropenia in two patients with traumatic brain injuries who developed increased intracranial hypertension that was refractory to standard therapy. Based on a MEDLINE search of published case reports and literature, we propose two mechanisms by which thiopental-related neutropenia might be explained. The first is inhibition of inflammatory mediator nuclear factor-kappa B (NF-kappa B), leading to granulocyte apoptosis. The second mechanism involves inhibition of calcineurin. Although the precise link between these two mechanisms has not been elucidated, calcineurin is known to regulate NF-kappa B activity. Development of neutropenia does not appear to be correlated with time but may correlate with plasma concentrations of thiopental. The optimum management of drug-induced neutropenia is unclear. The decision to discontinue thiopental in patients who develop neutropenia should be made by weighing the risks versus benefits. Broad-spectrum antibiotics may be required in the presence of fever. The role of hematopoietic growth factors such as granulocyte colony-stimulating factor is not yet defined. Given the adverse infectious consequences of neutropenia, it is essential to closely monitor neutrophil counts in patients receiving thiopental.
Collapse
Affiliation(s)
- Anne Julie Frenette
- Department of Pharmacy Services, Hôpital du Sacré-Coeur de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
38
|
Mayadas TN, Cullere X. Neutrophil beta2 integrins: moderators of life or death decisions. Trends Immunol 2005; 26:388-95. [PMID: 15922663 DOI: 10.1016/j.it.2005.05.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/15/2005] [Accepted: 05/16/2005] [Indexed: 12/12/2022]
Abstract
Beta2 integrins are leukocyte-specific membrane receptors that are crucial for host defense. They are best known for promoting neutrophil recruitment into inflamed tissue and pathogen phagocytosis. More recent data suggest that they also modulate neutrophil apoptosis. Neutrophils are terminally differentiated cells, which undergo constitutive apoptosis, and their apoptosis and clearance is required for the resolution of inflammation. Engagement of the beta2 integrin Mac-1 through its adhesion to its ligands, intercellular adhesion molecule-1 (ICAM-1) and fibrinogen, signals survival cues in neutrophils. However, in the presence of pro-apoptotic signals, such as tumor necrosis factor (TNF), Mac-1 engagement accelerates apoptosis. Furthermore, Mac-1-dependent phagocytosis of complement-opsonized pathogens triggers rapid neutrophil apoptosis, which is dependent on NADPH oxidase-generated reactive oxygen species and caspase activation. This is also associated with changes in the transcription profiles of pro- and anti-apoptotic genes. In this review, the beta2 integrin-dependent mechanisms that modulate the decision between life and death in neutrophils are overviewed.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center of Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB 7520, Boston, MA 02115, USA.
| | | |
Collapse
|
39
|
Parker LC, Whyte MKB, Dower SK, Sabroe I. The expression and roles of Toll-like receptors in the biology of the human neutrophil. J Leukoc Biol 2005; 77:886-92. [PMID: 15728244 DOI: 10.1189/jlb.1104636] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are amongst the first immune cells to arrive at sites of infection, where they initiate antimicrobial and proinflammatory functions, which serve to contain infection. Sensing and defeating microbial infections are daunting tasks as a result of their molecular heterogeneity; however, Toll-like receptors (TLRs) have emerged as key components of the innate-immune system, activating multiple steps in the inflammatory reaction, eliminating invading pathogens, and coordinating systemic defenses. Activated neutrophils limit infection via the phagocytosis of pathogens and by releasing antimicrobial peptides and proinflammatory cytokines and generating reactive oxygen intermediates. Through the production of chemokines, they additionally recruit and activate other immune cells to aid the clearance of the microbes and infected cells and ultimately, mount an adaptive immune response. In acute inflammation, influx of neutrophils from the circulation leads to extremely high cell numbers within tissues, which is exacerbated by their delayed, constitutive apoptosis caused by local inflammatory mediators, potentially including TLR agonists. Neutrophil apoptosis and safe removal by phagocytic cells limit tissue damage caused by release of neutrophil cytotoxic granule contents. This review addresses what is currently known about the function of TLRs in the biology of the human neutrophil, including the regulation of TLR expression, their roles in cellular recruitment and activation, and their ability to delay apoptotic cell death.
Collapse
Affiliation(s)
- Lisa C Parker
- Academic Units of Respiratory, Medicine and Cell Biology, Section of Functional Genomics, Division of Genomic Medicine, University of Sheffield, UK.
| | | | | | | |
Collapse
|
40
|
Fodor I, Timiryasova T, Denes B, Yoshida J, Ruckle H, Lilly M. VACCINIA VIRUS MEDIATED p53 GENE THERAPY FOR BLADDER CANCER IN AN ORTHOTOPIC MURINE MODEL. J Urol 2005; 173:604-9. [PMID: 15643273 DOI: 10.1097/01.ju.0000143196.37008.2c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We determined if vaccinia virus (VV) mediated delivery of human tumor suppressor p53 is safe and effective for bladder tumor therapy in an orthotopic murine model. MATERIALS AND METHODS We used recombinant VV (rVV) vectors to express transgenes in murine bladder cancer MB-49 cells in culture and those growing orthotopically in syngeneic mice. Cultured MB-49 cells were infected with rVV expressing reporter genes (rVV-L15) or p53 (rVV-TK-53) to measure virus infection and apoptosis induction. Orthotopic MB-49 tumors in C57/Bl6 mice were treated with intravesical instillation of rVV, and the tumor incidence, survival and transgene expression were determined. RESULTS Productive virus infection in vitro was observed in MB-49 cells, although at somewhat lower efficiency than in African Green Monkey kidney CV-1 cells (American Type Culture Collection, Manassas, Virginia). Expression of transgenes in vitro correlated with the virus dose. Cells infected with rVV underwent apoptosis with rVV-TK-53 inducing far greater cell death than rVV-L15. The rVV-L15 virus had no effect on tumor incidence but it increased mean survival compared with control. Instillation of rVV-TK-53 decreased the tumor incidence and 33% of mice survived treatment. At necropsy all nonsurviving mice had bladder tumor, whereas 2 survivors in the rVV-TK-53 treated group were tumor-free. Immunohistochemistry of tumors detected expression of the human p53 gene product in tumor cells. CONCLUSIONS To our knowledge we report for the first time that recombinant vaccinia virus expressing human p53 can induce the death of MB-49 tumor cells in vivo, not only through the lytic effect of the virus, but also through expression of the death inducing p53 transgene. Further studies are needed to shed light on the mechanisms of rVV-TK-53 mediated tumor apoptosis and the antitumor immune response.
Collapse
Affiliation(s)
- Istvan Fodor
- Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, California 92354, USA.
| | | | | | | | | | | |
Collapse
|